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Local Existence of the Solution to the
Initial-Boundary Value Problem in

Nonlinear Thermodiffusion in Micropolar Medium

J. Gawinecki

Abstract. We prove a theorem about local existence (in time) of the solution to the first
initial-boundary value problem for a nonlinear hyperbolic-parabolic system of eight coupled
partial differential equations of second order describing the process of thermodiffusion in a
three-dimensional micropolar medium. At first, we prove existence, uniqueness and regularity
of the solution to this problem for the associated linearized system by using the Faedo-Galerkin
method and semi-group theory. Next, we prove (basing on this theorem) an energy estimate
for the solution to the linearized system by applying the method of Sobolev spaces. At last,
by using the Banach fixed point theorem we prove that the solution of our nonlinear problem
exists and is unique.
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1. Introduction

In this paper, we consider the initial-boundary value problem (with Dirichlet boundary
conditions) for a nonlinear hyperbolic-parabolic system of eight partial differential equa-
tions of second order describing the process of thermodiffusion in a three-dimensional
micropolar medium (i = 1, 2, 3):

∂2
t ui − ciαjβ(∇u,∇ϕ, θ1, θ2)

∂2uj

∂xα∂xβ
− αij(∇u,∇ϕ) εjlk

∂ϕk

∂xl

+ c̃1
iα(∇u, θ1, θ2)

∂θ1

∂xα
+ c̃2

iα(∇u, θ1, θ2)
∂θ2

∂xα
= fi (1.1)

∂2
t ϕi − diαjβ(∇u,∇ϕ, θ1, θ2)

∂2ϕj

∂xαxβ
+ α̃ij(∇u,∇ϕ)ϕj

−αij(∇u,∇ϕ) εjlk
∂uk

∂xl
= Yi (1.2)
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c(∇u, θ1, θ2)∂tθ1 − a1
αβ(∇u, θ1, θ2,∇θ1,∇θ2)

∂2θ1

∂xα∂xβ

+ c̄1
iα(∇u, θ1, θ2)

∂2ui

∂xα∂t
+ d(∇u, θ1, θ2,∇θ1,∇θ2)

∂θ2

∂t
= Q1 (1.3)

n(∇u, θ1, θ2)∂tθ2 − a2
αβ(∇u, θ1, θ2,∇θ1,∇θ2)

∂2θ2

∂xα∂xβ

+ c̄2
iα(∇u, θ1, θ2)

∂2ui

∂xα∂t
+ d(∇u, θ1, θ2,∇θ1,∇θ2)

∂θ1

∂t
= Q2. (1.4)

Here we use the notations:
u = u(t, x) =

(
u1(t, x), u2(t, x), u3(t, x)

)∗ – displacement vector of the medium

ϕ = ϕ(t, x) =
(
ϕ1(t, x), ϕ2(t, x), ϕ3(t, x)

)∗ – microrotation vector

θ1 = θ(t, x) – temperature of the medium

θ2 = θ2(t, x) (t ∈ R+
0 , x ∈ Ω) – chemical potential

Ω ⊂ R3 – bounded domain with smooth enough boundary ∂Ω

∇u = (∂1u, ∂2u, ∂3u),∇ϕ = (∂1ϕ, ∂2ϕ, ∂3ϕ) – gradients of u and ϕ

∇θ1 = (∂1θ1, ∂2θ2, ∂3θ3),∇θ2 = (∂1θ2, ∂2θ2, ∂1θ3) – gradients of θ1 and θ2

∂t = ∂
∂t and ∂α = ∂

∂xα
(α = 1, 2, 3)

f = f(t, x) =
(
f1(t, x)f2(t, x)f3(t, x)

)∗ – body force vector

Y = Y (t, x) =
(
Y1(t, x), Y1(t, x), Y2(t, x), Y3(t, x)

)∗ – body couple vector

Q1 = Q1(t, x) – intensity of heat source

Q2 = Q2(t, x) – intensity of the source of diffusing mass.

Further, ∗ means transposition, the nonlinear coefficients

αij , c̃1
iα, c̃2

iα, diαjβ , α̃ij , a1
αβ , c, c̃1

iα, d, n, a2
αβ , ciαjβ

depend from unknown functions and their gradients, and the symbol εjlk (j, l, k) is
defined by

εjlk =
{

+1 when the permutation of the indexes j, l, k is even
−1 when the permutation of the indexes j, l, k is odd. (1.5)

We will pose initial conditions

u(0, x) = u0(x) (∂tu)(0, x) = u1(x) (1.6)
ϕ(0, x) = ϕ0(x) (∂tϕ)(0, x) = ϕ1(x) (1.7)
θ1(0, x) = θ0

1(x) θ2(0, x) = θ0
2(x) (1.8)

with given data u0, ϕ0, θ0
1 and u1, ϕ1, θ0

2, and boundary conditions (conditions of Dirich-
let type)

u(t, ·)|∂Ω = 0

ϕ(t, ·)|∂Ω = 0

θ1(t, ·)|∂Ω = 0

θ2(t, ·)|∂Ω = 0





. (1.9)
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Putting in system (1.1) - (1.4)

ciαjβ = µδαβ + (λ + µ)δij

αij = 2α, ᾱij = 4α, c̄1
iα = γ1δiα, c̄2

iα = γ2δiα

diαjβ = (γ + ε)δαβ + (β + γ − ε)δij

a1
αβ = δαβ , a2

αβ = kδαβ , āαβ = Dδαβ

c = const, d = const, n = const

(1.10)

we obtain from (1.1) - (1.4) the linear hyperbolic-parabolic system of equation describing
the process of thermodiffusion in micropolar medium (cf. [14, 17, 18]).

The initial-boundary value problem for the linear system of equations describing
the process of thermodiffusion in micropolar medium was investigated by W. Nowacki
[17] using the method of integral transformations. In the paper [5] a theorem about
existence, uniqueness and regularity of the weak solution to the first initial-boundary
value problem for the linear hyperbolic-parabolic system of thermodiffusion in micropo-
lar medium was proved applying the Faedo-Galerkin method in suitably chosen Sobolev
spaces.

The nonlinear hyperbolic-parabolic system (1.1) - (1.4) describing thermodiffusion
in micropolar medium has not been investigated up till now. The aim of this paper is
to prove a local existence theorem in the class of smooth functions with respect to the
time variable and taking values in suitable Sobolev spaces with respect to the spatial
variables.

For first order hyperbolic-parabolic systems local existence for the Cauchy problem
has been studied in [9] and [24]. For the initial-boundary value problem in R3 there
are results for systems with first order hyperbolic part with non-characteristic [22] or
special characteristic boundary and admissible boundary conditions in the Friedrichs
sense for bounded domains [12]. In [8] hyperbolic-parabolic systems in both bounded
and unbounded domains with first order hyperbolic-parabolic part were studied. Some
results devoted to existence (local in time) of solutions to initial-boundary value prob-
lems for quasi-linear hyperbolic-parabolic systems of first order were obtained in [20]
using a method different from ours.

In our investigation, we use semigroup theory, methods of Sobolev spaces and energy
estimates, and the Banach fixed point theorem. The paper is organized as follows: In
Section 2 some notations and facts from the theory of Sobolev spaces are presented.
Section 3 is devoted to the formulation of the main theorem (Theorem 3.1) of the paper.
In Section 4 we prove an energy estimate to the linearized system of thermodiffusion in
micropolar medium associated with the nonlinear one. Finally, in Section 5 the proof
of the main theorem is presented.
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2. Basic notations

We shall use the notations

∂j =
∂

∂xj
(j = 1, 2, 3)

∂α
x = ∂α1

1 ∂α2
2 ∂α3

3 (|α| = α1 + α2 + α3).

For 0 < m < ∞ we denote by Hm(Ω) and Hm
0 (Ω) the usual Sobolev spaces with norms

‖ · ‖m [1]. For 1 ≤ p ≤ ∞ we denote by Lp(Ω) the Lebesque function space on Ω with
norm ‖ · ‖Lp . However, the norm and the inner product in L2(Ω) are denoted by ‖ · ‖
and (·, ·), respectively. For any integer N ≥ 0 we denote

DNu = (∂j
t ∂α

x u; j + |α| = N)

D̄Nu = (∂j
t ∂α

x u; j + |α| ≤ N)

DN
x u = (∂α

x u; |α| = N)

D̄N
x u = (∂α

x u; |α| ≤ N).

If f ∈ X for a space with norm ‖ · ‖X means that each component f1, . . . , fn of f is in
X, then

‖f‖X = ‖f1‖X + . . . + ‖fn‖X .

For any 0 ≤ m < ∞ and T > 0 we also use the notation

|u|m,T = sup
0≤t≤T

‖u(t)‖m

where ‖ · ‖0 denotes ‖ · ‖.

3. Main theorem

In this section, we formulate the main theorem about local existence (in time) of the
solution of the initial-boundary value problem to the nonlinear system (1.1) - (1.4).
Before starting its formulation we notice that under the assumption cn− d2 > 0 we can
convert system (1.1) - (1.4) into the following form:

∂2
t ui − ciαjβ(∇u,∇ϕ, θ1, θ2)

∂2uj

∂xα∂xβ
− αij(∇u,∇ϕ) εjlk

∂ϕk

∂xl

+c̄1
iα(∇u, θ1, θ2)

∂θ1

∂xα
+ c̄2

iα(∇u, θ1, θ2)
∂θ2

∂xα
= fi (3.1)

∂2
t ϕi − diαjβ(∇u,∇ϕ, θ1, θ2)

∂2ϕj

∂xα∂xβ

+ᾱij(∇u,∇ϕ)ϕj − αij(∇u,∇ϕ) εjlk
∂uk

∂xl
= Yi (3.2)
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∂tθ1 − ā11
αβ(∇u, θ1, θ2,∇θ1,∇θ2)

∂2θ1

∂xα∂xβ

−ā12
αβ(∇u, θ1, θ2,∇θ1,∇θ2)

∂2θ2

∂xα∂xβ
= (3.3)

C1
iα(∇u, θ1, θ2,∇θ1,∇θ2)

∂2ui

∂xα∂t
+ g1(∇u, θ1, θ2,∇θ1,∇θ2, t, x)

∂tθ2 − ā21
αβ(∇u, θ1, θ2,∇θ1,∇θ2)

∂2θ1

∂xα∂xβ

−ā22
αβ(∇u, θ1, θ2,∇θ1,∇θ2)

∂2θ2

∂xα∂xβ
= (3.4)

C2
iα(∇u, θ1, θ2,∇θ1,∇θ2)

∂2ui

∂xα∂t
+ g2(∇u, θ1, θ2,∇θ1,∇θ2, x, t)

where, denoting δ = cn− d2,

ā11
αβ =

n

δ
a1

αβ

ā21
αβ = −d

δ
a2

αβ

C1
iα =

dc̄2
iα − nc̄1

iα

δ

C2
iα =

dc̄1
iα − cc̄2

iα

δ

ā12
αβ = −d

δ
a2

αβ

ā22
αβ =

c

δ
a2

αβ

g1 =
Q1n− dQ2

δ

g2 =
Q2n− dQ1

δ
.

(3.5)

Now we formulate our main theorem.

Theorem 3.1 (Local existence in time). Let the following conditions be satisfied:
1◦ s ≥ [ 32 ] + 4 = 5 is an arbitrary but fixed integer.
2◦

∂k
t fi, ∂

k
t Yi, ∂

k
t Q1, ∂

k
t Q2 ∈ C0

(
[0, T ], Hs−2−k(Ω)

)
(k = 0, 1, . . . , s− 2)

∂s−1
t fi, ∂

s−1
t Yi, ∂

s−1
t Q1, ∂

s−1
t Q2 ∈ L2

(
[0, T ], L2(Ω)

)
.

3◦ There are three constants γ1, γ2, γ3 such that

(Cαβξαξβη, η) ≥ γ1|ξ|2|η|2
(dαβξαξβη, η) ≥ γ2|ξ|2|η|2
(āαβξαξβ η̄, η̄) ≥ γ3|ξ|2|η̄|2

for ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3) ∈ R3 and η̄ = (η̄1, η̄2) ∈ R2, where

Cαβ = [ciαjβ ], dαβ = [diαjβ ] (i, j = 1, 2, 3), āαβ = [āij
αβ ] (i, j = 1, 2)

d ∈ Cs−1(R17) and c, n ∈ Cs−1(R11)

ciαjβ , αij , c̄
1
iα, c̄2

iα, diαjβ , ᾱij ∈ Cs−1(R11)

ciαjβ = cjβiα, diαjβ = djβiα, āij
αβ = āji

βα.
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4◦ The initial data u0, ϕ0, u1, ϕ1, θ0
1, θ

0
2 shall satisfy

u0, ϕ0, θ0
1, θ

0
2 ∈ Hs(Ω) ∩H1

0 (Ω)

u1, ϕ1 ∈ Hs−1(Ω) ∩H1
0 (Ω)

′

for x ∈ Ω and the compatibility conditions:

uk ∈ Hs−k(Ω) ∩H1
0 (Ω) (2 ≤ k ≤ s− 1)

us ∈ L2(Ω)

ϕk ∈ Hs−k(Ω) ∩H1
0 (Ω) (2 ≤ k ≤ s− 1)

ϕs ∈ L2(Ω)

θk
1 ∈ Hs−k(Ω) ∩H1

0 (Ω) (1 ≤ k ≤ s− 2)

θs−1
1 ∈ L2(Ω)

θk
2 ∈ Hs−k(Ω) ∩H1

0 (Ω) (1 ≤ k ≤ s− 2)

θs−1
2 ∈ L2(Ω)

where uk = ∂ku(0,·)
∂tk

, ϕk = ∂kϕ(0,·)
∂tk , θk

1 = ∂kθ1(0,·)
∂tk , θk

2 = ∂kθ2(0,·)
∂tk and they are

calculated formally (and recursively) in terms u0, u1, ϕ0, ϕ1, θ1
0, θ

2
0, using system

(3.1)− (3.4).

Then for sufficintly small T > 0 there exists a unique solution (u, ϕ, θ1, θ2) to the initial-
boundary value problem (1.1)− (1.4), (1.6)− (1.9) with the following properties:

u ∈ ∩s−1
k=1C

k
(
[0, T ],Hs−k(Ω) ∩H1

0 (Ω)
)

ϕ ∈ ∩s−1
k=1C

k
(
[0, T ],Hs−k(Ω) ∩H1

0 (Ω)
)

∂s
t u ∈ C0

(
[0, T ], L2(Ω)

)

∂s
t ϕ ∈ C0

(
[0, T ], L2(Ω)

)

θ1 ∈ ∩s−2
k=1C

k
(
[0, T ],Hs−k(Ω) ∩H1

0 (Ω)
)

∂s−1
t θ1 ∈ C0

(
[0, T ], L2(Ω)

)

∂s−1
t ∇θ1 ∈ L2

(
[0, T ], L2(Ω)

)

θ2 ∈ ∩s−2
k=1C

k
(
[0, T ],Hs−k(Ω) ∩H1

0 (Ω)
)

∂s−1
t θ2 ∈ C0

(
[0, T ], L2(Ω)

)

∂s−1
t ∇θ2 ∈ L2

(
[0, T ], L2(Ω)

)
.

The proof of Theorem 3.1 is devided into three steps:
1◦ Proof for the linear system of equations obtained by linearization of system (1.1)

- (1.4) in the cases of of
a) two linear hyperbolic systems of equations
b) one linear parabolic system of equations.

2◦ Proof of an energy estimate for these systems of equations.
3◦ Proof of existence and uniqueness of the solution of the initial-boundary value

problem to the nonlinear system of equations (1.1) - (1.4) by applying fixed
point theory.
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4. Energy estimate

4.1 Linearized system of thermodiffusion in micropolar medium. In this sub-
section, we shall investigate three initial-boundary value problems for two linear hyper-
bolic systems and one linear parabolic system. These systems arise from the linearized
system of equations (1.1) - (1.4). So we shall investigate the solvability of the following
problems:

1◦ The initial-boundary value problem for the linear hyperbolic system of equations

∂2
t ui − c̄iαjβ(t, x)

∂2uj

∂xα∂xβ
= h̄i(t, x)

(
(t, x) ∈ [0, T ]× Ω; i = 1, 2, 3) (4.1)

with initial conditions
ui(0, x) = u0

i (x)

(∂tui)(0, x) = u1
i (x)

}
(4.2)

and boundary condition
ui(t, ·)|∂Ω = 0 (t ∈ [0, T ]). (4.3)

2◦ The initial-boundary value problem for the linear hyperbolic systems of equations

∂2
t ϕi − d̄iαjβ(t, x)

∂2ϕj

∂xα∂xβ
= k̄i(x, t)

(
(t, x) ∈ [0, T ]× Ω; i = 1, 2, 3) (4.4)

with initial conditions
ϕi(0, x) = ϕ0

i (x)

(∂tϕi)(0, x) = ϕ1
i (x)

}
(4.5)

and boundary condition
ϕi(t, ·)|∂Ω = 0 (t ∈ [0, T ]). (4.6)

3◦ The initial-boundary value problem for the linear parabolic system of equations

∂tθ1 − a11
αβ(t, x)

∂2θ1

∂xα∂xβ
− a12

αβ(t, x)
∂2θ2

∂xα∂xβ
= ḡ1(t, x) (4.7)

∂tθ2 − a21
αβ(t, x)

∂2θ1

∂xα∂xβ
− a22

αβ(t, x)
∂2θ2

∂xα∂xβ
= ḡ2(t, x) (4.8)

with initial conditions
θ1(0, x) = θ0

1(x)

θ2(0, x) = θ0
2(x)

}
(4.9)

and boundary conditions

θ1(t, ·)|∂Ω = 0

θ2(t, ·)|∂Ω = 0

}
(t ∈ [0, T ]). (4.10)

4.2 Energy estimate for the solution of the initial-boundary value problem
for linear hyperbolic systems. At the first step, we start with a results on the
existence of the solution to the initial-boundary value problem (4.1) - (4.3).
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Theorem 4.1 (Existence, uniqueness and regularity to problem (4.1) - (4.9)). Let
the following assumptions be satisfied:

1◦ s >
[
3
2

]
+ 4 = 5 is an arbitrary but fixed integer.

2◦
c̄iαjβ ∈ C0([0, T ]× Ω̄) ∩ L∞

(
[0, T ], L∞(Ω)

)

Dxc̄iαjβ ∈ L∞
(
[0, T ],Hs−2(Ω)

)

∂k
t c̄iαjβ ∈ L∞

(
[0, T ],Hs−1−k(Ω)

)
(k = 1, . . . , s− 1).

3◦ c̄iαjβ = c̄jβiα for (t, x) ∈ [0, T ]× Ω̄, and if u ∈ H1
0 (Ω), then

‖u‖21 ≤ γ0

{(
c̄iαjβ(t)

∂uj

∂xβ
,

∂ui

∂xα

)
+ ‖u‖2

}

for t ∈ [0, T ] where γ0 > 0 is some constant.

4◦ c̄iαjβ
∂2uj

∂xα∂xβ
∈ Hk(Ω) for a.e. t ∈ [0, T ], and if u ∈ H1

0 (Ω), then u ∈ Hk+2(Ω)
and

‖u‖k+2 ≤ γ1

(∥∥∥∥−c̄iαjβ(t)
∂2uj

∂xα∂xβ

∥∥∥∥
k

+ ‖u‖
)

(0 ≤ k ≤ s− 2) for t ∈ [0, T ] where γ1 > 0 is some constant.

5◦ ∂k
t h̄ ∈ C0

(
[0, T ],Hs−2−k(Ω)

)
(0 ≤ k ≤ s− 2) and ∂s−1

t h̄ ∈ L2
(
[0, T ], L2(Ω)

)
.

Then there exists a unique solution u = (u1, u2, u3)∗ of problem (4.1)− (4.3) with prop-
erties

∂s
t u ∈ C0

(
[0, T ], L2(Ω)

)

∂k
t u ∈ C0

(
[0, T ],Hs−k(Ω) ∩H1

0 (Ω)
)

(0 ≤ k ≤ s− 1).
(4.11)

Sketch of proof. The proof follows from theorems of semigroup theory (cf. [7,
16]). We can convert problem (1.1) - (1.4) into an equivalent (evolution) problem of the
form

∂tV + AV = F (4.12)
V (0, x) = V (x) (4.13)

where

V =
(
u1, u2, u3, ∂tu1, ∂tu2, ∂tu3

)∗ (4.14)

V (0) = V 0 =
(
u0

1, u
0
2, u

0
3, u

1
1, u

1
2, u

1
3

)∗ (4.15)

F = (0, h̄) (4.16)

A(t) =
(

0 −I
−c̄iαjβ

∂2

∂xα∂xβ
0

)
, (4.17)

the operator
A : D(A) → X0 (4.18)
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being defined by (4.11) with the domains

D(A) = H2(Ω) ∩H1
0 (Ω)×H1

0 (Ω)

X0 = H2
0 (Ω)× L2(Ω).

(4.19)

Next we show that in terms of definition (A, X0,D(A)) is a CD-system. To show
that A(t) satisfies also the other conditions of [7: Theorem 2], we introduce a double
scale of real Hilbert spaces Xj and Yj defined by

Xj = Hj+1(Ω) ∩H1
0 (Ω)×Hj(Ω)

Yj = Hj+1(Ω) ∩H1
0 (Ω)×Hj(Ω) ∩H0(Ω)

(j ≥ 1)

with X0 = Y0 and equipped with usual norms and inner products. At last, the desired
regularity follows from [7: Theorems 1.2 and 3.3]

Now, we formulate an energy estimate to problem (4.1) - (4.4).

Theorem 4.2 (Energy estimate to problem (4.1) - (4.4)). If the assumptions of
Theorem 4.1 are satisfied, then the solution of problem (4.1)−(4.3) guaranted by Theorem
4.1 satisfies the inequality

|D̄su|20,T ≤ K0K1e
K2ζ(T ) (4.20)

with positive constants K0,K1,K2 where

K0 =
s∑

k=0

‖uk‖2s−k + (1 + T )|D̄s−2h̄|20,T + T
1
2

∫ T

0

‖∂s−1
t h̄(t)‖2dt,

K1 = K1(L0, γ0, γ1) and K2 = K2(L, γ0, γ1) depend continuously on their arguments
where

L0 = ‖c̄iαjβ(0)‖L∞ + ‖Dxc̄iαjβ(0)‖s−3

L = sup
0≤t≤T

‖c̄iαjβ(t)‖∞ + |Dxc̄iαjβ |s−2,T +
s−1∑

k=1

|∂k
t c̄iαjβ |s−1−k,T

and
ξ(T ) = T

1
2
(
1 + T

1
2 + T + T

3
2
)
. (4.21)

Skech of proof. Differentiating (4.1) (n− 1)-times (1 ≤ n ≤ s− 1) formally with
respect to t, multiplying by ∂n

t ui and then integrating over (0, t)×Ω, using integration
by parts with respect to x, the Schwartz inequality, Friedrichs mollifier (in order to
estimate ∂s

t u(t, x)), and the assumptions of Theorem 4.1, we get

‖D̄su(t)‖2 = C(L, γ0, γ1)K0

+ C(L, γ0, γ1)
(
1 + T

1
2 + T +

1
T

1
2

)∫ t

0

‖D̄su‖2dτ.
(4.22)

Applying the Gronwall inequality to (4.16) we get immediately the energy estimate
stated
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At a second step, we start with the formulation of a theorem about the existence of
the solution of the initial-boundary value problem (4.4) - (4.6). Namely, we have

Theorem 4.3 (Existence, uniqueness and regularity to problem (4.4) - (4.6)). Let
the following assumptions be satisfied:

1◦ s ≥ [
3
2

]
+ 4 > 5 is an arbitrary but fixed integer.

2◦
d̄iαjβ ∈ C0([0, T ]× Ω̄) ∩ L∞

(
[0, T ], L∞(Ω)

)

Dxd̄iαjβ ∈ L∞
(
[0, T ],Hs−2(Ω)

)
(k = 1, . . . , s− 1)

∂k
t d̄iαjβ ∈ L∞

(
[0, T ],Hs−1−k(Ω)

)
.

3◦ d̄iαjβ = d̄jβiα for (t, x) ∈ [0, T ]× Ω̄, and if ϕ ∈ H1
0 (Ω), then

‖ϕ‖21 ≤ γ′0

[(
d̄iαjβ(t)

∂ϕj

∂xβ
,
∂ϕi

∂xα

)
+ ‖ϕ‖2

]

for t ∈ [0, T ] where γ′0 > 0 is some constant.

4◦ d̄iαjβ
∂2ϕj

∂xα∂xβ
∈ Hk(Ω) for a.e. t ∈ [0, T ], and if ϕ ∈ H1

0 (Ω), then ϕ ∈ Hk+2(Ω)
and

‖ϕ‖k+2 ≤ γ′1

(∥∥∥∥−d̄iαjβ(t)
∂2ϕj

∂xα∂xβ

∥∥∥∥
k

+ ‖ϕ‖
)

(0 ≤ k ≤ s− 2) for t ∈ [0, T ] where γ′1 > 0 is some constant.
5◦

∂s−1
t k̄ ∈ L2

(
[0, T ], L2(Ω)

)
(s > 5)

∂k
t k̄ ∈ C0

(
[0, T ], Hs−2−k(Ω)

)
(0 ≤ k ≤ s− 2).

Then there exists a unique solution ϕ = (ϕ1, ϕ2, ϕ3)∗ of problem (4.4) − (4.6) with the
properties

∂s
t ϕ ∈ C0

(
[0, T ], L2(Ω)

)

∂k
t ϕ ∈ C0

(
[0, T ],Hs−k(Ω) ∩H1

0 (Ω)
)

(0 ≤ k ≤ s− 1).

}
(4.23)

Skech of proof. Introducing the vector U =
(
ϕ1, ϕ2, ϕ3, ∂tϕ1, ∂tϕ2, ∂tϕ3

)∗ we can
convert problem (4.4) - (4.6) into an equivalent (evolution) problem of the form

∂tU + AU = G (4.24)
U(0, x) = U0(x) (4.25)

where
U(0) = U0 =

(
ϕ0

1, ϕ
0
2, ϕ

0
3, ϕ

1
1, ϕ

1
2, ϕ

1
3

)∗

G = (0, k̄)∗

A(t) =
(

0 −I
−d̄iαjβ

∂2

∂xα∂xβ
0

)

and from here the proof runs similary as that for Theorem 4.1
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Using the same approach as in Theorem 4.2 we can obtain also the following energy
estimate to the solution of problem (4.4) - (4.6).

Theorem 4.4 (Energy estimate to problem (4.4) - (4.6)). If the assumptions of
Theorem 4.3 are satisfied, then the solution of problem (4.4)− (4.6) guaranteed by The-
orem 4.2 satisfies the inequality

|D̄sϕ|20,T ≤ M0M1e
M2η(T ) (4.26)

with positive constants M0,M1,M2 where

M0 =
s∑

k=0

‖ϕk‖2s−k + (1 + T )|D̄s−2k̄|20 + T
1
2

∫ T

0

‖∂s−1
t k̄(t)‖2dt,

M1 = M1(P0, γ
′
0, γ

′
1) and M2 = M2(P, γ′0, γ

′
1) depend continuously on their arguments

where
P0 = ‖d̄iαjβ(0)‖L∞ + ‖Dxd̄iαjβ(0)‖s−3

P = sup
0≤t≤T

‖d̄iαjβ(t)‖L∞ + |Dxd̄iαjβ |s−2,T +
s−1∑

k=1

|∂k
t d̄iαjβ |s−1−k,T

and
η(T ) = T

1
2
(
1 + T

1
2 + T + T

3
2
)
. (4.27)

Proof. It runs in the same way as that of Theorem 4.1 and we leave details to the
reader

At the third step, we consider the solvability of the initial-boundary value problem
to the linear parabolic system (4.7) - (4.8) with initial condition (4.8) and boundary
conditions (4.10). Before starting the next consideration we introducing the vector
V = (θ1, θ2)∗ and can convert this way the initial-boundary value problem (4.7) - (4.9)
into the form

∂tV − aαβ(t, x)
∂2V

∂xα∂xβ
= G(t, x) (4.28)

with
V (0, x) = V 0(x)

V (t, ·)|∂Ω = 0

}
(4.29)

where

aαβ(t, x) =
(

a11
αβ(t, x) a12

αβ(t, x)
a21

αβ(t, x) a22
αβ(t, x)

)
(4.30)

G(t, x) =
(
ḡ1(t, x), ḡ2(t, x)

)∗
. (4.31)

In order to prove an energy estimate to problem (4.22) - (4.25), we present two theorems.



440 J. Gawinecki

Theorem 4.5 (Energy estimate to problem (4.22) - (4.25)). Let the following
conditions be satisfied (i, j = 1, 2):

D̄1aij
αβ(t, x) ∈ C0([0, T ]× Ω̄) ∩ L∞

(
[0, T ], L∞(Ω)

)

∂t∇aij
αβ(t, x) ∈ L∞

(
[0, T ], L∞(Ω)

)

G ∈ C0
(
[0, T ], L2(Ω)

)

∂tG ∈ L2
(
[0, T ],H−1(Ω)

)

V 0 ∈ H1
0 (Ω)

V 1 = aαβ(0)
∂2V 0

∂xα∂xβ
+ G(0) ∈ L2(Ω)

and

aij
αβ(t, x) = aji

βα(t, x)
(
(t, x) ∈ [0, T ]× Ω̄

)
(4.32)

(aαβζαζβη, η) ≥ γ3|ζ|2|η|2
(
(ζ, η) ∈ R3 × R2

)
(4.33)

for some constant γ3 > 0. Then there exists a unique solution V = (θ1, θ2)∗ to problem
(4.24)− (4.25) with the properities

θ1 ∈ C0
(
[0, T ],H2(Ω) ∩H1

0 (Ω)
)

∂tθ1 ∈ C0
(
[0, T ], L2(Ω)

)

∂t∇θ1 ∈ L2
(
[0, T ], L2(Ω)

)





and
θ2 ∈ C0

(
[0, T ],H2(Ω) ∩H1

0 (Ω)
)

∂tθ2 ∈ C0
(
[0, T ], L2(Ω)

)

∂t∇θ2 ∈ L2
(
[0, T ], L2(Ω)

)





. (4.34)

Proof. We can use the Faedo-Galerkin method and the proof follows directly from
the consideration in [18]

Now, we formulate a theorem about the regularity of the solution to problem (4.22)
- (4.25).

Theorem 4.6 (Regularity to problem (4.22) - (4.25)). Let the following conditions
be satisfied:

1◦ s ≥ [
3
2

]
+ 4 = 5 is an arbitrary but fixed integer.

2◦ For i, j = 1, 2,

aij
αβ ∈ C0([0, T ]× Ω̄) ∩ L∞

(
[0, T ], L∞(Ω)

)

Dxaij
αβ ∈ L∞

(
[0, T ], Hs−2(Ω)

)

∂k
t aij

αβ ∈ L∞
(
[0, T ], Hs−1−k(Ω)

)
(1 ≤ k ≤ s− 2)

∂s−1
t aij

αβ ∈ L2
(
[0, T ], L2(Ω)

)
.



Local Existence of Solutions 441

3◦ For all θ1, θ2 ∈ H1
0 (Ω) and all t ∈ [0, T ] the inequality

‖θ1‖21 + ‖θ2‖21 ≤ γ4

{(
aij

αβ

∂θi

∂xα
,

∂θj

∂xβ

)
+ ‖θ1‖2 + ‖θ2‖2

}

is satisfied for some constant γ4 > 0.

4◦ For t ∈ [0, T ], −aij
αβ(t) ∂2θi

∂xαxβ
∈ Hk(Ω) with θ1, θ2 ∈ H1

0 (Ω) implies that θ1, θ2 ∈
Hk+2(Ω) and

‖V ‖k+2 ≤ γ3

(∥∥∥∥−aαβ(t)
∂2V

∂xα∂xβ

∥∥∥∥
k

+ ‖V ‖
)

where V = (θ1, θ2)∗, 0 ≤ k ≤ s− 2 and γ3 > 0 is some constant.
5◦

∂k
t ḡ1 ∈ C0

(
[0, T ],Hs−2−k(Ω)

)
(0 ≤ k ≤ s− 2)

∂s−1
t ḡ1 ∈ L2

(
[0, T ], H−1(Ω)

)

∂tḡ2 ∈ C0
(
[0, T ],Hs−2−k(Ω)

)
(0 ≤ k < s− 2)

∂s−1
t ḡ2 ∈ L2

(
[0, T ], H−1(Ω)

)
.

Then there exists a unique solution V = (θ1, θ2)∗ of problem (4.22) − (4.25) with the
properties

∂k
t θ1 ∈ C0

(
[0, T ],Hs−2(Ω) ∩H1

0 (Ω)
)

(0 ≤ k ≤ s− 2)

∂s−1
t θ1 ∈ C0

(
[0, T ], L2(Ω)

)

∂s−1
t ∇θ1 ∈ L2

(
[0, T ]L2(Ω)

)

∂k
t θ2 ∈ C0

(
[0, T ],Hs−2(Ω) ∩H1

0 (Ω)
)

(0 ≤ k ≤ s− 2)

∂s−1
t θ2 ∈ C0

(
[0, T ], L2(Ω)

)

∂s−1
t ∇θ2 ∈ L2

(
[0, T ], L2(Ω)

)





. (4.35)

Proof. It can be found in [16]

Next we present an energy estimate for the solution of problem (4.22) - (4.25).

Theorem 4.7 (Energy estimate for parabolic system (4.22)). Let the conditions
of Theorem 4.6 be fulfilled. Then the solution V = (θ1, θ2)∗ to problem (4.22) − (4.25)
established in Theorem 3.2 satisfies the inequality

s−2∑

k=0

|∂tθ1|2s−k,T +
s−2∑

k=0

|∂k
t θ2|2s−k,T + |∂s−1

t θ1|20,T + |∂s−1
t θ2|20,T

+
∫ t

0

[‖∂s−1
t ∇θ1(τ)‖2 + ‖∂s−1

t ∇θ2(t)‖2
]
dτ ≤ N1R0e

N2ζ(T )

(4.36)

where

R0 = (1 + T )

{
s−2∑

k=0

(‖θk
1‖2s−k + ‖θk

2‖2s−k

)
+ |Ds−2ḡ1|20,T + |D̄s−2ḡ2|20,T

+
∫ T

0

[‖∂s−1
t ḡ1(τ)‖2H−1 + ‖∂s−1

t ḡ2(τ)‖2H−1

]
dτ

}
,

(4.37)
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and N1 = N1(S0, γ3, γ4) and N2 = N2(S, γ4, γ4) are positve constants with

S0 =
2∑

i,j=1

‖aij
αβ(0)‖L∞ +

2∑

i,j=1

‖Dxaij
αβ(0)‖s−3 (4.38)

and

S = sup
0≤t≤T

2∑

i,j

‖aij
αβ(t)‖L∞ +

2∑

i,j=1

|Dxaij
αβ |s−2,T

+
s−2∑

k=1

2∑

i,j=1

|∂k
t aij

αβ |s−1−k,T +
∫ T

0

2∑

i,j=1

‖∂s−1
t aij

αβ(τ)‖2dτ,

(4.39)

γ3 and γ4 given in the assumptions of Theorem 4.6 and ζ(T ) = T (1 + T ).

Proof. It can be found in [6]

5. Proof of Theorem 3.1

The proof of Theorem 3.1 is based on the Banach fixed point theorem. For this reason
we define by Z(N, T ) the set of functions (u, ϕ, θ1, θ2) which satisfy the conditions

∂k
t ϕj , ∂k

t uj ∈ L∞([0, T ],Hs−k(Ω) (0 ≤ k ≤ s; j = 1, 2, 3)

∂k
t θ1 ∈ L∞

(
[0, T ],Hs−k(Ω)

)
(0 ≤ k ≤ s− 2)

∂s−1
t ∇θ1 ∈ L2

(
[0, T ], L2(Ω)

)

∂k
t θ2 ∈ L∞

(
[0, T ],Hs−k(Ω)

)
(0 ≤ k ≤ s− 2)

∂s−1
t ∇θ2 ∈ L2

(
[0, T ], L2(Ω)

)





(5.1)

(s ≥ [
3
2

]
+ 4 = 5 being an arbitrary but fixed integer) with boundary and initial

conditions of the form

uj |∂Ω = 0, ϕj |∂Ω = 0, θ1|∂Ω = 0, θ2|∂Ω = 0 (5.2)

∂k
t uj(0, x) = uk

j (x) (0 ≤ k ≤ s− 1) (5.3)

∂k
t ϕj(0, x) = ϕk

j (x) (0 ≤ k ≤ s− 1; j = 1, 2, 3)

∂k
t θ1(0, x) = θk

1 (x) (0 ≤ k ≤ s− 2)

∂k
t θ2(0, x) = θk

2 (x) (0 ≤ k ≤ s− 2) (5.4)

and the inequality

|D̄su|0,T + |D̄sϕ|0,T

+
s−2∑

k=0

|∂k
t θ1|2s−k,T + |∂s−1

t θ1|20,T +
s−2∑

k=0

|∂k
t θ2|2s−k,T + |∂s−2

t θ2|20,T

+
∫ t

0

[‖∂s−1
t ∇θ1(τ)‖2 + ‖∂s−1

t ∇θ2(τ)‖2]dτ ≤ N2

(5.5)

for N large enough.
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Proof of Theorem 3.1. Let

(ū, ϕ̄, θ̄1, θ̄2) ∈ Z(N,T ).

We consider:
1◦ System (4.1) with

c̄iαjβ = ciαjβ(∇ū,∇ϕ̄, θ̄1, θ̄2) (5.6)

h̄i = αij(∇ū,∇ϕ̄)εjlk
∂φ̄k

∂xl
+ fi − c̄1

iα(∇ū, θ̄1, θ̄2)
∂θ̄1

∂xα
− c̄2

iα(∇ū, θ̄1, θ̄2)
∂θ̄2

∂xα
(5.7)

for i = 1, 2, 3.
2◦ System (4.4) with

d̄iαjβ = diαjβ(∇ū,∇ū, θ̄1, θ̄2) (5.8)

k̄i = −ᾱij(∇ū,∇ϕ̄)ϕ̄j + αij(∇ū,∇ϕ̄)εjlk
∂ūk

∂xl
+ Yi (5.9)

for i = 1, 2, 3.
3◦ System (4.7) - (4.8) with

a11
αβ = ā11(∇ū, θ̄1, θ̄2,∇θ̄1,∇θ̄2)

a12
αβ = ā12

αβ(∇ū, θ̄1, θ̄2,∇θ̄1,∇θ̄2)

a21
αβ = ā21

αβ(∇ū, θ̄1, θ̄2,∇θ̄1,∇θ̄2)

a22
αβ = ā22(∇ū, θ̄1, θ̄2,∇θ̄1,∇θ̄2)





(5.10)

and

ḡ1 = C̄1
jα(∇ū, θ̄1, θ̄2)

∂2uj

∂xα∂t
+ g1(∇ū, θ̄1, θ̄2,∇θ̄1,∇θ̄2, t, x)

ḡ2 = C̄2
jα(∇ū, θ̄1, θ̄2)

∂2uj

∂xα∂t
+ g2(∇ū, θ̄1, θ̄2,∇θ̄1,∇θ̄2, t, x)





. (5.11)

We rewrite these systems in the form

∂2
t ui − ciαjβ(∇ū,∇ϕ̄, θ̄)

∂2uj

∂xα∂xβ

= αij(∇ū,∇ϕ̄)εjlk
∂ϕ̄k

∂xl
− c̄j

iα(∇ū, θ̄)
∂θj

∂xα
+ fi (5.12)

∂2
t ϕi − diαjβ(∇ū, ϕ̄, θ̄)

∂2ϕ̄j

∂xα∂xβ

= −ᾱij(∇ū,∇ϕ̄)ϕ̄j + αij(∇ū,∇ϕ̄)εjlk
∂ūk

∂xl
+ Yi (5.13)

∂tθi − āiαjβ(∇ū, θ̄,∇θ̄)
∂θj

∂xα∂xβ

= C̄i
jα(∇ū, θ̄,∇θ̄)

∂2uj

∂xα∂t
+ ḡi(∇ū, θ̄,∇θ̄, x, t) (5.14)
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for i = 1, 2 where θ = (θ1, θ2)∗ and

aiαjβ = āij
αβ(∇ū, θ̄,∇θ̄) (i, j = 1, 2; α, β = 1, 2, 3) (5.15)

with boundary and initial conditions (4.2) - (4.3), (4.5) - (4.6) and (4.9) - (4.10), re-
spectively. The function u appearing in (5.14) is the solution of system (5.12) with
conditions (4.2) - (4.3). Taking into account the class of functions (ū, ϕ̄, θ̄) ∈ Z(N, T ),
we notice that to the systems (5.12), (5.13) ans (5.14) with conditions (4.2) - (4.3), (4.4)
- (4.6) and (4.9) - (4.10) we can apply Theorems 4.1, 4.3 and 4.6, respectively. In view
of this fact it follows that for arbitrary (ū, ϕ̄, θ̄) ∈ Z(N, T ) there exists a unique solution
(u, ϕ, θ) to problem (5.12) - (5.14) with initial-boundary conditions (4.2) - (4.3), (4.5) -
(4.6) and (4.9) - (4.10), respectively. This means there exists a mapping

σ : Z(N, T ) 3 (ū, ϕ̄, θ̄) −→ σ(ū, ϕ̄, θ̄) = (u, ϕ, θ). (5.16)

Statement I. σ maps the set Z(N, T ) into itself under the condition that N is larg
and T small enough.

For this, we introduce the notation

E0 =
s∑

k=0

‖uk‖2s−k +
s∑

k=0

‖ϕk‖2s−k +
s−2∑

k=0

‖θk‖2s−k + ‖θs−1‖2

+
s−2∑

k=0

|∂k
t (h̄, k̄, ḡ)|2s−2−k,T +

∫ T

0

‖∂s−1
t (h̄, k̄, ḡ)(τ)‖2dτ.

(5.17)

Taking into account properties of the elements from the set Z(N, T ), applying a Sobolev
inequality and some theorems from [19, 20] we get for the function h̄ defined by (5.7)
the estimates

‖∂s−1
k h̄‖2 ≤ 2

(
C

s−1∑

i=1

∥∥D̄s−1(∇ū,∇ϕ̄, θ̄)
∥∥2

)2

+ 2C‖∂s−1
t h̄‖2 ≤ C(N) + C‖∂s−1

t h̄‖2

and ∫ T

0

‖∂s−1
k h̄‖ dτ ≤ C(N)(1 + T ) + CE0. (5.18)

Acting similarly and using the fact γ(t) = γ(0) +
∫ t

0
∂tγ(t) dt we get

s−2∑

k=0

{
|∂k

t h̄|2s−2−k,T +
∣∣∣∂k

t αij(∇ū,∇ϕ̄)εjlk
∂ϕ̄k

∂xα

∣∣∣
2

s−2−k,T
+

∣∣∣∂k
t cj

iα(∇ū, θ̄)
∂θ̄j

∂xα

∣∣∣
2

s−2−k,T

}

≤ C(E0) + C(N)T (1 + T ). (5.19)

Using the same estimation we get

∫ T

0

‖∂s−1
t k̄‖ dτ ≤ C(N)(1 + T ) + CE0 (5.20)
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and
s−1∑

k=0

{
|∂k

t k̄|2s−2−k,T + |∂k
t ᾱij(∇ū,∇ϕ̄)ϕ̄j |2s−2−k,T +

∣∣∣∂k
t αij(∇ū,∇ϕ̄)εjlk

∂ūk

∂xi

∣∣∣
2

s−2−k,T

}

≤ C(E0) + C(N)T (1 + T ). (5.21)

Putting (5.18) and (5.19) into energy estimate (4.14) in Theorem 4.2 we obtain

|D̄su|20,T ≤ K̄1(E0, γ0, γ1)
{

1 + C(N)

× T
1
2
[
1 + T

1
2 + T + T

3
2 + T 2 + T

5
2 + T 3

]}

× eC(N)T
1
2 (1+T

1
2 +T

3
2 +T 2+T

3
2 )

(5.22)

(since K2(L, γ2, γ2) ≤ C(N)). Putting (5.21) and (5.22) into energy estimate (4.20) in
Theorem 4.4 we get

|D̄sϕ|20,T ≤ K̄ ′
1(ε0, γ

′
0, γ

′
0)

× (1 + C(N))T
1
2
[
1 + T

1
2 + T + T

3
2 + T 2 + T

5
2 + T 3

]

× eC(N)T
1
2 (1+T

1
2 +T+T

3
2 +T 2+T

5
2 ).

(5.23)

Now, we estimate the term Ḡ. After some calculations, we get
∫ T

0

‖∂s−1
t Ḡ‖2−1dτ ≤ C(E0)

+
(

sup
0≤t≤T

η1

(‖(ū, θ̄)‖s−1, . . . , ‖∂s−2
t (ū, θ̄)‖1

)
+ C(N)

)

× (1 + |D̄su|20,T )

(5.24)

and
s−1∑

k=0

|∂k
t Ḡ|2s−2−k,T ≤ C(E0)

+
(

sup
0≤t≤τ

η2

(‖(ū, θ̄)‖s−1, . . . , ‖∂s−2
t (ū, θ̄)‖1

)
+ C(N)

)

× (1 + T )T (1 + |D̄su|20,T ).

(5.25)

From (5.24) and (5.25) we have

s−2∑

k=0

|∂k
t Ḡ|2s−2−k,T +

∫ T

0

‖∂s−1
t Ḡ‖2−1dτ

≤ sup
0≤t≤T

η3

(
E0, ‖(ū, θ̄)‖s−1, . . . , ‖∂s−2

t (ū, θ̄)‖1
)

× (
1 + C(N)T (1 + T )

)
(1 + |D̄u|20,T ).

(5.26)



446 J. Gawinecki

Putting (5.26) into energy estimate (4.30) in Theorem 4.7, we get

s−2∑

k=0

|∂k
t θ|2s−k,T +

∫ T

0

‖∂s−1
t ∇θ‖2dτ

≤ sup
0≤t≤T

K̄2

(
E0, ‖(ū, θ)‖s−1, . . . , ‖∂s−1

t (ū, θ̄)‖1
)

× (
1 + C(N)T (1 + T )2

)
(1 + |D̄su|20,T )eC(N)T (1+T ).

(5.27)

Adding inegualities (5.22), (5,23) and (5.27), we get

|D̄su|20,T + |D̄sϕ|20,T +
s−2∑

k=0

|∂k
t θ|2s−k,T +

∫ T

0

‖∂s−1
t ∇θ‖2dτ + |∂s−1

t θ|20,T

≤ sup
0≤t≤T

K
(
E0, ‖(ū, θ̄)‖s−1, . . . , ‖∂s−2

t (ū, θ̄)‖1
)

×
(

1 + C(N)T
1
2

12∑

i=0

T
i
2

)
eC(N)T

1
2 (1+T

1
2 +T+T

3
2 ).

(5.28)

Now we notice that for (ū, ϕ̄, θ̄) ∈ Z(N,T ) we get

‖∂k
t (ū, ϕ̄, θ̄)‖s−1−k ≤ ‖(uk, ϕk, θk)‖s−1−k + T

1
2 (1 + T

1
2 ) < N. (5.29)

Let N be large enough that

8K
(
E0, ‖(us, θs)‖s−1, . . . , ‖(us−2, θs−2)‖1

) ≤ N2. (5.30)

Since K is a continuous function, so in view of (5.30) there exists T such that

sup
0≤k≤T

K
(
E0, ‖(ū, θ̄)‖s−1, . . . , ‖∂s−2

t (ū, θ̄)‖1
)

≤ 4K
(
E0, ‖(u0, θ0)‖s−1, . . . , ‖(us−2, θs−2)‖1

) (5.31)

and

ξ̄(T ) =

(
1 + C(N)T

1
2

12∑

i=0

T
i
2

)
eC(N)T

1
2 (1+T

1
2 +T+T

3
2 ) < 2 (5.32)

(because ξ̄(T ) is a continuous function and ξ̄(0) = 1). So in view of this fact we get
from (5.28) the inequality

|D̄su|20,T + |D̄sϕ|20,T + |∂s−1
t θ|20,T +

s−2∑

k=0

|∂k
t θ|2s−k,T +

∫ T

0

‖∂s−1
t ∇θ‖2dτ

≤ 4K
(
E0, ‖(u0, θ0)‖s−1, . . . , ‖(us−2, θs−2)‖1

) · 2
≤ N2.

(5.33)

From here it follows that (u, ϕ, θ) ∈ Z(N,T ).
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Statement II. We prove that the mapping σ : Z(N,T ) → Z(N, T ) is a contraction
under the condition that T is small enough.

For this let W denote the complete metric space given by

W =
{

(ū, ϕ̄, θ̄) : D̄1ū, D̄1ϕ̄, θ̄ ∈ L∞
(
[0, T ], L2(Ω)

)
, ∇θ̄ ∈ L2

(
[0, T ], L2(Ω)

)}
(5.34)

with metric ρ given by

ρ
(
(ū, ϕ̄, θ̄), (u, ϕ, θ)

)

= |D̄1(ū− u)|20,T + |D̄1(ϕ̄− ϕ)|20,T + |θ̄ − θ|20,T +
∫ T

0

‖∇(θ̄ − θ)‖2dτ.
(5.35)

Z(N, T ) is a closed subset of W̄ . Let (ū, ϕ̄, θ̄), (ū∗, ϕ̄∗, θ̄∗) ∈ Z(N, T ). Then

σ(ū, ϕ̄, θ̄) = (u, ϕ, θ) ∈ Z(N,T )

σ(ū∗, ϕ̄∗, θ̄∗) = (u∗, ϕ∗, θ∗) ∈ Z(N,T )

}
. (5.36)

In view of (5.12) - (5.14) we see that u− u∗, ϕ− ϕ∗, θ − θ∗ satisfy the system

∂t(ui − u∗i )− ciαjβ(∇ū,∇ϕ̄, θ̄)
∂2(uj − u∗j )

∂xα∂xβ

=
(
ciαjβ(∇ū∗,∇ϕ̄∗, θ̄∗)− ciαjβ(∇ū,∇ϕ̄, θ̄)

) ∂2u∗j
∂xα∂xβ

+
(
αij(∇ū,∇ϕ̄, θ̄)− αij(∇ū∗,∇ϕ̄∗, θ̄∗)

)
εjlk

∂ϕ̄k

∂xl

+ αij(∇ū∗,∇ϕ̄∗, θ̄∗)εjlk

(
∂ϕ̄k

∂xl
− ∂ϕ̄∗k

∂xl

)

+
(
c̄j
iα(∇ū,∇ϕ̄, θ̄)− c̄j

iα(∇ū∗,∇ϕ̄∗, θ̄∗)
) ∂θ̄j

∂xα

+ c̄j
iα(∇ū∗,∇ϕ̄∗, θ̄∗)

(
∂θ̄j

∂xα
− ∂θ̄∗j

∂xα

)

(5.37)

∂2
t (ϕi − ϕ∗i )− diαjβ(∇ū,∇ϕ̄, θ̄)

∂2(ϕj − ϕ∗j )
∂xα∂xβ

=
(
diαjβ(∇ū∗,∇ϕ̄∗, θ̄∗)− diαjβ(∇ū,∇ϕ̄, θ̄)

) ∂2ϕ∗j
∂xα∂xβ

+ (ᾱij(∇ū,∇ϕ̄, θ̄)− ᾱij(∇ū∗,∇ϕ̄∗, θ̄∗)ϕ̄j

+ ᾱij(∇ū∗,∇ϕ̄∗, θ̄∗)(ϕj − ϕ̄∗j )

+ (αij(∇ū,∇ϕ̄, θ̄)− αij(∇ū∗,∇ϕ̄∗, θ̄∗)εjlk
∂ϕ̄k

∂xl

+ αij(∇ū∗,∇ϕ̄∗, θ̄∗)εjlk

(
∂ϕ̄k

∂xl
− ∂ϕ̄∗k

∂xl

)

(5.38)
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∂t(θi − θ∗i ) + āij
αβ(∇ū,∇ϕ̄, θ̄1, θ̄2,∇θ̄1,∇θ̄2)

∂2(θj − θ∗j )
∂xα∂xβ

=
(
āij

αβ(∇ū∗,∇ϕ̄∗, θ̄∗1 , θ̄∗2 ,∇θ∗1 ,∇θ̄∗2)

− āij
αβ(∇ū,∇ϕ̄, θ̄1, θ̄2,∇θ̄1∇θ̄2)

) ∂2θ∗j
∂xα∂xβ

+ C̄i
jα(∇ū∇ϕ̄θ̄1, θ̄2∇θ̄1∇θ̄2)

∂2(uj − u∗j )
∂xα∂t

+
(
C̄i

jα(∇ū,∇ϕ̄, θ̄1, θ̄2,∇θ̄1,∇θ̄2)

− C̄i
jα(∇ū∗,∇ϕ̄∗, θ̄∗1 , θ̄∗2 ,∇θ̄∗1 ,∇θ̄∗2

) ∂2uj

∂xα∂t

+ gi(∇ū,∇ϕ̄, θ̄1, θ̄2,∇θ̄1,∇θ̄2)(x, t)

− gi(∇ū∗,∇ϕ̄∗, θ̄∗1 , θ̄∗2 ,∇θ̄∗1 ,∇θ̄∗2)(x, t)

(5.39)

It follows from Theorem (5.1) and the Sobolev inequality that

sup
0≤t≤T

∥∥D̄2(ū, ϕ̄, θ̄, ū∗, ϕ̄∗, θ̄∗, u, ϕ, θ)
∥∥ ≤ CN. (5.40)

Multiplying (5.36) - (5.38) by ∂t(u−u∗), ∂t(ϕ−ϕ∗), ∂t(θi− θ∗i ) (i = 1, 2), respectively,
and integrating then over [0, T ] × Ω, performing partial integration with respect to x,
taking into account that

(ui − ui)∗|∂Ω = 0 ∂k
t (ui − u∗i )(0, x) = 0 (k = 0, 1)

(ϕi − ϕ∗i )|∂Ω = 0 ∂k
t (ϕi − ϕ∗i )(0, x) = 0 (k = 0, 1)

and using (5.39), the mean value theorem and the Schwarz inequality, after some cal-
culation we get

‖D̄1(u− u∗1)‖2 ≤ C(N)

{(
1 +

1
T

1
2

) ∫ T

0

‖D̄1(u− u∗)‖2dτ

+ T
1
2 (1 + T )

[
|D̄1(ū− ū∗)|20,T + |D̄1(ϕ̄− ϕ̄∗)|20,T

+ |θ̄1 − θ̄∗1 |20,T + |θ̄2 − θ̄∗2 |20,T

+
∫ T

0

‖∇(θ̄1 − θ̄∗1)‖2dτ +
∫ T

0

‖∇(θ̄2 − θ̄∗2)‖2dτ

]}

(5.41)
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‖D̄1(ϕ− ϕ∗)‖2 ≤ C(N)

{(
1 +

1
T

1
2

) ∫ T

0

‖D̄1(ϕ− ϕ∗)‖2dτ

+ T
1
2 (1 + T )

[
|D̄1(ū− ū∗)|20,T + |D̄1(ϕ− ϕ∗)|20,T

+ |θ̄1 − θ̄∗1 |20,T + |θ̄2 − θ̄∗2 |20,T

+
∫ T

0

‖∇(θ̄1 − θ̄∗1)‖2dτ +
∫ T

0

‖∇(θ̄2 − θ̄∗2)‖2dτ

]}

(5.42)

‖θ1 − θ∗1‖2 +
∫ t

0

‖∇(θ1 − θ∗1)‖2dτ + ‖θ2 − θ∗2‖2 +
∫ t

0

‖∇(θ2 − θ∗2)‖2dτ

≤ C(N)

{(
1 +

1
T

1
2

) ∫ t

0

[
‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 + ‖D̄1(u− u∗)‖2

]
dτ

+ T
1
2 (1 + T )

[
|D̄1(ū− ū∗)|20,T + |θ̄1 − θ̄∗1 |20,T + |θ̄2 − θ̄∗2 |20,T

+
∫ t

0

(‖∇(θ̄1 − θ̄∗1‖2 + ‖∇(θ̄2 − θ̄∗2)‖2)
]
dτ.

}

(5.43)

We deduce from (5.40) - (5.42) that

‖D̄1(u− u∗)‖2 + ‖D̄1(ϕ− ϕ∗)‖2 + ‖θ1 − θ∗2‖2 + |θ2 − θ∗2 |2

+
∫ T

0

(‖∇(θ1 − θ∗1)‖2 + ‖∇(θ2 − θ∗2)‖2)dτ

≤ C(N)

{(
1 +

1
T

1
2

)

×
∫ T

0

[
‖D̄1(u− u∗)‖2 + ‖D̄1(ϕ− ϕ∗)‖2 + ‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2

]
dτ

+ T
1
2 (1 + T )

[
|D̄1(ū− ū∗)|20,T + |D̄1(ϕ̄− ϕ̄∗)|20,T

+ |θ̄1 − θ̄∗1 |20,T + |θ̄2 − θ̄∗2 |∗0,T

+
∫ T

0

[‖∇(θ̄1 − θ̄∗1)‖2 + ‖∇(θ̄2 − θ̄∗2)‖2]dτ

]

+
(
1 +

1
T

1
2

) ∫ T

0

∫ s

0

(‖∇(θ1 − θ∗1)‖2 + ‖∇(θ2 − θ∗2)‖2)dtds

}
.

(5.44)

Applying Gronwall’s inequality to (5.43) we get

|D̄1(u− u∗)|20,T + |D̄1(ϕ− ϕ∗)|20,T + |θ1 − θ∗1 |20,T + |θ2 − θ∗2 |20,T
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+
∫ T

0

(‖∇(θ1 − θ∗1)‖2 + ‖∇(θ2 − θ∗2)‖2)dτ

≤ ε

(
|D̄1(ū− ū∗)|20,T + |D̄1(ϕ̄− ϕ̄∗)|20,T + |θ̄1 − θ̄∗1 |20,T + |θ̄2 − θ̄∗2 |20,T

+
∫ T

0

(‖∇(θ̄1 − θ̄∗1)‖2 + ‖∇(θ̄1 − θ̄∗2)‖2)dτ

)
(5.45)

where
ε = C(N)T

1
2 (1 + T ) eC(N)(T+T

1
2 ). (5.46)

From (5.46) it follows that choosing T small enough, we get ε < 1. Therefore the
mapping σ is a contraction. So, in view of the Banach fixed point theorem, it follows
that the contraction mapping σ has a unique fixed point (u, ϕ, θ) in Z(N, T ). This
implies that problem (1.1) - (1.4) with conditions (1.6) - (1.8) has a unique solution on
0 ≤ t ≤ T . This completes the proof of Theorem 3.1
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[14] Naerlović-Vejlković, N. and M. Plavšić: Thermodiffusion in elastic solids with microstruc-
tura. Bull. Acad. Polon. Sci., Ser. Techn. 22 (1974), 623 – 632.

[15] Nowacki, W.: Certains problems of thermodiffusion in solids. Arch. Mech. Stos. 23
(1971), 731 – 754.

[16] Nowacki, W.: Dynamic problems of thermodiffusion in solids. Parts I - III. Bull. Acad.
Polon. Sci., Ser. Techn. 23 (1974), 55 – 64, 205 – 211 and 257 – 266.

[17] Nowacki, W.: Theory of Asymmetric Elasticity. Warszawa: Pol. Sci. Publ. 1986.
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