Sobolev Inequalities on Sets with Irregular Boundaries

T. Kilpeläinen and J. Malý

Abstract. We derive (weighted) Sobolev-Poincaré inequalities for s-John domains and s-cusp domains, both with optimal exponents. These results are obtained as consequences of a more comprehensive criterion.

Keywords: Sobolev inequality, Poincaré inequality, embeddings, weighted Sobolev spaces, John domains, cusp domains

AMS subject classification: 46 E 35

1. Introduction

It is well known that the Sobolev space $W^{1,p}(\Omega)$ is continuously embedded into $L^q(\Omega)$ if Ω is a nice bounded domain in \mathbb{R}^n and

$$
1 \le p < \infty \qquad \text{and} \qquad q(n-p) \le np. \tag{1.1}
$$

This fact, originally due to Sobolev, Gagliardo and Nirenberg, can nowadays be found in textbooks (cf. $[12, 17]$) and it is stated as the Sobolev-Poincaré inequality

$$
\left(\int_{\Omega} |u - u_{\Omega}|^q dx\right)^{\frac{1}{q}} \le C \left(\int_{\Omega} |\nabla u|^p dx\right)^{\frac{1}{p}}.
$$
\n(1.2)

The weighted case of Sobolev's imbedding has been developed by Neˇcas [14], Besov, Ilin and Nikolskii [3, 4], Kufner [7], Maz'ya [12] and others. It is not very difficult to give examples of domains having cusps for which the Sobolev-Poincaré inequality (1.2) fails to hold or the range for its validity differs from (1.1). The question of this embedding in non-smooth domains Ω is addressed by many authors. To mention but a few, we would like to refer to the books [12, 13], and point out that Besov [1, 2] obtained embeddings in domains satisfying "flexible cone conditions", Smith and Stegenga [15] proved Poincaré

T. Kilpeläinen: Dept. Math. Univ. Jyväskylä, P.O. Box 35 (Mattilanniemi D), 40351 Jyväskylä, Finland; terok@math.jyu.fi; supported by the Academy of Finland (Project #8597). J. Malý: Dept. Math. Anal. Charles Univ., Sokolovská 83, 18675 Praha, Czech Republic; maly@karlin.mff.cuni.cz; supported by grants $GACR$ 201/97/1161 and $GAUK$ 186/96.

inequality with $q = p$ for s-John domains (that allow for twisted cusps of the type t^s with certain $s \geq 1$). Maz'ya [10] (see also Labutin [8]) established the optimal embedding for s-cusps. Haj \hat{a} lasz and Koskela [5] proved the optimal Sobolev-Poincaré inequality in s-John domains with $p = 1$ and the next to the optimal one for $p > 1$. Their result also involves weights. We refer to [5] also for further historical notes and references.

In this note we complete the picture for s-John domains and give a proof for the optimal Sobolev-Poincaré inequality in s-John domains, thus improving the results in [5] (see Theorem 2.3). We study also the weighted case where the weight is a power of the distance to the boundary. The result is obtained as a consequence of a slightly more general criterion, which may be used to illustrate why the optimal exponent for s-John domains is worse than the optimal exponent for domains with a single s-cusp. We use Hedberg's trick on the maximal operator [6], a truncation argument due to Maz'ya [11] and some ideas from Hajłasz and Koskela [5]. The main new ingredient of our proof is a careful grouping of chains around a curve which we call a worm.

The Lebesgue measure of a measurable set $E \subset \mathbb{R}^n$ is denoted by |E|. If u is an integrable function defined at least on E , we let u_E stand for the average

$$
u_E = \int_E u \, dx = \frac{1}{|E|} \int_E u \, dx.
$$

The open *n*-dimensional ball with center at x and radius r is written as $B(x, r) =$ $B_n(x,r)$. We use $\sharp F$ for the cardinality of a set F.

2. Main results

This section contains the results with proofs. We start with a general theorem and deduce the s-John domain result from it.

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. We consider exponents a, b, p, q satisfying

$$
a \ge 0, \quad b \ge 1 - n \tag{2.1}
$$

$$
1 \le p < q < \infty \tag{2.2}
$$

$$
\frac{1}{q} \ge \frac{1}{p} - \frac{1}{n}.\tag{2.3}
$$

Let μ the measure on \mathbb{R}^n with

$$
\frac{d\mu}{dx} = \begin{cases} \rho^a & \text{in } \Omega \\ 0 & \text{outside } \Omega \end{cases}.
$$

Here and in what follows $\rho(x) = \text{dist}(x, \mathbb{R}^n \setminus \Omega)$.

We shall define a worm. This is a pair (γ, Δ) , where $\gamma : [0, \ell] \to \Omega$ is a curve joining $y = \gamma(0)$ to $x_0 = \gamma(\ell)$, parametrized by its arc-length, and $\Delta = {\xi_k}$, $0 = \xi_0 < \xi_1$ $\xi_2 < \ldots < \xi_m = \ell$, is a finite partition of $[0, \ell]$. With each worm we associate its *parameters*: the number m of the partition intervals $[\xi_{k-1}, \xi_k]$, and for $k = 1, \ldots, m$ the quantities

$$
\ell_k = \xi_k - \xi_{k-1}
$$

\n
$$
R_k = \sup \{ |\gamma(t) - y| : t \in [\xi_{k-1}, \xi_k] \}
$$

\n
$$
r_k = \inf \{ \rho(\gamma(t)) : t \in [\xi_{k-1}, \xi_k] \}.
$$

Theorem 2.1. Let a, b, p, q satisfy (2.1) - (2.3) . Let

$$
\frac{1}{q} \ge \frac{n-p+b}{p(n+a)}.\tag{2.4}
$$

Suppose that there is a constant $A > 0$ and a point $x_0 \in \Omega$ such that for each $y \in \Omega$ $\Omega \, \backslash \, B(x_0, \frac{\rho(x_0)}{2}$ $\frac{x_0}{2}$) there is a worm (γ, Δ) joining y to x_0 , with parameters m, $\{\ell_k\}$, $\{R_k\}$, ${r_k}$ and constants $\tau_1, \ldots, \tau_m \in (0,1]$ (both parameters and τ_k 's may depend on y), such that

$$
\rho(y) \le 3R_k \quad (k = 1, \dots, m) \tag{2.5}
$$

$$
(1 + A^{-1})\tau_{k-1} \le \tau_k \le A\tau_{k-1} \quad (k = 2, \dots, m)
$$
\n(2.6)

$$
A^{-1}(\mu(B(y,3R_k)))^{\frac{1}{q}} \le \tau_k \le A r_k^{\frac{n+b-1}{p}} \ell_k^{\frac{1-p}{p}}.
$$
\n(2.7)

Then there is a constant $C = C(n, p, a, b, A, \Omega) > 0$ such that

$$
\left(\int_{\Omega} |u-\bar{u}_a|^q\rho^a dx\right)^{\frac{1}{q}}\leq C\left(\int_{\Omega} |\nabla u|^p\rho^b dx\right)^{\frac{1}{p}}
$$

for each $u \in C^1(\Omega)$ where $\bar{u}_a =$ R $\int_{\Omega} u \, d\mu = \frac{1}{\mu(\Omega)}$ $\mu(\Omega)$ R $\int_{\Omega} u \, d\mu.$

We start the proof with the following lemma.

Lemma 2.2. Suppose that Ω is a bounded open set. Let $z, z' \in \Omega$ and let γ : $[\xi, \xi'] \to \mathbb{R}^n$ be a path of the length ℓ that joins z and z'. Suppose that $b \geq 1 - n$ and that $\rho \geq r$ on γ . Let $u \in C^1(\Omega)$. Then

$$
\left| u_{B(z, \frac{1}{2}\rho(z))} - u_{B(z', \frac{1}{2}\rho(z'))} \right| \leq Cr^{\frac{1-b-n}{p}} \ell^{\frac{p-1}{p}} \left(\int_{D_{\gamma}} |\nabla u|^p \rho^b dx \right)^{\frac{1}{p}} \tag{2.8}
$$

where $D_{\gamma} = \bigcup_{t \in [\xi, \xi']} B$ ¡ $\gamma(t), \frac{1}{2}$ $\frac{1}{2}\rho(\gamma(t))\big).$

Proof. Write $B = B(z, \frac{1}{2}\rho(z))$ and $B' = B(z', \frac{1}{2}\rho(z))$ $\frac{1}{2}\rho(z')$). We construct a chain $\{B_i\},\$ $B_i \equiv B(z_i, \frac{1}{2})$ $\frac{1}{2}\rho(z_i)$ of balls and denote $\hat{B}_i = B(z_i, \frac{1}{4})$ $\frac{1}{4}\rho(z_i)$). For the construction, it is enough to determine points t_i such that $z_i = \gamma(t_i)$. If t_1, \ldots, t_{j-1} are selected, we find the next as ¡ o

$$
t_j = \sup \Big\{ t \in [t_{i-1}, \xi'] : B(\gamma(t), \tfrac{1}{4}\rho(\gamma(t))) \cap \hat{B}_{j-1} \neq \emptyset \Big\}.
$$

If $t_j = \xi'$, we set $j_{\text{max}} = j$, $t_j = \xi'$ and terminate the construction.

372 T. Kilpeläinen and J. Malý

We observe that the balls $B(z_i, \frac{1}{4})$ $(\frac{1}{4}\rho(z_i))$ $(i < j_{\text{max}})$ are disjoint, and since their radii are bounded away from zero and Ω is bounded, the sequence really terminates after a finite number of steps. Fix $x \in \Omega$ and denote $I(x) = \{i \le j_{\text{max}} : x \in B_i\}$. Let $i \in I(x)$. Then \mathbf{r}

$$
\rho(z_i) \le \rho(x) + |x - z_i| \le \rho(x) + \frac{1}{2}\rho(z_i) \n\rho(x) \le \rho(z_i) + |x - z_i| \le \rho(z_i) + \frac{1}{2}\rho(z_i)
$$

and thus

$$
\rho(z_i) \le 2\rho(x) \qquad \text{and} \qquad \rho(x) \le 2\rho(z_i). \tag{2.9}
$$

For any $y \in \hat{B}_i$ we have $|y - x| \leq \rho(z_i) \leq 2\rho(x)$ which means that $\cup_{i \in I(x)} \hat{B}_i$ $B(x, 2\rho(x))$. Since \hat{B}_i $(i \in I(x))$ are disjoint, we have

$$
|B(x, \frac{1}{8}\rho(x))| \sharp I(x) \le \sum_{i \in I(x)} |\hat{B}_i| \le |B(x, 2\rho(x))|
$$

which implies $\sharp I(x) \leq 16^n$. Thus we have proven that

$$
\sum \chi_{B_i} \le 16^n + 1. \tag{2.10}
$$

Next, consider $i \in \{1, \ldots, j_{\text{max}}\}\$ and notice that there is a point $x \in \overline{\hat{B}_{i-1}} \cap \overline{\hat{B}_{i}}$. Then, as above, we infer that (2.9) holds and

$$
B(x, \frac{1}{8}\rho(x)) \subset B(x, \frac{1}{4}\rho(z_{i-1})) \cap B(x, \frac{1}{4}\rho(z_i)) \subset B_{i-1} \cap B_i
$$

$$
B_{i-1} \cup B_i \subset B(x, \rho(z_{i-1})) \cup B(x, \rho(z_i)) \subset B(x, 2\rho(x))
$$

so that

$$
|B_{i-1} \cup B_i| \le 16^n |B_{i-1} \cap B_i|.
$$
\n(2.11)

Also, it is clear that

$$
\sum_{i=1}^{j_{\text{max}}} \rho(z_i) \le C\ell. \tag{2.12}
$$

Using (2.11) and the Poincaré inequality we have

$$
|u_{B_i} - u_{B_{i-1}}| \le |u_{B_i} - u_{B_i \cap B_{i-1}}| + |u_{B_i \cap B_{i-1}} - u_{B_{i-1}}|
$$

\n
$$
\le \int_{B_i \cap B_{i-1}} |u - u_{B_i}| dx + \int_{B_i \cap B_{i-1}} |u - u_{B_{i-1}}| dx
$$

\n
$$
\le \frac{|B_i|}{|B_i \cap B_{i-1}|} \int_{B_i} |u - u_{B_i}| dx + \frac{|B_{i-1}|}{|B_i \cap B_{i-1}|} \int_{B_{i-1}} |u - u_{B_{i-1}}| dx
$$

\n
$$
\le C \rho(z_i) \left(\int_{B_i} |\nabla u|^p dx \right)^{\frac{1}{p}} + C \rho(z_{i-1}) \left(\int_{B_{i-1}} |\nabla u|^p dx \right)^{\frac{1}{p}}.
$$

Hence we can estimate by using (2.10) and (2.12) that

$$
|u_{B'} - u_B| \leq \sum_{i=2}^{j_{\text{max}}} |u_{B_i} - u_{B_{i-1}}|
$$

\n
$$
\leq C \sum_{i=1}^{j_{\text{max}}} \rho(z_i)^{1-\frac{n}{p}} \left(\int_{B_i} |\nabla u|^p dx \right)^{\frac{1}{p}}
$$

\n
$$
\leq C \sum_{i=1}^{j_{\text{max}}} \rho(z_i)^{1-\frac{1}{p} + \frac{1-n-b}{p}} \left(\int_{B_i} \rho(z_i)^b |\nabla u|^p dx \right)^{\frac{1}{p}}
$$

\n
$$
\leq C \sum_{i=1}^{j_{\text{max}}} r^{\frac{1-n-b}{p}} \rho(z_i)^{1-\frac{1}{p}} \left(\int_{B_i} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}}
$$

\n
$$
\leq C r^{\frac{1-n-b}{p}} \left(\sum_{i=1}^{j_{\text{max}}} \rho(z_i) \right)^{1-\frac{1}{p}} \left(\sum_{i=1}^{j_{\text{max}}} \int_{B_i} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}}
$$

\n
$$
\leq C r^{\frac{1-b-n}{p}} e^{\frac{p-1}{p}} \left(\int_{D_{\gamma}} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}}
$$

since $b + n \ge 1$. The lemma is proven

Proof of Theorem 2.1. Denote $B_0 = B(x_0, \frac{1}{2})$ $\frac{1}{2}\rho(x_0)$ and let $u \in C^1(\Omega)$. We may assume that

$$
|\{u \ge 0\} \cap B_0| \ge \frac{1}{2}|B_0|
$$
 and $|\{u \le 0\} \cap B_0| \ge \frac{1}{2}|B_0|.$ (2.14)

We will also assume as we may that

$$
\int_{\Omega} |\nabla u|^p \rho^b dx = 1.
$$
\n(2.15)

We shall first establish a weak type estimate

$$
\mu(A_{\lambda}) \le C\lambda^{-q},\tag{2.16}
$$

where $A_{\lambda} = \{x \in \Omega : |u(x)| > \lambda\}$ and $\lambda > 0$. First observe that since the median of u is zero in B_0 by (2.14) , we have

$$
\int_{B_0} |u|^p dx \le c \int_{B_0} |\nabla u|^p dx \tag{2.17}
$$

(see [17: Theorem 4.4.4]). Hence

$$
|u_{B_0}| \le \left(\int_{B_0} |u|^p dx\right)^{\frac{1}{p}} \le c \left(\int_{B_0} |\nabla u|^p dx\right)^{\frac{1}{p}} \le c_0,
$$
\n(2.18)

where c_0 is independent of u. Since $\mu(\Omega) < \infty$ it suffices to establish (2.16) for $\lambda > 3c_0$. To do so, we fix $\lambda > 3c_0$ and divide A_λ into three parts: write $B_y = B(y, \frac{1}{2}\rho(y))$ and let

$$
E_{\lambda} = \{ y \in A_{\lambda} \setminus B_0 : |u_{B_y}| > \frac{1}{2}\lambda \}
$$

$$
F_{\lambda} = A_{\lambda} \setminus (B_0 \cup E_{\lambda}).
$$

The third part is

 $A_{\lambda} \cap B_0$.

We treat E_λ first. Fix $y \in E_\lambda$ and let $(\gamma, \{\xi_k\})$ be a worm in Ω that connects y to x_0 , with parameters $m, {\ell_k}, {\{R_k\}}, {\{r_k\}}$, and obeys the bounds of the theorem. We apply Lemma 2.2 to paths $\gamma_k = \gamma|_{[\xi_{k-1},\xi_k]}$ and points $z = z_k = \gamma(\xi_{k-1})$ and $z' = z'_k = \gamma(\xi_k)$. Let $x = \gamma(t)$ with $t \in [\xi_{k-1}, \xi_k]$. Then by (2.5)

$$
\rho(x) \le \rho(y) + |y - x| \le 4R_k
$$

and thus

$$
B(x, \frac{1}{2}\rho(x)) \subset B(y, R_k + 2R_k)
$$

$$
D_{\gamma_k} \subset B(y, 3R_k).
$$

Since $\lambda > 3c_0$, we have

$$
\lambda \le 6 |u_{B_y} - u_{B_0}|
$$

\n
$$
\le 6 \sum_{k=1}^m |u_{B_{z'_k}} - u_{B_{z_k}}|
$$

\n
$$
\le C \sum_k r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \left(\int_{B(y,3R_k)} \rho^{b-a} |\nabla u|^p d\mu \right)^{\frac{1}{p}}.
$$

We split the last sum into two parts by $K = K(y)$ that is to be determined. First we notice that by (2.6) and (2.2)

$$
\sum_{k>K} \tau_k^{-1} \le C \tau_{K+1}^{-1} \quad \text{and} \quad \sum_{k \le K} \tau_k^{\frac{q}{p}-1} \le C \tau_K^{\frac{q}{p}-1}.
$$
 (2.19)

If $K < m$, due to our normalization of u, (2.7) and (2.19) we have

$$
\sum_{k>K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \left(\int_{B(y,3R_k)} \rho^{b-a} |\nabla u|^p d\mu \right)^{\frac{1}{p}} \n\leq \left(\int_{\Omega} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}} \sum_{k>K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \n= \sum_{k>K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \n\leq C \sum_{k>K} \tau_k^{-1} \n\leq C \tau_{K+1}^{-1}.
$$
\n(2.20)

Before treating the second part of the sum, we set

$$
f = |\nabla u|^p \rho^{b-a} \quad \text{and} \quad g(x) = \left(\sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f d\mu \right)^{\frac{1}{p}}.
$$

Since the maximal operator with respect to μ is of weak type $(1, 1)$ (see, e.g., [9: Theorem 2.19] or [16: p. 44/I.8.17]) and $||f||_{L^{1}(\mu)} = 1$, we have

$$
\mu({g^p > t}) \le C \frac{1}{t} \qquad (0 < t < \infty). \tag{2.21}
$$

We estimate

$$
\sum_{k \leq K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \left(\int_{B(y,3R_k)} \rho^{b-a} |\nabla u|^p d\mu \right)^{\frac{1}{p}} \n\leq \sum_{k \leq K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \left(\mu(B(y,3R_k)) \right)^{\frac{1}{p}} g(y) \n\leq C \sum_{k \leq K} \tau_k^{-1} \tau_k^{\frac{q}{p}} g(y) \n\leq C \tau_K^{-1+\frac{q}{p}} g(y).
$$
\n(2.22)

Now we specify the choice of K, distinguishing three cases. If $\tau_1^{-\frac{q}{p}} \leq g(y)$, we choose $K = 0$. Then the sum over all $k = 1, ..., m$ reduces to (2.20) and we have $\lambda \leq C \tau_1^{-1} \leq$ $C g(y)^{\frac{p}{q}}$. If $\tau_m^{-\frac{q}{p}} \geq g(y)$, we choose $K = m$. Then the sum over $k = 1, \ldots, m$ is treated in (2.22), and we have

$$
\lambda \leq C \tau_m^{-1+\frac{q}{p}} g(y) \leq C g(y)^{\frac{p}{q}-1} g(y) = C g(y)^{\frac{p}{q}}.
$$

The remaining case is that $\tau_m^{-\frac{q}{p}} < g(y) < \tau_1^{-\frac{q}{p}}$. Then we choose the integer $K < m$ so that $\tau_{K+1}^{-\frac{q}{p}} \le g(y) < \tau_K^{-\frac{q}{p}}$. Using (2.20) and (2.22) we obtain

$$
\lambda \leq C\tau_{K+1}^{-1} + C\tau_{K}^{-1+\frac{q}{p}}g(y) \leq Cg(y)^{\frac{p}{q}}.
$$

Hence we always have $\lambda \leq C g(y)^{\frac{p}{q}}$ for every $y \in E_{\lambda}$. Therefore by (2.21)

$$
\mu(E_{\lambda}) \le \mu(\{g^p > (\lambda/C)^q\}) \le C\lambda^{-q}.\tag{2.23}
$$

Next, we estimate the measure of F_{λ} . Using the Besicovitch covering theorem (cf. [9: Theorem 2.7]) we can cover F_{λ} with balls $B_{x_i} = B(x_i, \frac{1}{2})$ $\frac{1}{2}\rho(x_i)$ so that $x_i \in F_\lambda$ and $\overline{ }$ $i \chi_{B_{x_i}} \leq N$. Then $|u - u_{B_{x_i}}| \geq \frac{1}{2}\lambda$ on F_λ whence we have by using the Sobolev-Poincaré inequality that

$$
\mu(F_{\lambda}) \leq \sum_{i} \mu(B_{x_{i}} \cap F_{\lambda})
$$
\n
$$
\leq \sum_{i} \int_{B_{x_{i}} \cap F_{\lambda}} \rho^{a} dx
$$
\n
$$
\leq C \sum_{i} \rho(x_{i})^{a} \int_{B_{x_{i}} \cap F_{\lambda}} dx
$$
\n
$$
\leq C \lambda^{-q} \sum_{i} \rho(x_{i})^{a} \int_{B_{x_{i}} \cap F_{\lambda}} |u - u_{B_{x_{i}}}|^{q} dx
$$
\n
$$
\leq C \lambda^{-q} \sum_{i} \rho(x_{i})^{a+q+n(1-\frac{q}{p})} \left(\int_{B_{x_{i}}} |\nabla u|^{p} dx \right)^{\frac{q}{p}}
$$
\n
$$
\leq C \lambda^{-q} \sum_{i} \left(\int_{B_{x_{i}}} |\nabla u|^{p} \rho^{p(\frac{a+n}{q}+1-\frac{n}{p})} dx \right)^{\frac{q}{p}}
$$
\n
$$
\leq C \lambda^{-q} \left(\int_{\Omega} |\nabla u|^{p} \rho^{b} dx \right)^{\frac{q}{p}}
$$
\n
$$
\leq C \lambda^{-q} \left(\int_{\Omega} |\nabla u|^{p} \rho^{b} dx \right)^{\frac{q}{p}}
$$
\n
$$
\leq C \lambda^{-q}
$$

since p $\int a+n$ $\frac{+n}{q}+1-\frac{n}{p}$ p ¢ $\geq b$ by (2.4).

Finally, combining (2.17) and the usual Sobolev inequality in the ball B_0 , we obtain the weak type estimate $\mu(A_{\lambda} \cap B_0) \leq C\lambda^{-q}$. Hence by estimates (2.23) and (2.24)

$$
\mu(A_{\lambda}) \le \mu(E_{\lambda}) + \mu(F_{\lambda}) + \mu(A_{\lambda} \cap B_0) \le C\lambda^{-q}.
$$

In conclusion, (2.16) holds for all $\lambda > 0$ or, without normalization (2.15),

$$
\sup_{\lambda>0} \lambda \,\mu(\{|u|>\lambda\})^{\frac{1}{q}} \le C \left(\int_{\Omega} |\nabla u|^p \rho^b dx\right)^{\frac{1}{p}}.\tag{2.25}
$$

A truncation argument shows that the weak type estimate (2.25) implies the desired embedding. Indeed, for each $t > 0$ the truncated functions

$$
u_t(x) = \begin{cases} \frac{1}{2}t & \text{if } |u(x)| > t \\ |u(x)| - \frac{1}{2}t & \text{if } \frac{1}{2}t < |u(x)| < t \\ 0 & \text{if } |u(x)| < \frac{1}{2}t \end{cases}
$$

satisfy (2.14) . Thus we may use (2.25) to conclude

$$
\left(\int_{\{tt\})^{\frac{1}{q}}
$$

$$
\leq Ct \,\mu(\{u_t \geq \frac{1}{2}t\})^{\frac{1}{q}}
$$

$$
\leq C \left(\int_{\Omega} |\nabla u_t|^p \rho^b dx \right)^{\frac{1}{p}} \n= C \left(\int_{\{\frac{1}{2}t < |u| \leq t\}} |\nabla u|^p \rho^b dx \right)^{\frac{1}{p}}.
$$

Hence

$$
\int_{\Omega} |u|^q \rho^a dx \le \sum_{j=-\infty}^{\infty} \int_{\{2^j < |u| \le 2^{j+1}\}} |u|^q \rho^a dx
$$
\n
$$
\le C \sum_{j=-\infty}^{\infty} \left(\int_{\{2^{j-1} < |u| \le 2^j\}} |\nabla u|^p \rho^b dx \right)^{\frac{q}{p}}
$$
\n
$$
\le C \left(\int_{\Omega} |\nabla u|^p \rho^b dx \right)^{\frac{q}{p}},
$$

and the theorem is proved, since $\int_{\Omega} |u - \bar{u}_a|^q \rho^a dx \leq C$ $\int_{\Omega} |u|^q \rho^a dx$

Following Smith and Stegenga [15] we call a bounded domain Ω an s-John domain $(s \geq 1)$, if there is a point $x_0 \in \Omega$ and a constant $c_0 \geq 1$ such that each point $x \in \Omega$ can be joined to x_0 in Ω by a rectifiable curve (called an s-John core) $\gamma : [0, \ell] \to \Omega$ such that γ is parametrized by the arc length, $\gamma(0) = x, \gamma(\ell) = x_0$, and dist $(\gamma(t), \partial \Omega) \ge c_0^{-1}$ $_0^{-1}t^s$ for all $t \in [0, \ell].$

The next theorem improves the main result of [5].

Theorem 2.3. Suppose that Ω is an s-John domain. Let a, b, p, q satisfy (2.1) -(2.3) and

$$
\frac{1}{q}\geq \frac{s(n+b-1)-p+1}{p(n+a)}.
$$

Then there is a constant $C = C(n, p, q, a, b, \Omega) > 0$ such that

$$
\left(\int_{\Omega} |u-\bar{u}_a|^q\rho^a dx\right)^{\frac{1}{q}}\leq C\left(\int_{\Omega} |\nabla u|^p\rho^b dx\right)^{\frac{1}{p}}
$$

for each $u \in C^1(\Omega)$.

Proof. We will verify the assumptions of Theorem 2.1. First we notice that $s \geq 1$ implies

$$
\frac{1}{q} \ge \frac{s(n+b-1) - p + 1}{p(n+a)} \ge \frac{n+b-p}{p(n+a)}
$$

so that (2.4) is true. For fixed $y \in \Omega \setminus B(x_0, \frac{1}{2})$ $\frac{1}{2}\rho(x_0)$, the s-John core γ on $[0, \ell]$ gives so that (2.4) is true, for fixed $y \in \Omega \setminus D(x_0, \frac{1}{2}p(x_0))$, the s-joint core γ on [0, ℓ] gives
us the desired worm: Let $d = \sup \{ |\gamma(t) - y| : t \in [0, \ell] \}$. Find the integer m with $3d < 2^m \rho(y) \leq 6d$. Since

$$
\rho(y) \le \rho(x_0) + |y - x_0| \le 3|y - x_0| \le 3d,
$$

we have $m \geq 1$. Set

$$
\xi_k = \sup \Big\{ t \in [0,\ell] : |\gamma(s) - y| \le 2^{k-m} d \text{ for all } s \in [0,t] \Big\}.
$$

Then $(\gamma, {\xi_k})$ is a worm with parameters $m, {\{\ell_k\}}, {\{R_k\}}, {\{r_k\}}, \text{and}$

$$
\ell_k \leq \xi_k
$$

$$
\xi_k \geq R_k = 2^{k-m} d
$$

$$
r_k \geq c_0 \xi_k^s.
$$

The inequality $\rho(y) \leq 6 \cdot 2^{-m} d \leq 3R_k$ verifies (2.5). Since

$$
\frac{n+a}{q} \ge \frac{s(n+b-1)+1-p}{p}
$$

we have by choosing $\tau_k = 2^{(k-m)\frac{n+a}{q}}$ that

$$
\mu(B(y,R_k))^{\frac{1}{q}} \le R_k^{\frac{n+a}{q}} \le C\tau_k
$$

and

$$
r_k^{-\frac{n+b-1}{p}}\ell_k^{\frac{p-1}{p}} \le (c_0 \xi_k)^{-s\frac{n+b-1}{p}} \xi_k^{\frac{p-1}{p}} \le C\xi_k^{-\frac{n+a}{q}} \le C\tau_k^{-1}.
$$

Hence the claim follows from Theorem 2.1

Remark. The exponent q of Theorem 2.3 is the best possible in the class of s -John domains (see $|5|$).

Example 2.4. An example of an s-John domain is an s-cusp domain. Surprisingly, the optimal embedding exponent for the s-cusp obtained in $[8, 10, 13]$ is better than that for general s-John domains. The reason is that complicated s-John domains may contain "rooms and corridors" so that the upper estimate for $\mu(B(y, R) \cap \Omega)$ must be more carefully examined. We show that the optimal embedding for s-cusp domains can be deduced from Theorem 2.1. Let us write $x \in \mathbb{R}^n$ as $x = (\hat{x}, x^*)$, where $\hat{x} \in \mathbb{R}^{n-1}$ and x^* is the last coordinate of x. We will consider the s-cusp domain

$$
\Omega = \left\{ x \in \mathbb{R}^n : |\hat{x}| \le (x^*)^s \text{ and } 0 < x^* < 2 \right\}
$$

and show that if (2.1) - (2.3) are verified, Theorem 2.1 yields embedding of $W^{1,p}(\Omega, \rho^b)$ into $L^q(\Omega, \rho^a)$, where

$$
\frac{1}{q} \ge \frac{s(n+b-1)-p+1}{p(s(n+a-1)+1)}.
$$

We choose $x_0 = e_n = (0,1)$. If $y \in \Omega \setminus B(x_0, \frac{1}{2})$ $\frac{1}{2}\rho(x_0)$, we set $\ell = \ell(y) = |\hat{y}| + |y^* - 1|$ and define the worm curve $\gamma : [0, \ell] \to \Omega$ as

$$
\gamma(t) = \begin{cases}\n\left((1 - \frac{t}{|\hat{y}|})\hat{y}, y^*\right) & \text{if } 0 \le t \le |\hat{y}| \\
\left(1 + \frac{\ell - t}{\ell - |\hat{y}|}(y^* - 1)\right) e_n & \text{if } |\hat{y}| \le t \le \ell.\n\end{cases}
$$

In other words, worm curve starts at y , goes first on line segment connecting y with y^*e_n and then turns to the line segment connecting y^*e_n with e_n . We find a partition $\{\xi_0, \ldots, \xi_m\}$ of $[0, \ell]$ in such a way that $\xi_0 = 0$,

$$
\xi_0 = 0, \, \xi_k = 2^{k-m} \ell \, (k = 1, \dots, m)
$$

$$
\rho(y) < \xi_1 < 2\rho(y),
$$

where the last is what determines m and guarantees (2.5) .

From now we treat only the interesting case that $y^* < 1$. Then

$$
\ell_1 = \xi_1, \ell_k = \frac{1}{2}\xi_k \quad (k = 2, ..., m)
$$

\n
$$
\ell_k^s \le r_k
$$

\n
$$
\xi_k \le R_k \le 2\xi_k
$$

\n
$$
B(y, R_k) \cap \Omega \subset B_{n-1}(\hat{y}, Cr_k) \times (y^* - R_k, y^* + R_k)
$$

\n
$$
\rho \le Cr_k \text{ on } B(y, R_k).
$$
\n(2.26)

Set $\tau_k = (\xi_k^{n+a-1})$ $\int_k^{n+a-1} \ell_k^{\,}$, It is easy to observe that τ_k satisfy (2.6). From (2.26)₂ we obtain

$$
r_k^{\frac{n+b-1}{p}}\ell_k^{\frac{1-p}{p}}\geq r_k^{\frac{n+a-1}{q}}\ell_k^{\frac{1}{q}}\geq C^{-1}\tau_k.
$$

The additional information provided by $(2.26)_{4-5}$ has no counterpart in the case of a general s-John domain. We use it to estimate $\mu(B(y, 3R_k))$:

$$
C\mu(B(y,R_k))^{\frac{1}{q}} \leq C(R_k r_k^{n-1+a})^{\frac{1}{q}} \leq C(\xi_k r_k^{n-1+a})^{\frac{1}{q}} \leq C\tau_k.
$$

Hence (2.7) is verified and Theorem 2.1 yields the result.

References

- [1] Besov, O. V.: Integral representations of functions and embedding theorems for a domain with a flexible horn condition. Trudy Mat. Inst. Steklov 170 (1984), $12 - 30$.
- [2] Besov, O. V.: Embeddings of Sobolev spaces in domains with a splitting flexible cone *condition.* Trudy Mat. Inst. Steklov 173 (1986), $14 - 31$.
- [3] Besov, O. V, Ilin, V. P. and S. M. Nikolskii: Integral Representations of Functions and Imbedding Theorems. Vol. I. New York: Halsted Press 1978.
- [4] Besov, O. V., Ilin, V. P. and S. M. Nikolskii: Integral Representations of Functions and Imbedding Theorems. Vol. II. New York: Halsted Press 1979.
- [5] Hajłasz, P. and P. Koskela: *Isoperimetric inequalities and imbedding theorems in irregular* domains. J. London Math. Soc. (2) 58 (1998), 425 – 450.
- [6] Hedberg, L. I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972), $505 - 510.$
- [7] Kufner, A.: Weighted Sobolev Spaces. Leipzig: Teubner 1980 (1st. ed.) and Chichester: J. Wiley and Sons 1985 (2nd. ed.).
- [8] Labutin, D. A.: Integral representations of functions and embeddings of Sobolev spaces on cuspidal domains. Math. Notes 61 (1997), $164 - 179$.
- [9] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability. Cambridge: Univ. Press 1995.
- [10] Maz'ya, V. G.: Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl. 1 (1960), 882 – 885.
- [11] Maz'ya, V. G.: A theorem on the multidimensional Schrödinger operator (in Russian). Izv. Akad. Nauk. 28 (1964), 1145 – 1172.
- [12] Maz'ya, V. G.: Sobolev Spaces. Berlin: Springer-Verlag 1985.
- [13] Maz'ya, V. G. and S. V. Poborchi: Differentiable Functions on Bad Domains. Singapore: World Sci. 1997.
- [14] Nečas, J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationelle. Ann. Scuola Norm. Sup. Pisa 16 (1962), 305 – 326.
- [15] Smith, W. and D. A. Stegenga: *Hölder domains and Poincaré domains*. Trans. Amer. Math. Soc. 319 (1990), 67 – 100.
- [16] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton (N.J.): Univ. Press 1993.
- [17] Ziemer, W. P.: Weakly Differentiable Functions (Graduate Text in Mathematics: Vol. 120). New York: Springer-Verlag 1989.

Received 16.03.1999