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Sobolev Inequalities
on

Sets with Irregular Boundaries

T. Kilpeläinen and J. Malý

Abstract. We derive (weighted) Sobolev-Poincaré inequalities for s-John domains and s-cusp
domains, both with optimal exponents. These results are obtained as consequences of a more
comprehensive criterion.
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1. Introduction

It is well known that the Sobolev space W 1,p(Ω) is continuously embedded into Lq(Ω)
if Ω is a nice bounded domain in Rn and

1 ≤ p < ∞ and q(n− p) ≤ np. (1.1)

This fact, originally due to Sobolev, Gagliardo and Nirenberg, can nowadays be found
in textbooks (cf. [12, 17]) and it is stated as the Sobolev-Poincaré inequality

(∫

Ω

|u− uΩ|qdx

) 1
q

≤ C

(∫

Ω

|∇u|pdx

) 1
p

. (1.2)

The weighted case of Sobolev’s imbedding has been developed by Nečas [14], Besov, Ilin
and Nikolskii [3, 4], Kufner [7], Maz’ya [12] and others. It is not very difficult to give
examples of domains having cusps for which the Sobolev-Poincaré inequality (1.2) fails
to hold or the range for its validity differs from (1.1). The question of this embedding in
non-smooth domains Ω is addressed by many authors. To mention but a few, we would
like to refer to the books [12, 13], and point out that Besov [1, 2] obtained embeddings in
domains satisfying “flexible cone conditions”, Smith and Stegenga [15] proved Poincaré
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J. Malý: Dept. Math. Anal. Charles Univ., Sokolovská 83, 18675 Praha, Czech Republic;
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inequality with q = p for s-John domains (that allow for twisted cusps of the type ts with
certain s ≥ 1). Maz’ya [10] (see also Labutin [8]) established the optimal embedding
for s-cusps. HajÃlasz and Koskela [5] proved the optimal Sobolev-Poincaré inequality in
s-John domains with p = 1 and the next to the optimal one for p > 1. Their result also
involves weights. We refer to [5] also for further historical notes and references.

In this note we complete the picture for s-John domains and give a proof for the
optimal Sobolev-Poincaré inequality in s-John domains, thus improving the results in
[5] (see Theorem 2.3). We study also the weighted case where the weight is a power of
the distance to the boundary. The result is obtained as a consequence of a slightly more
general criterion, which may be used to illustrate why the optimal exponent for s-John
domains is worse than the optimal exponent for domains with a single s-cusp. We use
Hedberg’s trick on the maximal operator [6], a truncation argument due to Maz’ya [11]
and some ideas from HajÃlasz and Koskela [5].The main new ingredient of our proof is a
careful grouping of chains around a curve which we call a worm.

The Lebesgue measure of a measurable set E ⊂ Rn is denoted by |E|. If u is an
integrable function defined at least on E, we let uE stand for the average

uE =
∫
−

E

u dx =
1
|E|

∫

E

u dx.

The open n-dimensional ball with center at x and radius r is written as B(x, r) =
Bn(x, r). We use ]F for the cardinality of a set F .

2. Main results

This section contains the results with proofs. We start with a general theorem and
deduce the s-John domain result from it.

Let Ω ⊂ Rn be a bounded open set. We consider exponents a, b, p, q satisfying

a ≥ 0, b ≥ 1− n (2.1)

1 ≤ p < q < ∞ (2.2)
1
q
≥ 1

p
− 1

n
. (2.3)

Let µ the measure on Rn with

dµ

dx
=

{
ρa in Ω
0 outside Ω

.

Here and in what follows ρ(x) = dist (x,Rn \ Ω).

We shall define a worm. This is a pair (γ, ∆), where γ : [0, `] → Ω is a curve joining
y = γ(0) to x0 = γ(`), parametrized by its arc-length, and ∆ = {ξk}, 0 = ξ0 < ξ1 <
ξ2 < . . . < ξm = `, is a finite partition of [0, `]. With each worm we associate its
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parameters: the number m of the partition intervals [ξk−1, ξk], and for k = 1, . . . , m the
quantities

`k = ξk − ξk−1

Rk = sup
{|γ(t)− y| : t ∈ [ξk−1, ξk]

}

rk = inf
{
ρ(γ(t)) : t ∈ [ξk−1, ξk]

}
.

Theorem 2.1. Let a, b, p, q satisfy (2.1) - (2.3). Let

1
q
≥ n− p + b

p(n + a)
. (2.4)

Suppose that there is a constant A > 0 and a point x0 ∈ Ω such that for each y ∈
Ω \B(x0,

ρ(x0)
2 ) there is a worm (γ, ∆) joining y to x0, with parameters m, {`k}, {Rk},

{rk} and constants τ1, . . . , τm ∈ (0, 1] (both parameters and τk’s may depend on y), such
that

ρ(y) ≤ 3Rk (k = 1, . . . ,m) (2.5)

(1 + A−1)τk−1 ≤ τk ≤ Aτk−1 (k = 2, . . . ,m) (2.6)

A−1
(
µ(B(y, 3Rk))

) 1
q ≤ τk ≤ Ar

n+b−1
p

k `
1−p

p

k . (2.7)

Then there is a constant C = C(n, p, a, b, A, Ω) > 0 such that

(∫

Ω

|u− ūa|qρadx

) 1
q

≤ C

(∫

Ω

|∇u|pρbdx

) 1
p

for each u ∈ C1(Ω) where ūa =
∫−

Ω
u dµ = 1

µ(Ω)

∫
Ω

u dµ.

We start the proof with the following lemma.

Lemma 2.2. Suppose that Ω is a bounded open set. Let z, z′ ∈ Ω and let γ :
[ξ, ξ′] → Rn be a path of the length ` that joins z and z′. Suppose that b ≥ 1 − n and
that ρ ≥ r on γ. Let u ∈ C1(Ω). Then

∣∣uB(z, 1
2 ρ(z)) − uB(z′, 1

2 ρ(z′))

∣∣ ≤ Cr
1−b−n

p `
p−1

p

(∫

Dγ

|∇u|pρbdx

) 1
p

(2.8)

where Dγ = ∪t∈[ξ,ξ′]B
(
γ(t), 1

2ρ(γ(t))
)
.

Proof. Write B = B(z, 1
2ρ(z)) and B′ = B(z′, 1

2ρ(z′)). We construct a chain {Bi},
Bi ≡ B(zi,

1
2ρ(zi)) of balls and denote B̂i = B(zi,

1
4ρ(zi)). For the construction, it is

enough to determine points ti such that zi = γ(ti). If t1, . . . , tj−1 are selected, we find
the next as

tj = sup
{

t ∈ [ti−1, ξ
′] : B

(
γ(t), 1

4ρ(γ(t))
) ∩ B̂j−1 6= ∅

}
.

If tj = ξ′, we set jmax = j, tj = ξ′ and terminate the construction.
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We observe that the balls B(zi,
1
4ρ(zi)) (i < jmax) are disjoint, and since their radii

are bounded away from zero and Ω is bounded, the sequence really terminates after a
finite number of steps. Fix x ∈ Ω and denote I(x) = {i < jmax : x ∈ Bi}. Let i ∈ I(x).
Then

ρ(zi) ≤ ρ(x) + |x− zi| ≤ ρ(x) + 1
2ρ(zi)

ρ(x) ≤ ρ(zi) + |x− zi| ≤ ρ(zi) + 1
2ρ(zi)

}

and thus
ρ(zi) ≤ 2ρ(x) and ρ(x) ≤ 2ρ(zi). (2.9)

For any y ∈ B̂i we have |y − x| ≤ ρ(zi) ≤ 2ρ(x) which means that ∪i∈I(x)B̂i ⊂
B(x, 2ρ(x)). Since B̂i (i ∈ I(x)) are disjoint, we have

|B(x, 1
8ρ(x))| ]I(x) ≤

∑

i∈I(x)

|B̂i| ≤ |B(x, 2ρ(x))|

which implies ]I(x) ≤ 16n. Thus we have proven that

∑
χBi ≤ 16n + 1. (2.10)

Next, consider i ∈ {1, . . . , jmax} and notice that there is a point x ∈ B̂i−1 ∩ B̂i.
Then, as above, we infer that (2.9) holds and

B(x, 1
8ρ(x)) ⊂ B(x, 1

4ρ(zi−1)) ∩B(x, 1
4ρ(zi)) ⊂ Bi−1 ∩Bi

Bi−1 ∪Bi ⊂ B(x, ρ(zi−1)) ∪B(x, ρ(zi)) ⊂ B(x, 2ρ(x))

so that
|Bi−1 ∪Bi| ≤ 16n|Bi−1 ∩Bi|. (2.11)

Also, it is clear that
jmax∑

i=1

ρ(zi) ≤ C`. (2.12)

Using (2.11) and the Poincaré inequality we have

|uBi − uBi−1 | ≤ |uBi − uBi∩Bi−1 |+ |uBi∩Bi−1 − uBi−1 |

≤
∫
−

Bi∩Bi−1

|u− uBi | dx +
∫
−

Bi∩Bi−1

|u− uBi−1 | dx

≤ |Bi|
|Bi ∩Bi−1|

∫
−

Bi

|u− uBi | dx +
|Bi−1|

|Bi ∩Bi−1|
∫
−

Bi−1

|u− uBi−1 | dx

≤ C ρ(zi)
(∫
−

Bi

|∇u|pdx

) 1
p

+ C ρ(zi−1)

(∫
−

Bi−1

|∇u|pdx

) 1
p

.
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Hence we can estimate by using (2.10) and (2.12) that

|uB′ − uB | ≤
jmax∑

i=2

|uBi
− uBi−1 |

≤ C

jmax∑

i=1

ρ(zi)1−
n
p

(∫

Bi

|∇u|pdx

) 1
p

≤ C

jmax∑

i=1

ρ(zi)1−
1
p + 1−n−b

p

(∫

Bi

ρ(zi)b|∇u|pdx

) 1
p

≤ C

jmax∑

i=1

r
1−n−b

p ρ(zi)1−
1
p

( ∫

Bi

ρb|∇u|pdx
) 1

p

≤ Cr
1−n−b

p

(
jmax∑

i=1

ρ(zi)

)1− 1
p

(
jmax∑

i=1

∫

Bi

ρb|∇u|pdx

) 1
p

≤ Cr
1−b−n

p `
p−1

p

(∫

Dγ

ρb|∇u|pdx

) 1
p

(2.13)

since b + n ≥ 1. The lemma is proven

Proof of Theorem 2.1. Denote B0 = B(x0,
1
2ρ(x0)) and let u ∈ C1(Ω). We may

assume that

|{u ≥ 0} ∩B0| ≥ 1
2 |B0| and |{u ≤ 0} ∩B0| ≥ 1

2 |B0|. (2.14)

We will also assume as we may that
∫

Ω

|∇u|pρbdx = 1. (2.15)

We shall first establish a weak type estimate

µ(Aλ) ≤ Cλ−q, (2.16)

where Aλ = {x ∈ Ω : |u(x)| > λ} and λ > 0. First observe that since the median of u
is zero in B0 by (2.14), we have

∫

B0

|u|pdx ≤ c

∫

B0

|∇u|pdx (2.17)

(see [17: Theorem 4.4.4]). Hence

|uB0 | ≤
(∫
−

B0

|u|pdx

) 1
p

≤ c

(∫
−

B0

|∇u|pdx

) 1
p

≤ c0, (2.18)
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where c0 is independent of u. Since µ(Ω) < ∞ it suffices to establish (2.16) for λ > 3c0.
To do so, we fix λ > 3c0 and divide Aλ into three parts: write By = B(y, 1

2ρ(y)) and let

Eλ = {y ∈ Aλ \B0 : |uBy
| > 1

2λ}
Fλ = Aλ \ (B0 ∪ Eλ).

The third part is
Aλ ∩B0.

We treat Eλ first. Fix y ∈ Eλ and let (γ, {ξk}) be a worm in Ω that connects y to x0,
with parameters m, {`k}, {Rk}, {rk}, and obeys the bounds of the theorem. We apply
Lemma 2.2 to paths γk = γ|[ξk−1,ξk] and points z = zk = γ(ξk−1) and z′ = z′k = γ(ξk).
Let x = γ(t) with t ∈ [ξk−1, ξk]. Then by (2.5)

ρ(x) ≤ ρ(y) + |y − x| ≤ 4Rk

and thus
B(x, 1

2ρ(x)) ⊂ B(y,Rk + 2Rk)

Dγk
⊂ B(y, 3Rk).

Since λ > 3c0, we have

λ ≤ 6 |uBy − uB0 |

≤ 6
m∑

k=1

|uBz′
k

− uBzk
|

≤ C
∑

k

r
1−b−n

p

k `
p−1

p

k

(∫

B(y,3Rk)

ρb−a|∇u|pdµ

) 1
p

.

We split the last sum into two parts by K = K(y) that is to be determined. First we
notice that by (2.6) and (2.2)

∑

k>K

τ−1
k ≤ Cτ−1

K+1 and
∑

k≤K

τ
q
p−1

k ≤ Cτ
q
p−1

K . (2.19)

If K < m, due to our normalization of u, (2.7) and (2.19) we have

∑

k>K

r
1−b−n

p

k `
p−1

p

k

(∫

B(y,3Rk)

ρb−a|∇u|pdµ

) 1
p

≤
(∫

Ω

ρb|∇u|pdx

) 1
p ∑

k>K

r
1−b−n

p

k `
p−1

p

k

=
∑

k>K

r
1−b−n

p

k `
p−1

p

k

≤ C
∑

k>K

τ−1
k

≤ Cτ−1
K+1.

(2.20)
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Before treating the second part of the sum, we set

f = |∇u|pρb−a and g(x) =

(
sup
r>0

1
µ(B(x, r)

∫

B(x,r)

f dµ

) 1
p

.

Since the maximal operator with respect to µ is of weak type (1, 1) (see, e.g., [9: Theorem
2.19] or [16: p. 44/I.8.17]) and ‖f‖L1(µ) = 1, we have

µ({gp > t}) ≤ C
1
t

(0 < t < ∞). (2.21)

We estimate

∑

k≤K

r
1−b−n

p

k `
p−1

p

k

(∫

B(y,3Rk)

ρb−a|∇u|pdµ

) 1
p

≤
∑

k≤K

r
1−b−n

p

k `
p−1

p

k

(
µ(B(y, 3Rk))

) 1
p g(y)

≤ C
∑

k≤K

τ−1
k τ

q
p

k g(y)

≤ Cτ
−1+ q

p

K g(y).

(2.22)

Now we specify the choice of K, distinguishing three cases. If τ
− q

p

1 ≤ g(y), we choose
K = 0. Then the sum over all k = 1, . . . , m reduces to (2.20) and we have λ ≤ Cτ−1

1 ≤
C g(y)

p
q . If τ

− q
p

m ≥ g(y), we choose K = m. Then the sum over k = 1, . . . , m is treated
in (2.22), and we have

λ ≤ Cτ
−1+ q

p
m g(y) ≤ Cg(y)

p
q−1g(y) = Cg(y)

p
q .

The remaining case is that τ
− q

p
m < g(y) < τ

− q
p

1 . Then we choose the integer K < m so

that τ
− q

p

K+1 ≤ g(y) < τ
− q

p

K . Using (2.20) and (2.22) we obtain

λ ≤ Cτ−1
K+1 + Cτ

−1+ q
p

K g(y) ≤ Cg(y)
p
q .

Hence we always have λ ≤ Cg(y)
p
q for every y ∈ Eλ. Therefore by (2.21)

µ(Eλ) ≤ µ({gp > (λ/C)q}) ≤ Cλ−q. (2.23)

Next, we estimate the measure of Fλ. Using the Besicovitch covering theorem (cf.
[9: Theorem 2.7]) we can cover Fλ with balls Bxi = B(xi,

1
2ρ(xi)) so that xi ∈ Fλ and
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∑
i χBxi

≤ N . Then |u − uBxi
| ≥ 1

2λ on Fλ whence we have by using the Sobolev-
Poincaré inequality that

µ(Fλ) ≤
∑

i

µ(Bxi
∩ Fλ)

≤
∑

i

∫

Bxi
∩Fλ

ρadx

≤ C
∑

i

ρ(xi)a

∫

Bxi
∩Fλ

dx

≤ Cλ−q
∑

i

ρ(xi)a

∫

Bxi
∩Fλ

|u− uBxi
|qdx

≤ Cλ−q
∑

i

ρ(xi)a+q+n(1− q
p )

(∫

Bxi

|∇u|pdx

) q
p

≤ Cλ−q
∑

i

(∫

Bxi

|∇u|pρp( a+n
q +1−n

p )dx

) q
p

≤ Cλ−q

(∫

Ω

|∇u|pρbdx

) q
p

≤ Cλ−q

(2.24)

since p
(

a+n
q + 1− n

p

) ≥ b by (2.4).

Finally, combining (2.17) and the usual Sobolev inequality in the ball B0, we obtain
the weak type estimate µ(Aλ ∩B0) ≤ Cλ−q. Hence by estimates (2.23) and (2.24)

µ(Aλ) ≤ µ(Eλ) + µ(Fλ) + µ(Aλ ∩B0) ≤ Cλ−q.

In conclusion, (2.16) holds for all λ > 0 or, without normalization (2.15),

sup
λ>0

λµ({|u| > λ}) 1
q ≤ C

(∫

Ω

|∇u|pρbdx

) 1
p

. (2.25)

A truncation argument shows that the weak type estimate (2.25) implies the desired
embedding. Indeed, for each t > 0 the truncated functions

ut(x) =





1
2 t if |u(x)| > t

|u(x)| − 1
2 t if 1

2 t < |u(x)| < t

0 if |u(x)| < 1
2 t

satisfy (2.14). Thus we may use (2.25) to conclude

(∫

{t<u≤2t}
|u|qdµ

) 1
q

≤ Ctµ({|u| > t}) 1
q

≤ Ctµ({ut ≥ 1
2 t}) 1

q
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≤ C

(∫

Ω

|∇ut|pρbdx

) 1
p

= C

(∫

{ 1
2 t<|u|≤t}

|∇u|pρbdx

) 1
p

.

Hence ∫

Ω

|u|qρadx ≤
∞∑

j=−∞

∫

{2j<|u|≤2j+1}
|u|qρadx

≤ C

∞∑

j=−∞

(∫

{2j−1<|u|≤2j}
|∇u|pρbdx

) q
p

≤ C

(∫

Ω

|∇u|pρbdx

) q
p

,

and the theorem is proved, since
∫
Ω
|u− ūa|qρadx ≤ C

∫
Ω
|u|qρadx

Following Smith and Stegenga [15] we call a bounded domain Ω an s-John domain
(s ≥ 1), if there is a point x0 ∈ Ω and a constant c0 ≥ 1 such that each point x ∈ Ω can
be joined to x0 in Ω by a rectifiable curve (called an s-John core) γ : [0, `] → Ω such that
γ is parametrized by the arc length, γ(0) = x, γ(`) = x0, and dist (γ(t), ∂Ω) ≥ c−1

0 ts for
all t ∈ [0, `].

The next theorem improves the main result of [5].

Theorem 2.3. Suppose that Ω is an s-John domain. Let a, b, p, q satisfy (2.1) -
(2.3) and

1
q
≥ s(n + b− 1)− p + 1

p(n + a)
.

Then there is a constant C = C(n, p, q, a, b, Ω) > 0 such that
(∫

Ω

|u− ūa|qρadx

) 1
q

≤ C

(∫

Ω

|∇u|pρbdx

) 1
p

for each u ∈ C1(Ω).

Proof. We will verify the assumptions of Theorem 2.1. First we notice that s ≥ 1
implies

1
q
≥ s(n + b− 1)− p + 1

p(n + a)
≥ n + b− p

p(n + a)

so that (2.4) is true. For fixed y ∈ Ω \ B(x0,
1
2ρ(x0)), the s-John core γ on [0, `] gives

us the desired worm: Let d = sup
{|γ(t) − y| : t ∈ [0, `]

}
. Find the integer m with

3d < 2mρ(y) ≤ 6d. Since

ρ(y) ≤ ρ(x0) + |y − x0| ≤ 3|y − x0| ≤ 3d,

we have m ≥ 1. Set

ξk = sup
{

t ∈ [0, `] : |γ(s)− y| ≤ 2k−md for all s ∈ [0, t]
}

.
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Then (γ, {ξk}) is a worm with parameters m, {`k}, {Rk}, {rk}, and

`k ≤ ξk

ξk ≥ Rk = 2k−md

rk ≥ c0ξ
s
k.





The inequality ρ(y) ≤ 6 · 2−md ≤ 3Rk verifies (2.5). Since

n + a

q
≥ s(n + b− 1) + 1− p

p

we have by choosing τk = 2(k−m) n+a
q that

µ(B(y, Rk))
1
q ≤ R

n+a
q

k ≤ Cτk

and
r
−n+b−1

p

k `
p−1

p

k ≤ (c0ξk)−s n+b−1
p ξ

p−1
p

k ≤ Cξ
−n+a

q

k ≤ Cτ−1
k .

Hence the claim follows from Theorem 2.1

Remark. The exponent q of Theorem 2.3 is the best possible in the class of s-John
domains (see [5]).

Example 2.4. An example of an s-John domain is an s-cusp domain. Surprisingly,
the optimal embedding exponent for the s-cusp obtained in [8, 10, 13] is better than
that for general s-John domains. The reason is that complicated s-John domains may
contain “rooms and corridors” so that the upper estimate for µ(B(y, R) ∩ Ω) must be
more carefully examined. We show that the optimal embedding for s-cusp domains can
be deduced from Theorem 2.1. Let us write x ∈ Rn as x = (x̂, x∗), where x̂ ∈ Rn−1 and
x∗ is the last coordinate of x. We will consider the s-cusp domain

Ω =
{

x ∈ Rn : |x̂| ≤ (x∗)s and 0 < x∗ < 2
}

and show that if (2.1) - (2.3) are verified, Theorem 2.1 yields embedding of W 1,p(Ω, ρb)
into Lq(Ω, ρa), where

1
q
≥ s(n + b− 1)− p + 1

p(s(n + a− 1) + 1)
.

We choose x0 = en = (0, 1). If y ∈ Ω \ B(x0,
1
2ρ(x0)), we set ` = `(y) = |ŷ| + |y∗ − 1|

and define the worm curve γ : [0, `] → Ω as

γ(t) =

{ (
(1− t

|ŷ| )ŷ, y∗
)

if 0 ≤ t ≤ |ŷ|
(
1 + `−t

`−|ŷ| (y
∗ − 1)

)
en if |ŷ| ≤ t ≤ `.

In other words, worm curve starts at y, goes first on line segment connecting y with
y∗en and then turns to the line segment connecting y∗en with en. We find a partition
{ξ0, . . . , ξm} of [0, `] in such a way that ξ0 = 0,

ξ0 = 0, ξk = 2k−m` (k = 1, . . . , m)

ρ(y) < ξ1 < 2ρ(y),
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where the last is what determines m and guarantees (2.5).
From now we treat only the interesting case that y∗ < 1. Then

`1 = ξ1, `k =
1
2
ξk (k = 2, . . . ,m)

`s
k ≤ rk

ξk ≤ Rk ≤ 2ξk

B(y,Rk) ∩ Ω ⊂ Bn−1(ŷ, Crk)× (y∗ −Rk, y∗ + Rk)

ρ ≤ Crk on B(y,Rk).





(2.26)

Set τk = (ξn+a−1
k `k)

1
q . It is easy to observe that τk satisfy (2.6). From (2.26)2 we obtain

r
n+b−1

p

k `
1−p

p

k ≥ r
n+a−1

q

k `
1
q

k ≥ C−1τk.

The additional information provided by (2.26)4−5 has no counterpart in the case of a
general s-John domain. We use it to estimate µ(B(y, 3Rk)):

Cµ(B(y, Rk))
1
q ≤ C(Rkrn−1+a

k )
1
q ≤ C(ξk rn−1+a

k )
1
q ≤ Cτk.

Hence (2.7) is verified and Theorem 2.1 yields the result.
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