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Weierstrass-Type Maximum Principle
for

Microstructure in Micromagnetics

M. Kruž́ık and T. Roub́ıček

Abstract. We derive necessary and sufficient optimality conditions for a relaxed (in terms of
Young measures) variational problem governing steady states of ferromagnetic materials. Such
conditions here stated in the form of a generalized Weierstrass maximum principle enable us to
establish uniqueness of a solution in some specific situations and can also be used in efficient
numerical algorithms solving the relaxed problems, for instance.
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1. Introduction

Steady-state configurations of mechanical systems are usually governed by an energy-
minimization type principle. In past centuries, this led to the development of variational
calculus, which resulted in formulations of optimality conditions in terms of Euler-
Lagrange equations or the Weierstrass maximum principle. Sometimes, the involved
energy is not convex in highest derivatives, which causes “physically” the development
of a microstructure and “mathematically” the failure of existence of a solution. To
describe the microstructure in detail and to overcome the failure of existence, the original
problem is to be extended suitably. In some situations, it may happen that the extended
(relaxed) problem has a convex structure with respect to some geometry not necessarily
compatible with the “natural” geometry of the original non-convex problem. Then
one can formulate optimality conditions. For the case of scalar variational problems
this results in one half of the Euler-Lagrange equation combined with the Weierstrass
maximum principle (see [28: Section 5.3]). The identification of the linear structure
that makes the relaxed problem convex and the formulation of corresponding optimality
conditions is the basis for the construction of effective numerical algorithms for relaxed
problems (cf. [7, 20, 28]). Let us still remark that other geometries applied to the relaxed
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416 M. Kruž́ık and T. Roub́ıček

problem may lead to other optimality conditions (cf., e.g., Chipot and Kinderlehrer [8],
DeSimone [12] or Pedregal [26]).

The goal of this paper is to adapt the above ideas to a steady-state micromagnetics.
The variational problem, stated in Section 2, was already formulated in [3 - 5, 16]
while its extension, stated here in Section 3, was formulated in [12, 24, 25, 27]. Our
original results, i.e. the optimality conditions for the extended problem, are formulated
in Sections 4 and 5 in terms of a Weierstrass-type maximum principle in integral form
(Propositions 1 and 3) and also pointwise (Propositions 2 and 4). Some consequences
are mentioned in Section 6.

2. Steady-state model of micromagnetics

In the classical theory of rigid ferromagnetic bodies, based mainly on works of Landau
and Lifshitz [22], a magnetization m : Ω → Rn, describing the state of the body Ω ⊂
Rn (n = 2, 3) depends on a position x ∈ Ω and has a given temperature-dependent
magnitude

|m(x)| = const(T ) for a.a. x ∈ Ω

with m(x) = 0 for T ≥ Tc, the so-called Curie point. We will treat the case when
the temperature is fixed below the Curie point and thus we shall assume that |m| = 1
almost everywhere in Ω. In the so-called no-exchange formulation, the energy of a large
rigid ferromagnetic body Ω ⊂ Rn consists of three parts and the variational principle
governing steady-state configurations can be stated as follows (see, e.g., Brown [3 - 5],
Choksi and Kohn [9], James and Kinderlehrer [16], James and Müller [17], Kinderlehrer
and Ma [18], Tartar [29], etc.):

minimize

E(m,u) =
∫

Ω

[
ϕ(m(x))−He(x) ·m(x)

]
dx + 1

2

∫

Rn

|∇u(x)|2 dx

subject to

|m| = 1 on Ω, div(∇u−mχΩ) = 0 in Rn
(
m ∈ L∞(Ω;Rn), u ∈ W 1,2(Rn)

)





(1)

where ϕ : Rn → R is continuous, m : Ω → Rn is the magnetization, He : Rn → Rn

is a given external magnetic field, u : Ω → R is the potential of the induced magnetic
field, and χΩ : Rn → {0, 1} denotes the characteristic function of Ω. The first term in
E is an anisotropy energy with density ϕ which is supposed to be an even non-negative
function depending on material properties and exhibiting crystallographic symmetry.
Two important cases are the uniaxial case, where ϕ attains its minimum along one
axis, and the cubic case when it attains its minimum along three axes. The second
term involving He is an interaction energy and the last term is a magnetostatic energy
related with the magnetization field m through ∆u = div(mχΩ). This equation stems
from the Maxwell equations (omitting constants)

divB = 0

curl H = 0

}
(2)



Weierstrass-Type Maximum Principle 417

where B is the magnetic induction and H the intensity of the magnetic field. By
definition, B = H + mχΩ and H = −∇u. Then ∆u = div(mχΩ) follows immediately.
Let us notice that the weak formulation of this equation reads as

∫

Rn

[∇u(x)−m(x)χΩ(x)
]∇v(x) dx = 0 ∀ v ∈ W 1,2(Rn). (3)

In particular, putting v := u we have

∫

Rn

|∇u(x)|2dx =
∫

Ω

m(x) · ∇u(x) dx (4)

which gives
‖∇u‖L2(Rn;Rn) ≤ ‖m‖L2(Ω;Rn)

by the Hölder inequality. It follows from the Lax-Milgram lemma that (3) has for any
m ∈ L2(Ω;Rn) a unique solution u ∈ W 1,2(Rn) and that the mapping m 7→ ∇u is
linear and weakly continuous. Hence the magnetostatic energy m 7→ 1

2

∫
Rn |∇u(x)|2dx

is sequentially weakly lower semicontinuous.
As the set of admissible magnetizations {m ∈ L∞(Ω;Rn) : |m| = 1} is not convex,

we cannot rely on direct methods (see, e.g., [11]) in proving the existence of a solution
to problem (1) (cf. [16] for failure of existence of a solution in a uniaxial case). More
precisely, if the weak limit of some minimizing sequence of m’s in problem (1) lives for
almost all x ∈ Ω in the unit sphere, then this is the strong limit (cf. [21: p. 99]). There-
fore, a so-called fine structure (or, in the “limit” we will speak about a microstructure)
in m will typically develop, and we have to look for a notion of generalized solutions
and to formulate a so-called relaxed problem. Let us emphasize that the fine structure
in m is actually observed in real ferromagnetic materials (see [15]).

3. Relaxation in terms of Young measures

We need to describe suitably the oscillating character of sequences {(mk, uk)}k∈N ⊂
L∞(Ω;Rn)×W 1,2(Rn) minimizing sequence (1). It is well known (see [2, 10, 30]) that
we can extract a subsequence (denoted, for simplicity, by the same indices) and find
u ∈ W 1,2(Rn) and a family of probability measures ν ≡ {νx}x∈Ω such that supp(νx) ⊂
Sn−1 := {s ∈ Rn : |s| = 1} which is weakly measurable in the sense that v • ν is
Lebesgue measurable for any v ∈ C(Sn−1), and

w- lim
k→∞

uk = u

w∗- lim
k→∞

v ◦mk = v • ν



 (5)

for any continuous function v : Rn → R, where the limits refer respectively to the
weak topology in W 1,2(Rn) and the weak* topology in L∞(Ω), and [v • ν](x) :=∫

Sn−1 v(s)νx(ds) for almost all x ∈ Ω. Let us denote the set of all ν ≡ {νx}x∈Ω with the
above listed properties by Y(Ω;Sn−1); such ν’s are called Young measures. Conversely,
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for any ν ∈ Y(Ω;Sn−1) there is a sequence of measurable functions mk : Ω → Sn−1

such that the later convergence in (5) is fulfilled.
The relaxation of problem (1) was done by DeSimone [12], Pedregal [24, 25], Rogers

[27], etc. The continuously extended problem obtained by this way looks as follows:

minimize

E(ν, u) :=
∫

Ω

∫

Sn−1

(
ϕ(s)−He(x) · s)νx(ds)dx + 1

2

∫

Rn

|∇u(x)|2dx

subject to∫

Rn

[
∇u(x)−

∫

Sn−1
χΩ(x) s νx(ds)

]
∇v(x) dx = 0

for all v ∈ W 1,2(Rn), ν ∈ Y(Ω; Sn−1), u ∈ W 1,2(Rn).





(6)

The probability measure νx describes in a proper (we may say “mesoscopic”) way the
microstructure of the “limit” magnetization at a point x.

The extended problem (6) is a correct relaxation for the original problem (1). In-
deed, by [12, 25] the infimum of E is attained and it is equal to the infimum of E.
Moreover, having (ν, u) as solution to problem (6), there is a sequence (mk, uk) ∈
L∞(Ω;Rn) × W 1,2(Rn) satisfying ∆uk = div(mkχΩ) in the weak sense, |mk| = 1
a.e., minimizing E, and attaining (ν, u) in the sense (5). Conversely, every sequence
(mk, uk) ∈ L∞(Ω;Rn) ×W 1,2(Rn) satisfying ∆uk = div(mkχΩ) weakly, |mk| = 1 and
minimizing E contains a subsequence attaining some (ν, u) ∈ Y(Ω; Sn−1) ×W 1,2(Rn)
in the sense (5), and every (ν, u) obtained in such way solves the relaxed problem (6).

One can also think about a “coarser” relaxation in terms of the original “macro-
scopic” magnetization m. We denote by δSn−1 the indicator function of the unit sphere,
i.e.

δSn−1(s) =
{

0 if |s| = 1
+∞ otherwise.

Furthermore, by v∗∗ we denote the second Fenchel conjugate (the convex envelope of
v), i.e. v∗∗ = sup{w convex : w ≤ v}. This can be used to pose the following relaxed
problem:

minimize

Ẽ(m,u) =
∫

Ω

[ϕ + δSn−1 ]∗∗(m(x))−He(x) ·m(x) dx + 1
2

∫

Rn

|∇u(x)|2dx

subject to

div(∇u−mχΩ) = 0 in Rn
(
m ∈ L∞(Ω;Rn), u ∈ W 1,2(Rn)

)
;





(7)

of course, the Poisson equation between u and m is again understood in the weak sense
(3). Note that [ϕ+δSn−1 ]∗∗ equals +∞ outside the unit ball in Rn so that any minimizer
(m,u) of problem (7) must satisfy |m(x)| ≤ 1 for a.a. x ∈ Ω. DeSimone [12] showed
that Ẽ always attains its minimum on the considered admissible set, and this minimum
is equal to the infimum of (1). For any s ∈ Rn, one has

[ϕ + δSn−1 ]∗∗(s) = inf
µ probability measure on Sn−1∫

Sn−1
σµ(dσ) = s

∫

Sn−1
ϕ(σ)µ(dσ). (8)
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Note that, for |s| > 1, the set of µ’s considered in (8) is empty so that the infimum in
(8) is +∞. It is clear that if (ν, u) minimizes E, then (m,u) with m(x) =

∫
Sn−1 sνx(ds)

minimizes Ẽ. Said differently, a unique minimizer of E implies a unique minimizer of Ẽ.
The opposite implication does not hold because, fixing some m ∈ L∞(Ω;Rn) with values
in the unit ball centered at the origin, we might still have many (even continuum of)
minimizers of E with the first moment m (cf. Example 3 below). Clearly, the only term
responsible for uniqueness/non-uniqueness is ϕ. First uniqueness results were obtained
by DeSimone [12] who showed uniqueness of solutions to (7) and of Young measure
solutions to (13) in the uniaxial case, i.e., if ϕ is non-negative and equals zero precisely
at two points ±s ∈ Sn−1 and has a given representation. Let us emphasize that the
proof of the uniqueness of a solution to (7) is a very deep result. Recently, Carstensen
and Prohl [6] found a new proof to show that, if ϕ corresponds to uniaxial ferromagnets,
then Ẽ has a unique minimizer.

The Euler-Weierstrass-type optimality conditions for the corresponding E will en-
able us to establish sufficient conditions under which the uniqueness of a minimizer to
(7) implies a unique Young measure-valued minimizer (see Proposition 5 and Examples
1 - 2 below). We note that a condition on support of a Young measure minimizer to
(13) was also established in [12].

4. Optimality conditions in terms of ν and u

It is usual to identify a given Young measure ν ∈ Y(Ω; Sn−1) with the linear functional
in L1(Ω;C(Sn−1))∗ defined by

〈ν, h〉 =
∫

Ω

∫

Sn−1
h(x, s)νx(ds) dx. (9)

Thus Y(Ω; Sn−1) can be considered as a convex weakly* compact subset of the space
L1(Ω;C(Sn−1))∗ (see [28: Corollary 3.1.7]). Furthermore, let us define

Π : L1(Ω;C(Sn−1))∗ ×W 1,2(Rn) → W 1,2(Rn)∗ ∼= W 1,2(Rn)

by the formula

〈v, Π(ν, u)〉 = −〈ν, χΩ∇v ⊗ id〉+
∫

Ω

∇v(x) · ∇u(x) dx (10)

for v ∈ W 1,2(Rn), where naturally [∇v ⊗ id](x, s) := ∇v(x) · s. Let us note that
Π(ν, u) = 0 just means that u solves

∫

Rn

[
∇u(x)−

∫

Sn−1
χΩ(x) s νx(ds)

]
∇v(x) dx = 0 ∀ v ∈ W 1,2(Rn). (11)

Also note that Π is (weak*× weak,weak)-continuous and surjective in the sense that

∀ f ∈ W 1,2(Rn)∗ ∃ u ∈ W 1,2(Rn) ∃ ν ∈ Y(Ω;Sn−1) : Π(ν, u) = f (12)
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which follows immediately from the Lax-Milgram lemma. The relaxed problem (6) now
takes the following abstract form:

minimize

E(ν, u)

subject to

Π(ν, u) = 0
(
(ν, u) ∈ Y(Ω;Sn−1)×W 1,2(Rn)

)
.





(13)

Note that E is convex, Π is linear and Y(Ω; Sn−1) is convex, so that problem (13) has a
convex structure. As E is Gateâux differentiable and 0 ∈ int(Π(Y(Ω;Sn−1)×W 1,2(Rn)))
due to (12), it is known (see, e.g., Aubin and Ekeland [1: p. 175]) that the first-order
optimality conditions looks as follows:

E
′
(ν, u) ∈ −NKer Π∩ (Y(Ω;Sn−1)×W 1,2(Rn))(ν, u)

= Range Π∗ −NY(Ω;Sn−1)×W 1,2(Rn)(ν, u)

= Range Π∗ −NY(Ω;Sn−1)(ν)× {0}

where

E
′
= (E

′
ν , E

′
u) : L1(Ω;C(Sn−1))∗ ×W 1,2(Rn) → (

L1(Ω;C(Sn−1))∗∗ ×W−1,2(Rn)
)

∼= L1(Ω;C(Sn−1))∗∗ ×W 1,2(Rn)

denotes the Gâteaux differential of E and

Π∗ = (Π∗ν ,Π∗u) : W 1,2(Rn) → L1(Ω;C(Sn−1))∗∗ ×W 1,2(Rn)

is the adjoint operator to Π. Moreover, NY(Ω;Sn−1)×W 1,2(Rn)(ν, u) denotes the normal
cone to the convex set Y(Ω;Sn−1) × W 1,2(Rn) at the point (ν, u), and analogously
NY(Ω;Sn−1)(ν) is the normal cone to Y(Ω; Sn−1) at ν, i.e.

NY(Ω;Sn−1)(ν) =
{

ξ ∈ L1(Ω; C(Sn−1))∗∗
∣∣∣ 〈ξ, ν̃ − ν〉 ≤ 0 ∀ ν̃ ∈ Y(Ω;Sn−1)

}
.

Therefore, we can deduce that, if (ν, u) ∈ L1(Ω;C(Sn−1))∗ ×W 1,2(Rn) solves problem
(13), then there is a Lagrange multiplier λ ∈ W 1,2(Rn) ∼= W 1,2(Rn)∗ such that

Π∗uλ− E
′
u(ν, u) = 0 (14)

Π∗νλ− E
′
ν(ν, u) ∈ NY(Ω;Sn−1)(ν) (15)

(see [28: Subsection 5.3]). As problem (13) is convex, conditions (14) - (15) are also
sufficient in the sense that, if (ν, u) ∈ Y(Ω;Sn−1)×W 1,2(Rn) satisfies Π(ν, u) = 0 and
(14) - (15) for some multiplier λ ∈ W 1,2(Rn), then (ν, u) solves problem (13).

The abstract conditions (14) - (15) turns for the concrete data E from (6), Π from
(10) and Y(Ω;Sn−1) into the following integral maximum principle:
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Proposition 1. Let He ∈ L2(Ω;Rn), ϕ : Rn → R be continuous, let (ν, u) ∈
L1(Ω;C(Sn−1))∗×W 1,2(Rn) solve problem (13) with the data from (6) and (10). Then

〈ν,Hu〉 = supm∈L∞(Ω;Rn)
|m|=1 a.e.

∫

Ω

Hu(x, m(x)) dx (16)

where the Hamiltonian Hu : Ω× Rn × R is defined by

Hu(x, s) := −∇u(x) · s + He(x) · s− ϕ(s). (17)

Conversely, if (ν, u) ∈ Y(Ω; Sn−1)×W 1,2(Rn) satisfies Π(ν, u) = 0 and if the maximum
principle (16) holds, then (ν, u) solves problem (13).

Proof. Let us evaluate the differential of E. As for E
′
u(ν, u) ∈ L(W 1,2(Rn),R) =

W 1,2(Rn), we have

〈E′
u(ν, u), v〉 =

∫

Ω

∇u · ∇v dx (18)

while for E
′
ν(ν, u) ∈ L1(Ω;C(Sn−1))∗∗ = L(L1(Ω;C(Sn−1))∗,R) we have

[E′
ν(ν, u)](ν̃) = 〈ν̃, 1⊗ ϕ−He ⊗ id〉 (19)

where naturally [1⊗ ϕ](x, s) = ϕ(s) and [He ⊗ id](x, s) = He(x) · s. Equation (14) now
gives ∫

Ω

∇v · ∇λ dx = 〈λ,Π(0, v)〉 = 〈Π∗uλ, v〉 = 〈E′
u(ν, u), v〉 =

∫

Ω

∇u · ∇v dx (20)

for any v ∈ W 1,2(Rn), from which we get simply λ = u + constant. As λ should live in
W 1,2(Rn), this constant must vanish so that we eventually have λ = u.

Inclusion (15) results in the inequality

0 ≥ 〈Π∗νλ− E
′
ν(ν, u), ν̃ − ν〉

= 〈λ,Π(ν̃ − ν, 0)〉 − 〈ν̃ − ν, 1⊗ ϕ−He ⊗ id〉
= 〈ν̃ − ν,−χΩ∇λ⊗ id− 1⊗ ϕ + He ⊗ id〉

for all ν̃ ∈ Y(Ω;Sn−1). This gives 〈ν̃−ν,Hλ〉 ≤ 0 with the Hamiltonian Hλ = Hu given
by (17). By (20), Hλ = Hu. In other words, we got

〈ν,Hu〉 = max
ν̃∈Y(Ω;Sn−1)

〈ν̃,Hu〉. (21)

As E′
ν as well as Π∗ν take their values in the space L1(Ω;C(Sn−1)) rather than in

the space L1(Ω;C(Sn−1))∗∗, we can take into considerations only the intersection of the
normal cone NY(Ω;Sn−1)(ν) ⊂ L1(Ω;C(Sn−1))∗∗ with L1(Ω;C(Sn−1)) as was already
done in [28]. Hence,

NY(Ω;Sn−1)(ν) ∩ L1(Ω; C(Sn−1))

=

{
h ∈ L1(Ω;C(Sn−1))

∣∣∣∣∣ 〈ν̃, h〉 ≤ 〈ν, h〉 for all ν̃ ∈ Y(Ω;Sn−1)

}

=

{
h ∈ L1(Ω;C(Sn−1))

∣∣∣∣∣ 〈ν, h〉 = sup
m∈L∞(Ω;Rn)
|m|=1 a.e.

∫

Ω

h(x,m(x)) dx

}

which eventually gives us (16). As problem (13) is convex, the maximum principle (16)
is also sufficient in the above specified sense
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Thanks to the special form of the set of admissible magnetizations in (1) admitting
arbitrary oscillations of m, the integral maximum principle (16) can be localized into
the following pointwise maximum principle, which gives a very explicit restriction on
possible steady-state microstructures.

Proposition 2. Let (ν, u) ∈ Y(Ω;Sn−1)×W 1,2(Rn) solve the relaxed problem (13).
Then ∫

Sn−1
Hu(x, s)νx(ds) = max

s∈Sn−1
Hu(x, s) for a.a. x ∈ Ω (22)

with the Hamiltonian again from (17). In other words,

supp(νx) ⊂ ArgmaxHu(x, ·) (23)

where
ArgmaxHu(x, ·) :=

{
s ∈ Sn−1

∣∣∣Hu(x, s) = maxHu(x, Sn−1)
}

.

Conversely, if (ν, u) ∈ Y(Ω;Sn−1) ×W 1,2(Rn) satisfies Π(ν, u) = 0 and (23) holds for
a.a. x ∈ Ω, then (ν, u) solves the relaxed problem (13).

Proof. We will show that (16) and (22) are equivalent to each other. Due to
[13: Theorem 1.2/Chapter VIII], there exists m̃ : Ω → Sn−1 measurable such that
Hu(x, m̃(x)) = maxs∈Sn−1 Hu(x, s) for a.a. x ∈ Ω. First, suppose that (16) is fulfilled.
Therefore,

〈ν,Hu〉 =
∫

Ω

∫

Sn−1
Hu(x, s)νx(ds)dx

= supm∈L∞(Ω;Rn)
|m|=1 a.e.

∫

Ω

Hu(x, m(x)) dx

≥
∫

Ω

Hu(x, m̃(x)) dx

=
∫

Ω

max
s∈Sn−1

Hu(x, s) dx.

In other words,
∫

Ω

(∫

Sn−1
Hu(x, s)νx(ds)− max

s∈Sn−1
Hu(x, s)

)
dx ≥ 0.

At the same time,
∫

Sn−1
Hu(x, s)νx(ds) ≤ max

s∈Sn−1
Hu(x, s) for a.a. x ∈ Ω

which shows that (22) holds.
Let now (22) be satisfied. Integrating it over Ω one gets

〈ν,Hu〉 =
∫

Ω

max
s∈Sn−1

Hu(x, s) dx

≥ sup
m∈L∞(Ω;Rn)
|m|=1 a.e.

∫

Ω

Hu(x,m(x)) dx

≥
∫

Ω

Hu(x, m̃(x)) dx.
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On the other hand,
∫

Ω

max
s∈Sn−1

Hu(x, s) dx =
∫

Ω

Hu(x, m̃(x)) dx

and thus (16) holds

5. Optimality conditions in terms of ν and m

One can also alternatively consider optimality conditions when the energy functional
is supposed to depend on the “mesoscopic” Young-measure magnetization ν and the
“macroscopic” magnetization m. Interestingly, it turns out that such optimality condi-
tions are the same as those derived in the previous section. In order to show this we
will define a new functional

e : L1(Ω; C(Sn−1))∗ × L2(Ω;Rn) → R

by

e(ν, m) = 〈ν, 1⊗ ϕ〉 −
∫

Ω

He(x) ·m(x) dx + 1
2

∫

Rn

|∇u(x)|2dx

with ∇u determined via ∆u = div(mχΩ). Eventually, we define

π : L1(Ω; C(Sn−1))∗ × L2(Ω;Rn)∗ → L2(Ω;Rn)

by
π(ν, m) = id • ν −m

and we see that π(Y(Ω; Sn−1)× L2(Ω;Rn)) = L2(Ω;Rn). Thus we are concerned with
the problem

minimize

e(ν, m)

subject to

π(ν,m) = 0
(
(ν, m) ∈ Y(Ω;Sn−1)× L2(Ω;Rn)

)
.





(24)

Note that π is continuous and linear and e is convex. We will also show that e is
Gateâux differentiable. The first order optimality conditions read in this case that, if
(ν, m) ∈ Y(Ω;Sn−1)×L2(Ω;Rn) solve problem (24), then there is a Lagrange multiplier
` ∈ L2(Ω;Rn) such that

π∗m`− e′m(ν, m) = 0 (25)

π∗ν`− e′ν(ν, m) ∈ NY(Ω;Sn−1)(ν) (26)

where

e′ = (e′ν , e′m) : L1(Ω;C(Sn−1))∗ × L2(Ω;Rn) → L1(Ω;C(Sn−1))∗∗ × L2(Ω;Rn)

π∗ = (π∗ν , π∗m) : L2(Ω;Rn) → L1(Ω; C(Sn−1))∗∗ × L2(Ω;Rn).
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Proposition 3. Let He ∈ L2(Ω;Rn), ϕ : Rn → R continuous, let (ν, m) ∈
Y(Ω;Sn−1)× L2(Ω;Rn) solve problem (24) and let u solve equation (3). Then

〈ν, h`〉 = sup
m̃∈L2(Ω;Rn)

|m̃|=1 a.e.

∫

Ω

h`(x, m̃(x)) dx (27)

where the Hamiltonian in now defined as

h` = `⊗ id− ϕ (28)

with ` = He −∇u.

Proof. First we prove that e′(ν,m) = (ϕ,−He +∇u). The first component of e′,
namely e′ν , is obvious because e(·,m) is affine. As to the second component, we denote
by w the solution to equation (3) with arbitrary v ∈ L2(Ω;Rn) instead of m. Then we
have

[e′m(ν, m)](v) = −He · v + 1
2

d

dt

∫

Rn

|∇u(x) + t∇w(x)|2dx
∣∣∣
t=0

= −He · v +
∫

Rn

∇u(x) · ∇w(x) dx

= −He · v +
∫

Ω

∇u(x) · v(x) dx

= (−He +∇u) · v
where we used, beside (3) with v instead of m, also the linearity of the mapping m 7→ ∇u.
Furthermore, π∗` = (`⊗ id,−`) holds for any ` ∈ L2(Ω;Rn) because

〈π∗`, (ν,m)〉 = 〈`, π(ν, m)〉 = 〈`, id • ν〉 − 〈`,m〉 = 〈ν, `⊗ id〉 − 〈`,m〉.

Relations (25), (26) now turn into

` = He −∇u (29)

−ϕ + `⊗ id ∈ NY(Ω;Sn−1)(ν), (30)

respectively. Again, since e′ν as well as π∗ν take their values in L1(Ω;C(Sn−1)) rather
than in L1(Ω;C(Sn−1))∗∗, we obtain the claimed maximum principle

Proposition 4. Under the assumptions of the previous proposition

[h` • ν](x) = max
s∈Sn−1

h`(x, s) for a.a. x ∈ Ω. (31)

The proof of the above point-wise version is analogous to that of Proposition 2.

We point out that h` = Hu provided ` = He −∇u so that, in fact, Propositions 1
and 2 are equivalent with Propositions 3 and 4, respectively.
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6. Some consequences

The following proposition gives a sufficient condition under which the relaxed problem
(13) has a unique minimizer. This condition is indeed satisfied in some physically
relevant situations (see Examples 1 and 2 below) while in other situations admitting
many minimizers is not satisfied (see Example 3).

Proposition 5. Let problem (7) possess a unique minimizer and let, for any r ∈
Rn, the function Sn−1 → R : s 7→ r · s − ϕ(s) attain its maximum at a finite number
κ(r) ≤ n + 1 of points σl

r, l = 1, . . . , κ(r). Then problem (13) has a unique solution.

Proof. The proof paraphrases that of [28: Corollary 5.3.4]. Let (m,u) ∈ L2(Ω;Rn)
×W 1,2(Rn) be the unique minimizer of problem (7) and let (ν1, u1) and (ν2, u2) be two
different solutions to problem (13). Let us denote m1 = id • ν1 and m2 = id • ν2. As
(m1, u1) and (m2, u2) must solve problem (7), we get by our uniqueness assumptions

m1 = m = m2

u1 = u = u2.

}
(32)

Then the Hamiltonian is determined uniquely, i.e. Hu1 = Hu2 . By (23) and the
assumption, the probability measure νi

x must be supported at a finite number k(x) =
κ(He(x)−∇u(x)) of points sl(x) = σl

He(x)−∇u(x), i.e. νi
x =

∑k(x)
l=1 ai

l(x)δsl(x) with ai
l ≥ 0

and
∑k(x)

l=1 ai
l = 1 a.e. in Ω. By (32), we have

k(x)∑

l=1

(a1
l (x)− a2

l (x))sl(x) = m1(x)−m2(x) = 0.

The assumed restriction on κ(r) and therefore also on k(x) yields the linear indepen-
dency of {sl(x)}k(x)

l=1 for almost all x ∈ Ω and thus a1 = a2 a.e. in Ω

Proposition 6. Let the assumptions of Proposition 5 be fulfilled. Then the original
problem (1) possesses a solution (being equal just to (u,m), the assumed unique solution
to problem (7)) if and only if, for a.a. x ∈ Ω,

m(x) ∈ {σl
r}κ(r)

l=1 with r = He(x)−∇u(x) (33)

holds.

Proof. The unique solution (ν, u) to problem (13) is 1-atomic at a given x ∈ Ω, i.e.
of the form νx = δm(x), if and only if (33) holds. If (33) holds a.e., (m,u) then solves
problem (1). Conversely, if (m,u) solves problem (1), then (ν, u) with νx = δm(x) solves
problem (13). As this solution is unique, failure of (33) for x from a positive Lebesgue
measure set implies failure of existence of any solution to problem (1)

Example 1 (Uniaxial magnets I). Let us take n = 2 and ϕ : S1 → R as

ϕ(s) = s2
1 + min

{
(s2 − 1)2, (s2 + 1)2

}
.
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Such potential is related with the so-called uniaxial ferromagnet. For this type of
ferromagnets there is a unique solution to problem (7) if ϕ is suitable; (cf. DeSimone
[12] or also Carstensen and Prohl [6]). Suppose that for our ϕ (7) has a unique solution.
As n = 2, we have S1 = {(cos θ, sin θ) : θ ∈ [0, 2π]} and, for φ(θ) := ϕ(cos θ, sin θ), it is
easy to see that φ(θ) = 2− 2| sin θ|. For r = (r1, r2) ∈ R2, let us further denote

f(θ, r) = φ(θ)− r1 cos θ − r2 sin θ.

Differentiating f with respect to θ we have

∂f

∂θ
(θ, r) =

{
r1 sin θ − (r2 + 2) cos θ if θ ∈ (0, π)
r1 sin θ − (r2 − 2) cos θ if θ ∈ (π, 2π).

We see that f(·, r) has at most four local extrema at θ = 0, θ = π, θ = θ1 ∈ [0, π] and
θ = θ2 ∈ [π, 2π] where

θ1 :=
{

arctan r2+2
r1

if r1 6= 0
π
2 if r1 = 0

and θ2 :=
{

arctan r2−2
r1

if r1 6= 0
3π
2 if r1 = 0.

On the other hand, there is no r ∈ R2 for which f(0, r) = f(π, r) = f(θ1, r) = f(θ2, r).
This shows together with Proposition 3 that κ(r) ≤ 3 (r ∈ R2), and that for ϕ as above
problem (13) has a unique solution. In truth, one can even show that κ(r) ≤ 2, so that
problem (13) has a solution (ν, u) with νx = λ(x)δs1(x) + (1− λ(x))δs2(x) for almost all
x ∈ Ω.

Example 2 (Uniaxial magnets II). By similar arguments one obtains uniqueness
also for n = 2 and ϕ : S1 → R as

ϕ(s) = ϕ(s1, s2) = s2
1 .

The uniqueness of the solution to (7) as well as of (13) has been already observed in
[12].

Example 3 (Cubic magnets). Let us take n = 3 and ϕ : S2 → R as

ϕ(s) = ϕ(s1, s2, s3) = s2
1s

2
2 + s2

1s
2
3 + s2

2s
2
3.

Then one can see that for He = 0 there are many solutions to problem (13), for example,
νx = 1

2δ(0,0,1) + 1
2δ(0,0,−1) (x ∈ Ω), u = 0 or νx = 1

2δ(1,0,0) + 1
2δ(−1,0,0) (x ∈ Ω),

u = 0. Note that the assumptions of Proposition 5 are indeed not satisfied because
κ(0) = 6 > n + 1 = 4.
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[25] Pedregal, P.: Parametrized Measures and Variational Principles. Basel: Birkhäuser 1997.
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