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Sobolev Inequalities
on
Sets with Irregular Boundaries

T. Kilpelainen and J. Maly

Abstract. We derive (weighted) Sobolev-Poincaré inequalities for s-John domains and s-cusp
domains, both with optimal exponents. These results are obtained as consequences of a more
comprehensive criterion.
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1. Introduction

It is well known that the Sobolev space WP(Q) is continuously embedded into L4(12)
if {2 is a nice bounded domain in R" and

1<p< o and q(n —p) < np. (1.1)

This fact, originally due to Sobolev, Gagliardo and Nirenberg, can nowadays be found
in textbooks (cf. [12, 17]) and it is stated as the Sobolev-Poincaré inequality

(/Q ]u—uQ|qd:c>% <c (/Q]Vu|pd:c>%. (1.2)

The weighted case of Sobolev’s imbedding has been developed by Necas [14], Besov, Ilin
and Nikolskii [3, 4], Kufner [7], Maz’ya [12] and others. It is not very difficult to give
examples of domains having cusps for which the Sobolev-Poincaré inequality (1.2) fails
to hold or the range for its validity differs from (1.1). The question of this embedding in
non-smooth domains {2 is addressed by many authors. To mention but a few, we would
like to refer to the books [12, 13], and point out that Besov [1, 2] obtained embeddings in
domains satisfying “flexible cone conditions”, Smith and Stegenga [15] proved Poincaré
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inequality with ¢ = p for s-John domains (that allow for twisted cusps of the type t* with
certain s > 1). Maz'ya [10] (see also Labutin [8]) established the optimal embedding
for s-cusps. Hajlasz and Koskela [5] proved the optimal Sobolev-Poincaré inequality in
s-John domains with p = 1 and the next to the optimal one for p > 1. Their result also
involves weights. We refer to [5] also for further historical notes and references.

In this note we complete the picture for s-John domains and give a proof for the
optimal Sobolev-Poincaré inequality in s-John domains, thus improving the results in
[5] (see Theorem 2.3). We study also the weighted case where the weight is a power of
the distance to the boundary. The result is obtained as a consequence of a slightly more
general criterion, which may be used to illustrate why the optimal exponent for s-John
domains is worse than the optimal exponent for domains with a single s-cusp. We use
Hedberg’s trick on the maximal operator [6], a truncation argument due to Maz’ya [11]
and some ideas from Hajtasz and Koskela [5].The main new ingredient of our proof is a
careful grouping of chains around a curve which we call a worm.

The Lebesgue measure of a measurable set E C R™ is denoted by |E|. If u is an
integrable function defined at least on F, we let ug stand for the average

1
Up = uda::—/udx.
& ][E E| JE

The open n-dimensional ball with center at = and radius r is written as B(xz,r) =
B, (z,7). We use #§F for the cardinality of a set F'.

2. Main results

This section contains the results with proofs. We start with a general theorem and
deduce the s-John domain result from it.

Let Q C R™ be a bounded open set. We consider exponents a, b, p, q satisfying

a>0, b>1—-n (2.1)
1<p<g< > (2.2)
1 1 1
B (2.3)
q p n

Let p the measure on R™ with

d_,u _ {pa in
dz 0 outside Q °

Here and in what follows p(x) = dist (z, R™ \ Q).

We shall define a worm. This is a pair (v, A), where v : [0,¢] — € is a curve joining
y = v(0) to xg = v({), parametrized by its arc-length, and A = {&}, 0 = & < & <
& < ... < &, = L, is a finite partition of [0,¢]. With each worm we associate its
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parameters: the number m of the partition intervals [{x_1,&], and for k = 1,...,m the
quantities

b = &k — &k

R =sup {|7(t) —y| : t € [€p—1,&]}

ri = inf {p('y(t)) it e [5k_1,gk]}.
Theorem 2.1. Let a,b,p,q satisfy (2.1) - (2.3). Let

(2.4)

Suppose that there is a constant A > 0 and a point xg € Q such that for each y €
Q\ B(xo, (‘TO)) there is a worm (v, A) joining y to xo, with parameters m, {{;}, { Ry},

{rr} and constants Ty, .. € (0,1] (both parameters and 1y, ’s may depend on y), such
that
ply) < 3Re (E=1,....m) 25)
1+ A D 1 < <Amy (E=2,...,m) (2.6)
n+b 1 1-p
A7 (u(B(y, BRk)))q <7 <Ar, ? {7 . (2.7)

Then there is a constant C = C(n,p,a,b, A,Q) > 0 such that

(/ lu — ua\qp“dx) ' <C (/ \Vu\ppbdx) ’
Q Q

for each u € C* () where 4, = fudp = ﬁ Joudp.
We start the proof with the following lemma.

Lemma 2.2. Suppose that Q is a bounded open set. Let z,z' € Q and let v :
[€,&'] — R™ be a path of the length £ that joins z and z'. Suppose that b > 1 —n and

that p > 1 on . Let u € C1(Q). Then
/ |Vu|p,0bdx> (2.8)
D

v

B I=

p—1

1—b—n p—1
UB(z,50(2)) _uB(Z/,%p(z’))‘ <Cr v (7 (

where D, = Ute[&g]B(v(t)? %p(v(t)))

Proof. Write B = B(z, 3p(z)) and B’ = B(2, 5p(z')). We construct a chain {B;},

1
2P
B; = B(z;, 3p(%;)) of balls and denote B; = B(z;, +p(z;)). For the construction, it is
enough to determine points t; such that z; = y(¢;). If ¢1,...,¢;_1 are selected, we find
the next as

tj=sup {t € [ti1,€1: BO(), 2p(v(1)) N Bj1 #0}.

If t; = ¢, we set jmax = J, t; = & and terminate the construction.
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We observe that the balls B(z;, $p(2;)) (i < jmax) are disjoint, and since their radii
are bounded away from zero and () is bounded, the sequence really terminates after a
finite number of steps. Fix z € Q and denote I(z) = {i < jmax : © € B;}. Let i € I(x).

Then
p(zi) < pla) + |z — z| < p(z) + $p(2) }

< pla
p(x) < p(zi) + o — 2] < p(z:) + 5p(2)

and thus
p(z:) < 2p(x) and  p(x) < 2p(z). (2.9)

For any y € B; we have ly — x| < p(z;) < 2p(x) which means that Uie[(x)Bi C
B(z,2p(x)). Since B; (i € I(x)) are disjoint, we have

|B(z, gp(2))|$1(x) < Y |Bil < |B(z,2p(x))|

€l(x)

which implies #/(z) < 16™. Thus we have proven that

D xB, 16"+ 1. (2.10)

Next, consider ¢ € {1,...,jmax} and notice that there is a point = € B;_1 N B,.
Then, as above, we infer that (2.9) holds and

B(z, 1p(x)) € B(x, Tp(zi1)) N Bl 1p(=1)) € By 1 B,
Bi_1UB; C B(x,p(zi—1)) U B(z, p(z;)) C B(z,2p(x))

so that
|B;—1 U B;| <16"|B;—1 N By]. (2.11)

Also, it is clear that

Jmax

> plz) < C (2.12)

=1

Using (2.11) and the Poincaré inequality we have

|uBi - uBi—1| < |uBi - uBiﬂBi—1| + |uBiﬂBz‘—1 - uBi—1|

§][ |u—uBi|d:1:+][ lu—up, ,|dx

BiNB;_, BiNB;_,

< __|Bil ][ | Bi—1|
|B; N B;i_4|

|B7J N Bi,1|
< Cp(z) (7[3 \Vurpdx) ’

B;
+ C p(zi—1) <][ ]Vu\pd:c> .
i Bi-1

|U’ —UB;_, | dx
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Hence we can estimate by using (2.10) and (2.12) that

Jmax

lupr —up| < Y |up, —up,_,|
1=2

Jmax 1
<o o3 ([ wura)
=1 i

jmax P
<N plz) 3t (/ p(zi)b|Vu|pdx)
B;

i . (2.13)
<C rlizibp Z 1=y / P’ |VulPdz )"
> )73, oIVurds)
l1—m—b> jmax 1_% jmax %
<Cr (ZP(%)) (Z/ Pb|VU|pdﬂ7)
i=1 i=1 Y Bi

p

< C’rl_;_nﬁ% /
D

since b+ n > 1. The lemma is proven H

pb|Vu|pdac)

~

Proof of Theorem 2.1. Denote By = B(zg, 2p(x0)) and let u € C1(Q2). We may
assume that

[{u > 0} N By| > 3| By and [{u <0} N By| > 1|Bo|. (2.14)

We will also assume as we may that
/ |VulPpldr = 1. (2.15)
Q
We shall first establish a weak type estimate

p(Ax) < CA79, (2.16)

where Ay = {z € Q: |u(x)| > A} and A > 0. First observe that since the median of u
is zero in By by (2.14), we have

/ lufPda < c/ Vulde (2.17)
Bo Bo

(see [17: Theorem 4.4.4]). Hence

1
lup,| < (][ |u\pdx> <c <][ \Vu\pdx) < ¢y, (2.18)
Bo BO
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where ¢ is independent of u. Since u(€2) < oo it suffices to establish (2.16) for A > 3c¢y.
To do so, we fix A > 3¢y and divide A, into three parts: write B, = B(y, 3p(y)) and let

E)\:{yEA)\\BO:\uBy] > %)\}
Fy :AA\(BoLJE)\).

The third part is
Ay N By.

We treat F) first. Fix y € F) and let (v, {{x}) be a worm in  that connects y to xo,
with parameters m, {{;},{Rx},{rr}, and obeys the bounds of the theorem. We apply
Lemma 2.2 to paths yx = 7|, _, ¢,] and points z = 2, = y(&k—1) and 2’ = 2z, = y(&).
Let x = v(t) with ¢t € [£x_1,&k]. Then by (2.5)

p(z) < ply) +y — x| < 4Ry

and thus .
B(z, 5p(x)) C B(y, Ri + 2Ry)

D% C B(y, 3Rk).

Since A > 3¢, we have

)\§6|uBy —UBO|

m
<6 Z lup, —us., |
k
k=1

1—b—n p—1 p
<Cy r, 747 / PP VulPdp | .
zk: e ( B(y.3Rs)

We split the last sum into two parts by K = K(y) that is to be determined. First we
notice that by (2.6) and (2.2)

Z < C’TI}}A and Z T]f_l < C’Tf(_l. (2.19)
k>K k<K

If K < m, due to our normalization of u, (2.7) and (2.19) we have

1-b=n p—1 P
Z re U 4” / P’ VulPdp

k>K
% 1-b—-n p—1
< (/Qpb\VuP’dx) Zrk Pl
k>K
1—-b—n p—1 (220)
=> " b7
k>K
<C) =’
k>K

< C’ng_l.
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Before treating the second part of the sum, we set

1 P
[V )=\ B Ba,r)

Since the maximal operator with respect to pu is of weak type (1, 1) (see, e.g., [9: Theorem
2.19] or [16: p. 44/1.8.17]) and || f[|z1(x) = 1, we have

,u({gp>t})§0% (0 <t < o0).

(2.21)
We estimate
1-b—n p—1 b %
Soar ([ v
k<K B(y,3R)
1—-b—n — 1
< S 7 67 (uB.3RY) 9
= (2.22)
<C Z Ty Tk g(y
k<K
_ +‘1

< CTK ? g(y).

Now we specify the choice of K, distinguishing three cases. If 7, s 9(y), we choose
K = 0. Then the sum over all k = 1,...,m reduces to (2.20) and we have A < C1; ! <

Cg(y)g. If 7,,” > g(y), we choose K = m. Then the sum over k = 1,...,m is treated
in (2.22), and we have

a

A< Crm Pgly) < Coly)igly) = Cgly)f.

-nhs

q A
The remalnmg case is that Tm” < gly) <7 "

. Then we choose the integer K < m so
that TK+1 <g(y) < Tx?

. Using (2.20) and (2.22) we obtain

A< Crrl, 4+ Crg P gly) < Coly)s.

-mlm-;

Hence we always have A < C’g(y)g for every y € E). Therefore by (2.21)

p(EN) < p({g” > (A/C)7}) < CA™Y. (2.23)

Next, we estimate the measure of F. Using the Besicovitch covering theorem (cf.
[9: Theorem 2.7]) we can cover Fy with balls By, = B(z;, 2p(x;)) so that z; € Fy and
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> XB,, < N. Then lu — qui| > %)\ on F\ whence we have by using the Sobolev-
Poincaré inequality that

<ZILLB,QF)\

<Z/

B"Ez ﬁFA

< CZp(:Ci)“/ dx

Bzi NFy

<O plw) [ fu s, s

Bzi NFy

< CA\™ qZp yatatni=3) (/ ]Vu|pdac>
B,
< OA qz (/ |Vu]ppp(“q‘”+1%)dx>

<CN1 </ \Vu\ppbdx) ’
Q

<COX1

(2.24)

a
P

since p(“E™ +1—2) > b by (2.4).

Finally, combining (2.17) and the usual Sobolev inequality in the ball By, we obtain
the weak type estimate u(Ax N By) < CA™9. Hence by estimates (2.23) and (2.24)

1(Ax) < p(EX) + p(Fx) + p(Ax N By) < CA™7

In conclusion, (2.16) holds for all A > 0 or, without normalization (2.15),

Sup)\u({|u| > ADe < (/ Vul?p bdm) . (2.25)

A truncation argument shows that the weak type estimate (2.25) implies the desired
embedding. Indeed, for each ¢t > 0 the truncated functions

St if |u(z)] >t
w(z) = 4 |u(z)| — 2t if 2t < Ju(z)| <t
0 if |u(z)| < 1t

satisfy (2.14). Thus we may use (2.25) to conclude

(/ MWO < Cp({lul > t)):
{t<u<2t}
< Ctp({u, = Lt})s
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<C (/ |Vut|ppbdx> ’
Q
C / \VulPpldz | .
{3t<|u|<t}

o0
e [ 0]t d
/Q Z {27 <|u|<29+1}

j=—o0

<C / VulPpbdx
Z <{2j1<u|<2j}| |

j=—o0

Hence
aq
P

<’ (/ |Vu]ppbdx> ’ ,
Q

and the theorem is proved, since [, |u — tq|?p%dz < C [, |ul?p®dz

Following Smith and Stegenga [15] we call a bounded domain Q an s-John domain
(s > 1), if there is a point xy € Q and a constant ¢y > 1 such that each point z € Q can
be joined to xg in 2 by a rectifiable curve (called an s-John core) 7 : [0,¢] —  such that
v is parametrized by the arc length, (0) = 2, v(£) = 20, and dist (y(t), 9Q) > ¢, 't* for
all t € [0, /].

The next theorem improves the main result of [5].

Theorem 2.3. Suppose that ) is an s-John domain. Let a,b,p,q satisfy (2.1) -
(2.3) and
1 _s(n+b—-1)—p+1
q p(n+a) '
Then there is a constant C = C(n,p,q,a,b,Q) > 0 such that

(/ lu — ﬂa|qpadx) ' <C (/ |Vu|ppbdm) ’
Q Q

for each u € C1(Q).

Proof. We will verify the assumptions of Theorem 2.1. First we notice that s > 1
implies

>

s(n+b—1)—p+1 S n+b—p
p(n+a) ~ p(n+a)
so that (2.4) is true. For fixed y € Q\ B(zo, 3p(x0)), the s-John core v on [0, /] gives

us the desired worm: Let d = sup {|y(t) —y| : ¢ € [0,4]}. Find the integer m with
3d < 2™p(y) < 6d. Since

1
-2
q

p(y) < p(xo) + |y — zo| < 3|y — z0| < 3d,

we have m > 1. Set

&k = sup {t €[0,4]: |y(s) —y| < 28™d for all s € [O,t]}.
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Then (v, {&}) is a worm with parameters m, {{;}, {Rx}, {rx}, and
O < &k
& > Ry, =2F"md
T > o

The inequality p(y) < 6-27™d < 3Ry, verifies (2.5). Since

n+a>s(n—|—b—1)+1—p
a p

we have by choosing 7, = 9(k=m)"2% that

n+a

w(B(y,Ry))s < R, " <Cr

and
_n+b—-1 p—1 + p—1 n+a

= n+b—1 £F—— —_
re 0 47 < (cobr) T w &7 <Cg ¢ <Onh

Hence the claim follows from Theorem 2.1 i

Remark. The exponent q of Theorem 2.3 is the best possible in the class of s-John
domains (see [5]).

Example 2.4. An example of an s-John domain is an s-cusp domain. Surprisingly,
the optimal embedding exponent for the s-cusp obtained in [8, 10, 13] is better than
that for general s-John domains. The reason is that complicated s-John domains may
contain “rooms and corridors” so that the upper estimate for u(B(y, R) N ) must be
more carefully examined. We show that the optimal embedding for s-cusp domains can
be deduced from Theorem 2.1. Let us write x € R™ as x = (&, 2*), where & € R"~! and
x* is the last coordinate of x. We will consider the s-cusp domain

Q:{xeR": |z| < (2*)® and O<x*<2}

and show that if (2.1) - (2.3) are verified, Theorem 2.1 yields embedding of W17 (€2, p?)
into L1(Q2, p*), where

1_sn+b-1)—p+1

¢ p(s(n+a—-1)+1)

We choose zg = €, = (0,1). If y € Q\ B(zo, 3p(20)), we set £ = £(y) = || + |y* — 1
and define the worm curve v : [0,¢] — Q as

v

" (1= 59, v7) if 0 <t <]
Y\) = _ " A
(1 + f_';' (y* — 1))en if |[g] <t <.

In other words, worm curve starts at y, goes first on line segment connecting y with
y* e, and then turns to the line segment connecting y*e, with e,,. We find a partition

{€o,--.,&m} of [0,¢] in such a way that £ = 0,
EO 207 é_k :Qk_mﬁ (l{}: 1,...,m)
p(y) <& < 2p(y),
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where the last is what determines m and guarantees (2.5).
From now we treat only the interesting case that y* < 1. Then

by =&, 0 = %fk (k=2,...,m)
G <rp

§k < Ry < 28 (2.26)
B(y,Ri)NQ C Bp—1(9,Cri) x (y* — Ri,y™ + Ry)
p < Cri on B(y, Ry).

/

Set 1, = (§z+a*1€k)%. It is easy to observe that 7 satisfy (2.6). From (2.26)2 we obtain

ntb-1 1-p nta—1 1

T, " E,CT e S C_lTk.

The additional information provided by (2.26)4—5 has no counterpart in the case of a
general s-John domain. We use it to estimate u(B(y,3Rx)):

Q=

Cu(B(y,Ri))s < C(erZ*Ha)% < C(& TZ*H“)% < Cry.

Hence (2.7) is verified and Theorem 2.1 yields the result.
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