Sobolev Inequalities on Sets with Irregular Boundaries

T. Kilpeläinen and J. Malý

Abstract. We derive (weighted) Sobolev-Poincaré inequalities for *s*-John domains and *s*-cusp domains, both with optimal exponents. These results are obtained as consequences of a more comprehensive criterion.

Keywords: Sobolev inequality, Poincaré inequality, embeddings, weighted Sobolev spaces, John domains, cusp domains

AMS subject classification: 46×35

1. Introduction

It is well known that the Sobolev space $W^{1,p}(\Omega)$ is continuously embedded into $L^q(\Omega)$ if Ω is a nice bounded domain in \mathbb{R}^n and

$$1 \le p < \infty$$
 and $q(n-p) \le np.$ (1.1)

This fact, originally due to Sobolev, Gagliardo and Nirenberg, can nowadays be found in textbooks (cf. [12, 17]) and it is stated as the Sobolev-Poincaré inequality

$$\left(\int_{\Omega} |u - u_{\Omega}|^{q} dx\right)^{\frac{1}{q}} \leq C \left(\int_{\Omega} |\nabla u|^{p} dx\right)^{\frac{1}{p}}.$$
(1.2)

The weighted case of Sobolev's imbedding has been developed by Nečas [14], Besov, Ilin and Nikolskii [3, 4], Kufner [7], Maz'ya [12] and others. It is not very difficult to give examples of domains having cusps for which the Sobolev-Poincaré inequality (1.2) fails to hold or the range for its validity differs from (1.1). The question of this embedding in non-smooth domains Ω is addressed by many authors. To mention but a few, we would like to refer to the books [12, 13], and point out that Besov [1, 2] obtained embeddings in domains satisfying "flexible cone conditions", Smith and Stegenga [15] proved Poincaré

T. Kilpeläinen: Dept. Math. Univ. Jyväskylä, P.O. Box 35 (Mattilanniemi D), 40351 Jyväskylä, Finland; terok@math.jyu.fi; supported by the Academy of Finland (Project #8597). J. Malý: Dept. Math. Anal. Charles Univ., Sokolovská 83, 18675 Praha, Czech Republic; maly@karlin.mff.cuni.cz; supported by grants GAČR 201/97/1161 and GAUK 186/96.

inequality with q = p for s-John domains (that allow for twisted cusps of the type t^s with certain $s \ge 1$). Maz'ya [10] (see also Labutin [8]) established the optimal embedding for s-cusps. Hajłasz and Koskela [5] proved the optimal Sobolev-Poincaré inequality in s-John domains with p = 1 and the next to the optimal one for p > 1. Their result also involves weights. We refer to [5] also for further historical notes and references.

In this note we complete the picture for s-John domains and give a proof for the optimal Sobolev-Poincaré inequality in s-John domains, thus improving the results in [5] (see Theorem 2.3). We study also the weighted case where the weight is a power of the distance to the boundary. The result is obtained as a consequence of a slightly more general criterion, which may be used to illustrate why the optimal exponent for s-John domains is worse than the optimal exponent for domains with a single s-cusp. We use Hedberg's trick on the maximal operator [6], a truncation argument due to Maz'ya [11] and some ideas from Hajłasz and Koskela [5]. The main new ingredient of our proof is a careful grouping of chains around a curve which we call a worm.

The Lebesgue measure of a measurable set $E \subset \mathbb{R}^n$ is denoted by |E|. If u is an integrable function defined at least on E, we let u_E stand for the average

$$u_E = \oint_E u \, dx = \frac{1}{|E|} \int_E u \, dx.$$

The open *n*-dimensional ball with center at x and radius r is written as $B(x,r) = B_n(x,r)$. We use $\sharp F$ for the cardinality of a set F.

2. Main results

This section contains the results with proofs. We start with a general theorem and deduce the s-John domain result from it.

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. We consider exponents a, b, p, q satisfying

$$a \ge 0, \quad b \ge 1 - n \tag{2.1}$$

$$1 \le p < q < \infty \tag{2.2}$$

$$\frac{1}{q} \ge \frac{1}{p} - \frac{1}{n}.\tag{2.3}$$

Let μ the measure on \mathbb{R}^n with

$$\frac{d\mu}{dx} = \begin{cases} \rho^a & \text{in } \Omega\\ 0 & \text{outside } \Omega \end{cases}.$$

Here and in what follows $\rho(x) = \text{dist}(x, \mathbb{R}^n \setminus \Omega)$.

We shall define a *worm*. This is a pair (γ, Δ) , where $\gamma : [0, \ell] \to \Omega$ is a curve joining $y = \gamma(0)$ to $x_0 = \gamma(\ell)$, parametrized by its arc-length, and $\Delta = \{\xi_k\}, 0 = \xi_0 < \xi_1 < \xi_2 < \ldots < \xi_m = \ell$, is a finite partition of $[0, \ell]$. With each worm we associate its

parameters: the number m of the partition intervals $[\xi_{k-1}, \xi_k]$, and for k = 1, ..., m the quantities

$$\ell_{k} = \xi_{k} - \xi_{k-1}$$

$$R_{k} = \sup \left\{ |\gamma(t) - y| : t \in [\xi_{k-1}, \xi_{k}] \right\}$$

$$r_{k} = \inf \left\{ \rho(\gamma(t)) : t \in [\xi_{k-1}, \xi_{k}] \right\}.$$

Theorem 2.1. Let a, b, p, q satisfy (2.1) - (2.3). Let

$$\frac{1}{q} \ge \frac{n-p+b}{p(n+a)}.\tag{2.4}$$

Suppose that there is a constant A > 0 and a point $x_0 \in \Omega$ such that for each $y \in \Omega \setminus B(x_0, \frac{\rho(x_0)}{2})$ there is a worm (γ, Δ) joining y to x_0 , with parameters m, $\{\ell_k\}$, $\{R_k\}$, $\{r_k\}$ and constants $\tau_1, \ldots, \tau_m \in (0, 1]$ (both parameters and τ_k 's may depend on y), such that

$$\rho(y) \le 3R_k \quad (k = 1, \dots, m) \tag{2.5}$$

$$(1+A^{-1})\tau_{k-1} \le \tau_k \le A\tau_{k-1} \quad (k=2,\ldots,m)$$
(2.6)

$$A^{-1}(\mu(B(y,3R_k)))^{\frac{1}{q}} \le \tau_k \le A r_k^{\frac{n+o-1}{p}} \ell_k^{\frac{1-p}{p}}.$$
(2.7)

Then there is a constant $C = C(n, p, a, b, A, \Omega) > 0$ such that

$$\left(\int_{\Omega} |u - \bar{u}_a|^q \rho^a dx\right)^{\frac{1}{q}} \le C \left(\int_{\Omega} |\nabla u|^p \rho^b dx\right)^{\frac{1}{p}}$$

for each $u \in C^1(\Omega)$ where $\bar{u}_a = \oint_{\Omega} u \, d\mu = \frac{1}{\mu(\Omega)} \int_{\Omega} u \, d\mu$.

We start the proof with the following lemma.

Lemma 2.2. Suppose that Ω is a bounded open set. Let $z, z' \in \Omega$ and let γ : $[\xi, \xi'] \to \mathbb{R}^n$ be a path of the length ℓ that joins z and z'. Suppose that $b \ge 1 - n$ and that $\rho \ge r$ on γ . Let $u \in C^1(\Omega)$. Then

$$\left| u_{B(z,\frac{1}{2}\rho(z))} - u_{B(z',\frac{1}{2}\rho(z'))} \right| \le Cr^{\frac{1-b-n}{p}} \ell^{\frac{p-1}{p}} \left(\int_{D_{\gamma}} |\nabla u|^{p} \rho^{b} dx \right)^{\frac{1}{p}}$$
(2.8)

where $D_{\gamma} = \bigcup_{t \in [\xi, \xi']} B(\gamma(t), \frac{1}{2}\rho(\gamma(t))).$

Proof. Write $B = B(z, \frac{1}{2}\rho(z))$ and $B' = B(z', \frac{1}{2}\rho(z'))$. We construct a chain $\{B_i\}$, $B_i \equiv B(z_i, \frac{1}{2}\rho(z_i))$ of balls and denote $\hat{B}_i = B(z_i, \frac{1}{4}\rho(z_i))$. For the construction, it is enough to determine points t_i such that $z_i = \gamma(t_i)$. If t_1, \ldots, t_{j-1} are selected, we find the next as

$$t_j = \sup\left\{t \in [t_{i-1}, \xi'] : B\left(\gamma(t), \frac{1}{4}\rho(\gamma(t))\right) \cap \hat{B}_{j-1} \neq \emptyset\right\}.$$

If $t_j = \xi'$, we set $j_{\text{max}} = j$, $t_j = \xi'$ and terminate the construction.

372 T. Kilpeläinen and J. Malý

We observe that the balls $B(z_i, \frac{1}{4}\rho(z_i))$ $(i < j_{\max})$ are disjoint, and since their radii are bounded away from zero and Ω is bounded, the sequence really terminates after a finite number of steps. Fix $x \in \Omega$ and denote $I(x) = \{i < j_{\max} : x \in B_i\}$. Let $i \in I(x)$. Then

$$\rho(z_i) \le \rho(x) + |x - z_i| \le \rho(x) + \frac{1}{2}\rho(z_i) \rho(x) \le \rho(z_i) + |x - z_i| \le \rho(z_i) + \frac{1}{2}\rho(z_i)$$

and thus

$$\rho(z_i) \le 2\rho(x) \quad \text{and} \quad \rho(x) \le 2\rho(z_i).$$
(2.9)

For any $y \in \hat{B}_i$ we have $|y - x| \leq \rho(z_i) \leq 2\rho(x)$ which means that $\bigcup_{i \in I(x)} \hat{B}_i \subset B(x, 2\rho(x))$. Since \hat{B}_i $(i \in I(x))$ are disjoint, we have

$$|B(x, \frac{1}{8}\rho(x))| \, \sharp I(x) \le \sum_{i \in I(x)} |\hat{B}_i| \le |B(x, 2\rho(x))|$$

which implies $\sharp I(x) \leq 16^n$. Thus we have proven that

$$\sum \chi_{B_i} \le 16^n + 1. \tag{2.10}$$

Next, consider $i \in \{1, \ldots, j_{\max}\}$ and notice that there is a point $x \in \overline{\hat{B}_{i-1}} \cap \overline{\hat{B}_i}$. Then, as above, we infer that (2.9) holds and

$$B(x, \frac{1}{8}\rho(x)) \subset B(x, \frac{1}{4}\rho(z_{i-1})) \cap B(x, \frac{1}{4}\rho(z_i)) \subset B_{i-1} \cap B_i$$
$$B_{i-1} \cup B_i \subset B(x, \rho(z_{i-1})) \cup B(x, \rho(z_i)) \subset B(x, 2\rho(x))$$

so that

$$|B_{i-1} \cup B_i| \le 16^n |B_{i-1} \cap B_i|.$$
(2.11)

Also, it is clear that

$$\sum_{i=1}^{j_{\max}} \rho(z_i) \le C\ell.$$
(2.12)

Using (2.11) and the Poincaré inequality we have

$$\begin{aligned} |u_{B_{i}} - u_{B_{i-1}}| &\leq |u_{B_{i}} - u_{B_{i} \cap B_{i-1}}| + |u_{B_{i} \cap B_{i-1}} - u_{B_{i-1}}| \\ &\leq \int_{B_{i} \cap B_{i-1}} |u - u_{B_{i}}| \, dx + \int_{B_{i} \cap B_{i-1}} |u - u_{B_{i-1}}| \, dx \\ &\leq \frac{|B_{i}|}{|B_{i} \cap B_{i-1}|} \int_{B_{i}} |u - u_{B_{i}}| \, dx + \frac{|B_{i-1}|}{|B_{i} \cap B_{i-1}|} \int_{B_{i-1}} |u - u_{B_{i-1}}| \, dx \\ &\leq C \, \rho(z_{i}) \left(\int_{B_{i}} |\nabla u|^{p} \, dx \right)^{\frac{1}{p}} + C \, \rho(z_{i-1}) \left(\int_{B_{i-1}} |\nabla u|^{p} \, dx \right)^{\frac{1}{p}}. \end{aligned}$$

Hence we can estimate by using (2.10) and (2.12) that

$$\begin{aligned} |u_{B'} - u_B| &\leq \sum_{i=2}^{j_{\max}} |u_{B_i} - u_{B_{i-1}}| \\ &\leq C \sum_{i=1}^{j_{\max}} \rho(z_i)^{1 - \frac{n}{p}} \left(\int_{B_i} |\nabla u|^p dx \right)^{\frac{1}{p}} \\ &\leq C \sum_{i=1}^{j_{\max}} \rho(z_i)^{1 - \frac{1}{p} + \frac{1 - n - b}{p}} \left(\int_{B_i} \rho(z_i)^b |\nabla u|^p dx \right)^{\frac{1}{p}} \\ &\leq C \sum_{i=1}^{j_{\max}} r^{\frac{1 - n - b}{p}} \rho(z_i)^{1 - \frac{1}{p}} \left(\int_{B_i} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}} \\ &\leq C r^{\frac{1 - n - b}{p}} \left(\sum_{i=1}^{j_{\max}} \rho(z_i) \right)^{1 - \frac{1}{p}} \left(\sum_{i=1}^{j_{\max}} \int_{B_i} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}} \\ &\leq C r^{\frac{1 - b - n}{p}} \ell^{\frac{p - 1}{p}} \left(\int_{D_\gamma} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}} \end{aligned}$$

since $b + n \ge 1$. The lemma is proven

Proof of Theorem 2.1. Denote $B_0 = B(x_0, \frac{1}{2}\rho(x_0))$ and let $u \in C^1(\Omega)$. We may assume that

$$|\{u \ge 0\} \cap B_0| \ge \frac{1}{2}|B_0|$$
 and $|\{u \le 0\} \cap B_0| \ge \frac{1}{2}|B_0|.$ (2.14)

We will also assume as we may that

$$\int_{\Omega} |\nabla u|^p \rho^b dx = 1. \tag{2.15}$$

We shall first establish a weak type estimate

$$\mu(A_{\lambda}) \le C\lambda^{-q},\tag{2.16}$$

where $A_{\lambda} = \{x \in \Omega : |u(x)| > \lambda\}$ and $\lambda > 0$. First observe that since the median of u is zero in B_0 by (2.14), we have

$$\int_{B_0} |u|^p dx \le c \int_{B_0} |\nabla u|^p dx \tag{2.17}$$

(see [17: Theorem 4.4.4]). Hence

$$|u_{B_0}| \le \left(\oint_{B_0} |u|^p dx \right)^{\frac{1}{p}} \le c \left(\oint_{B_0} |\nabla u|^p dx \right)^{\frac{1}{p}} \le c_0,$$
(2.18)

where c_0 is independent of u. Since $\mu(\Omega) < \infty$ it suffices to establish (2.16) for $\lambda > 3c_0$. To do so, we fix $\lambda > 3c_0$ and divide A_{λ} into three parts: write $B_y = B(y, \frac{1}{2}\rho(y))$ and let

$$E_{\lambda} = \{ y \in A_{\lambda} \setminus B_0 : |u_{B_y}| > \frac{1}{2}\lambda \}$$

$$F_{\lambda} = A_{\lambda} \setminus (B_0 \cup E_{\lambda}).$$

The third part is

 $A_{\lambda} \cap B_0.$

We treat E_{λ} first. Fix $y \in E_{\lambda}$ and let $(\gamma, \{\xi_k\})$ be a worm in Ω that connects y to x_0 , with parameters $m, \{\ell_k\}, \{R_k\}, \{r_k\}$, and obeys the bounds of the theorem. We apply Lemma 2.2 to paths $\gamma_k = \gamma|_{[\xi_{k-1},\xi_k]}$ and points $z = z_k = \gamma(\xi_{k-1})$ and $z' = z'_k = \gamma(\xi_k)$. Let $x = \gamma(t)$ with $t \in [\xi_{k-1}, \xi_k]$. Then by (2.5)

$$\rho(x) \le \rho(y) + |y - x| \le 4R_k$$

and thus

$$\begin{split} B(x, \frac{1}{2}\rho(x)) &\subset B(y, R_k + 2R_k) \\ D_{\gamma_k} &\subset B(y, 3R_k). \end{split}$$

Since $\lambda > 3c_0$, we have

$$\begin{split} \lambda &\leq 6 |u_{B_{y}} - u_{B_{0}}| \\ &\leq 6 \sum_{k=1}^{m} |u_{B_{z'_{k}}} - u_{B_{z_{k}}}| \\ &\leq C \sum_{k} r_{k}^{\frac{1-b-n}{p}} \ell_{k}^{\frac{p-1}{p}} \left(\int_{B(y,3R_{k})} \rho^{b-a} |\nabla u|^{p} d\mu \right)^{\frac{1}{p}}. \end{split}$$

We split the last sum into two parts by K = K(y) that is to be determined. First we notice that by (2.6) and (2.2)

$$\sum_{k>K} \tau_k^{-1} \le C\tau_{K+1}^{-1} \quad \text{and} \quad \sum_{k\le K} \tau_k^{\frac{q}{p}-1} \le C\tau_K^{\frac{q}{p}-1}.$$
(2.19)

If K < m, due to our normalization of u, (2.7) and (2.19) we have

$$\sum_{k>K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \left(\int_{B(y,3R_k)} \rho^{b-a} |\nabla u|^p d\mu \right)^{\frac{1}{p}}$$

$$\leq \left(\int_{\Omega} \rho^b |\nabla u|^p dx \right)^{\frac{1}{p}} \sum_{k>K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}}$$

$$= \sum_{k>K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}}$$

$$\leq C \sum_{k>K} \tau_k^{-1}$$

$$\leq C \tau_{K+1}^{-1}.$$
(2.20)

Before treating the second part of the sum, we set

$$f = |\nabla u|^p \rho^{b-a}$$
 and $g(x) = \left(\sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f \, d\mu\right)^{\frac{1}{p}}$.

Since the maximal operator with respect to μ is of weak type (1, 1) (see, e.g., [9: Theorem 2.19] or [16: p. 44/I.8.17]) and $||f||_{L^1(\mu)} = 1$, we have

$$\mu(\{g^p > t\}) \le C \frac{1}{t} \qquad (0 < t < \infty).$$
(2.21)

We estimate

$$\sum_{k \leq K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \left(\int_{B(y,3R_k)} \rho^{b-a} |\nabla u|^p d\mu \right)^{\frac{1}{p}} \\ \leq \sum_{k \leq K} r_k^{\frac{1-b-n}{p}} \ell_k^{\frac{p-1}{p}} \left(\mu(B(y,3R_k)) \right)^{\frac{1}{p}} g(y) \\ \leq C \sum_{k \leq K} \tau_k^{-1} \tau_k^{\frac{q}{p}} g(y) \\ \leq C \tau_K^{-1+\frac{q}{p}} g(y).$$
(2.22)

Now we specify the choice of K, distinguishing three cases. If $\tau_1^{-\frac{q}{p}} \leq g(y)$, we choose K = 0. Then the sum over all $k = 1, \ldots, m$ reduces to (2.20) and we have $\lambda \leq C\tau_1^{-1} \leq C g(y)^{\frac{p}{q}}$. If $\tau_m^{-\frac{q}{p}} \geq g(y)$, we choose K = m. Then the sum over $k = 1, \ldots, m$ is treated in (2.22), and we have

$$\lambda \le C\tau_m^{-1+\frac{q}{p}}g(y) \le Cg(y)^{\frac{p}{q}-1}g(y) = Cg(y)^{\frac{p}{q}}.$$

The remaining case is that $\tau_m^{-\frac{q}{p}} < g(y) < \tau_1^{-\frac{q}{p}}$. Then we choose the integer K < m so that $\tau_{K+1}^{-\frac{q}{p}} \leq g(y) < \tau_K^{-\frac{q}{p}}$. Using (2.20) and (2.22) we obtain

$$\lambda \le C\tau_{K+1}^{-1} + C\tau_K^{-1+\frac{q}{p}}g(y) \le Cg(y)^{\frac{p}{q}}.$$

Hence we always have $\lambda \leq Cg(y)^{\frac{p}{q}}$ for every $y \in E_{\lambda}$. Therefore by (2.21)

$$\mu(E_{\lambda}) \le \mu(\{g^p > (\lambda/C)^q\}) \le C\lambda^{-q}.$$
(2.23)

Next, we estimate the measure of F_{λ} . Using the Besicovitch covering theorem (cf. [9: Theorem 2.7]) we can cover F_{λ} with balls $B_{x_i} = B(x_i, \frac{1}{2}\rho(x_i))$ so that $x_i \in F_{\lambda}$ and

 $\sum_i \chi_{B_{x_i}} \leq N$. Then $|u - u_{B_{x_i}}| \geq \frac{1}{2}\lambda$ on F_{λ} whence we have by using the Sobolev-Poincaré inequality that

$$\begin{split} \mu(F_{\lambda}) &\leq \sum_{i} \mu(B_{x_{i}} \cap F_{\lambda}) \\ &\leq \sum_{i} \int_{B_{x_{i}} \cap F_{\lambda}} \rho^{a} dx \\ &\leq C \sum_{i} \rho(x_{i})^{a} \int_{B_{x_{i}} \cap F_{\lambda}} dx \\ &\leq C \lambda^{-q} \sum_{i} \rho(x_{i})^{a} \int_{B_{x_{i}} \cap F_{\lambda}} |u - u_{B_{x_{i}}}|^{q} dx \\ &\leq C \lambda^{-q} \sum_{i} \rho(x_{i})^{a+q+n(1-\frac{q}{p})} \left(\int_{B_{x_{i}}} |\nabla u|^{p} dx \right)^{\frac{q}{p}} \\ &\leq C \lambda^{-q} \sum_{i} \left(\int_{B_{x_{i}}} |\nabla u|^{p} \rho^{p(\frac{a+n}{q}+1-\frac{n}{p})} dx \right)^{\frac{q}{p}} \\ &\leq C \lambda^{-q} \left(\int_{\Omega} |\nabla u|^{p} \rho^{b} dx \right)^{\frac{q}{p}} \\ &\leq C \lambda^{-q} \end{split}$$

since $p\left(\frac{a+n}{q}+1-\frac{n}{p}\right) \ge b$ by (2.4).

Finally, combining (2.17) and the usual Sobolev inequality in the ball B_0 , we obtain the weak type estimate $\mu(A_{\lambda} \cap B_0) \leq C\lambda^{-q}$. Hence by estimates (2.23) and (2.24)

$$\mu(A_{\lambda}) \le \mu(E_{\lambda}) + \mu(F_{\lambda}) + \mu(A_{\lambda} \cap B_0) \le C\lambda^{-q}.$$

In conclusion, (2.16) holds for all $\lambda > 0$ or, without normalization (2.15),

$$\sup_{\lambda>0} \lambda \,\mu(\{|u|>\lambda\})^{\frac{1}{q}} \le C\left(\int_{\Omega} |\nabla u|^p \rho^b dx\right)^{\frac{1}{p}}.$$
(2.25)

A truncation argument shows that the weak type estimate (2.25) implies the desired embedding. Indeed, for each t > 0 the truncated functions

$$u_t(x) = \begin{cases} \frac{1}{2}t & \text{if } |u(x)| > t\\ |u(x)| - \frac{1}{2}t & \text{if } \frac{1}{2}t < |u(x)| < t\\ 0 & \text{if } |u(x)| < \frac{1}{2}t \end{cases}$$

satisfy (2.14). Thus we may use (2.25) to conclude

$$\left(\int_{\{t < u \le 2t\}} |u|^q d\mu\right)^{\frac{1}{q}} \le Ct \,\mu(\{|u| > t\})^{\frac{1}{q}}$$
$$\le Ct \,\mu(\{u_t \ge \frac{1}{2}t\})^{\frac{1}{q}}$$

$$\leq C \left(\int_{\Omega} |\nabla u_t|^p \rho^b dx \right)^{\frac{1}{p}}$$
$$= C \left(\int_{\{\frac{1}{2}t < |u| \le t\}} |\nabla u|^p \rho^b dx \right)^{\frac{1}{p}}.$$

Hence

$$\begin{split} \int_{\Omega} |u|^{q} \rho^{a} dx &\leq \sum_{j=-\infty}^{\infty} \int_{\{2^{j} < |u| \leq 2^{j+1}\}} |u|^{q} \rho^{a} dx \\ &\leq C \sum_{j=-\infty}^{\infty} \left(\int_{\{2^{j-1} < |u| \leq 2^{j}\}} |\nabla u|^{p} \rho^{b} dx \right)^{\frac{q}{p}} \\ &\leq C \left(\int_{\Omega} |\nabla u|^{p} \rho^{b} dx \right)^{\frac{q}{p}}, \end{split}$$

and the theorem is proved, since $\int_\Omega |u-\bar{u}_a|^q \rho^a dx \leq C \int_\Omega |u|^q \rho^a dx$ \blacksquare

Following Smith and Stegenga [15] we call a bounded domain Ω an *s*-John domain $(s \ge 1)$, if there is a point $x_0 \in \Omega$ and a constant $c_0 \ge 1$ such that each point $x \in \Omega$ can be joined to x_0 in Ω by a rectifiable curve (called an *s*-John core) $\gamma : [0, \ell] \to \Omega$ such that γ is parametrized by the arc length, $\gamma(0) = x$, $\gamma(\ell) = x_0$, and dist $(\gamma(t), \partial \Omega) \ge c_0^{-1} t^s$ for all $t \in [0, \ell]$.

The next theorem improves the main result of [5].

Theorem 2.3. Suppose that Ω is an s-John domain. Let a, b, p, q satisfy (2.1) - (2.3) and

$$\frac{1}{q} \geq \frac{s(n+b-1)-p+1}{p(n+a)}.$$

Then there is a constant $C = C(n, p, q, a, b, \Omega) > 0$ such that

$$\left(\int_{\Omega} |u - \bar{u}_a|^q \rho^a dx\right)^{\frac{1}{q}} \le C \left(\int_{\Omega} |\nabla u|^p \rho^b dx\right)^{\frac{1}{p}}$$

for each $u \in C^1(\Omega)$.

Proof. We will verify the assumptions of Theorem 2.1. First we notice that $s \ge 1$ implies

$$\frac{1}{q} \ge \frac{s(n+b-1)-p+1}{p(n+a)} \ge \frac{n+b-p}{p(n+a)}$$

so that (2.4) is true. For fixed $y \in \Omega \setminus B(x_0, \frac{1}{2}\rho(x_0))$, the s-John core γ on $[0, \ell]$ gives us the desired worm: Let $d = \sup \{ |\gamma(t) - y| : t \in [0, \ell] \}$. Find the integer m with $3d < 2^m \rho(y) \leq 6d$. Since

$$\rho(y) \le \rho(x_0) + |y - x_0| \le 3|y - x_0| \le 3d,$$

we have $m \ge 1$. Set

$$\xi_k = \sup \left\{ t \in [0, \ell] : |\gamma(s) - y| \le 2^{k-m} d \text{ for all } s \in [0, t] \right\}.$$

Then $(\gamma, \{\xi_k\})$ is a worm with parameters $m, \{\ell_k\}, \{R_k\}, \{r_k\}, and$

$$\left. \begin{cases} \ell_k \leq \xi_k \\ \xi_k \geq R_k = 2^{k-m} d \\ r_k \geq c_0 \xi_k^s. \end{cases} \right\}$$

The inequality $\rho(y) \leq 6 \cdot 2^{-m} d \leq 3R_k$ verifies (2.5). Since

$$\frac{n+a}{q} \ge \frac{s(n+b-1)+1-p}{p}$$

we have by choosing $\tau_k = 2^{(k-m)\frac{n+a}{q}}$ that

$$\mu(B(y, R_k))^{\frac{1}{q}} \le R_k^{\frac{n+a}{q}} \le C\tau_k$$

and

$$r_k^{-\frac{n+b-1}{p}} \ell_k^{\frac{p-1}{p}} \le (c_0 \xi_k)^{-s\frac{n+b-1}{p}} \xi_k^{\frac{p-1}{p}} \le C \xi_k^{-\frac{n+a}{q}} \le C \tau_k^{-1}.$$

Hence the claim follows from Theorem 2.1 \blacksquare

Remark. The exponent q of Theorem 2.3 is the best possible in the class of s-John domains (see [5]).

Example 2.4. An example of an s-John domain is an s-cusp domain. Surprisingly, the optimal embedding exponent for the s-cusp obtained in [8, 10, 13] is better than that for general s-John domains. The reason is that complicated s-John domains may contain "rooms and corridors" so that the upper estimate for $\mu(B(y, R) \cap \Omega)$ must be more carefully examined. We show that the optimal embedding for s-cusp domains can be deduced from Theorem 2.1. Let us write $x \in \mathbb{R}^n$ as $x = (\hat{x}, x^*)$, where $\hat{x} \in \mathbb{R}^{n-1}$ and x^* is the last coordinate of x. We will consider the s-cusp domain

$$\Omega = \left\{ x \in \mathbb{R}^n : |\hat{x}| \le (x^*)^s \text{ and } 0 < x^* < 2 \right\}$$

and show that if (2.1) - (2.3) are verified, Theorem 2.1 yields embedding of $W^{1,p}(\Omega, \rho^b)$ into $L^q(\Omega, \rho^a)$, where

$$\frac{1}{q} \ge \frac{s(n+b-1)-p+1}{p(s(n+a-1)+1)}.$$

We choose $x_0 = e_n = (0, 1)$. If $y \in \Omega \setminus B(x_0, \frac{1}{2}\rho(x_0))$, we set $\ell = \ell(y) = |\hat{y}| + |y^* - 1|$ and define the worm curve $\gamma : [0, \ell] \to \Omega$ as

$$\gamma(t) = \begin{cases} \left((1 - \frac{t}{|\hat{y}|}) \hat{y}, y^* \right) & \text{if } 0 \le t \le |\hat{y}| \\ \left(1 + \frac{\ell - t}{\ell - |\hat{y}|} (y^* - 1) \right) e_n & \text{if } |\hat{y}| \le t \le \ell. \end{cases}$$

In other words, worm curve starts at y, goes first on line segment connecting y with y^*e_n and then turns to the line segment connecting y^*e_n with e_n . We find a partition $\{\xi_0, \ldots, \xi_m\}$ of $[0, \ell]$ in such a way that $\xi_0 = 0$,

$$\xi_0 = 0, \, \xi_k = 2^{k-m} \ell \, (k = 1, \dots, m)$$

 $\rho(y) < \xi_1 < 2\rho(y),$

where the last is what determines m and guarantees (2.5).

From now we treat only the interesting case that $y^* < 1$. Then

$$\left. \begin{array}{l} \ell_{1} = \xi_{1}, \ell_{k} = \frac{1}{2} \xi_{k} \quad (k = 2, \dots, m) \\ \ell_{k}^{s} \leq r_{k} \\ \xi_{k} \leq R_{k} \leq 2\xi_{k} \\ B(y, R_{k}) \cap \Omega \subset B_{n-1}(\hat{y}, Cr_{k}) \times (y^{*} - R_{k}, y^{*} + R_{k}) \\ \rho \leq Cr_{k} \quad \text{on } B(y, R_{k}). \end{array} \right\}$$

$$(2.26)$$

Set $\tau_k = (\xi_k^{n+a-1}\ell_k)^{\frac{1}{q}}$. It is easy to observe that τ_k satisfy (2.6). From (2.26)₂ we obtain

$$r_k^{\frac{n+b-1}{p}} \ell_k^{\frac{1-p}{p}} \ge r_k^{\frac{n+a-1}{q}} \ell_k^{\frac{1}{q}} \ge C^{-1} \tau_k.$$

The additional information provided by $(2.26)_{4-5}$ has no counterpart in the case of a general s-John domain. We use it to estimate $\mu(B(y, 3R_k))$:

$$C\mu(B(y,R_k))^{\frac{1}{q}} \le C(R_k r_k^{n-1+a})^{\frac{1}{q}} \le C(\xi_k r_k^{n-1+a})^{\frac{1}{q}} \le C\tau_k.$$

Hence (2.7) is verified and Theorem 2.1 yields the result.

References

- Besov, O. V.: Integral representations of functions and embedding theorems for a domain with a flexible horn condition. Trudy Mat. Inst. Steklov 170 (1984), 12 – 30.
- Besov, O. V.: Embeddings of Sobolev spaces in domains with a splitting flexible cone condition. Trudy Mat. Inst. Steklov 173 (1986), 14 - 31.
- [3] Besov, O. V, Ilin, V. P. and S. M. Nikolskii: Integral Representations of Functions and Imbedding Theorems. Vol. I. New York: Halsted Press 1978.
- [4] Besov, O. V., Ilin, V. P. and S. M. Nikolskii: Integral Representations of Functions and Imbedding Theorems. Vol. II. New York: Halsted Press 1979.
- [5] Hajłasz, P. and P. Koskela: Isoperimetric inequalities and imbedding theorems in irregular domains. J. London Math. Soc. (2) 58 (1998), 425 - 450.
- [6] Hedberg, L. I.: On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972), 505 – 510.
- [7] Kufner, A.: Weighted Sobolev Spaces. Leipzig: Teubner 1980 (1st. ed.) and Chichester: J. Wiley and Sons 1985 (2nd. ed.).
- [8] Labutin, D. A.: Integral representations of functions and embeddings of Sobolev spaces on cuspidal domains. Math. Notes 61 (1997), 164 – 179.
- [9] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability. Cambridge: Univ. Press 1995.
- [10] Maz'ya, V. G.: Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl. 1 (1960), 882 – 885.

- [11] Maz'ya, V. G.: A theorem on the multidimensional Schrödinger operator (in Russian). Izv. Akad. Nauk. 28 (1964), 1145 – 1172.
- [12] Maz'ya, V. G.: Sobolev Spaces. Berlin: Springer-Verlag 1985.
- [13] Maz'ya, V. G. and S. V. Poborchi: Differentiable Functions on Bad Domains. Singapore: World Sci. 1997.
- [14] Nečas, J.: Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationelle. Ann. Scuola Norm. Sup. Pisa 16 (1962), 305 – 326.
- [15] Smith, W. and D. A. Stegenga: Hölder domains and Poincaré domains. Trans. Amer. Math. Soc. 319 (1990), 67 – 100.
- [16] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton (N.J.): Univ. Press 1993.
- [17] Ziemer, W. P.: Weakly Differentiable Functions (Graduate Text in Mathematics: Vol. 120). New York: Springer-Verlag 1989.

Received 16.03.1999