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Non-Existence Results
for a Semilinear Hyperbolic Problem with

Boundary Condition of Memory Type

M. Kirane and N.-e. Tatar

Abstract. We consider a problem which models the evolution of sound in a compressible fluid
with reflection of sound at the surface of the material. Different methods such as the concavity
method of Levine, the potential well method and an argument due to Tsutsumi are used to
derive global non-existence theorems.
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1. Introduction

In this paper we shall consider the semilinear problem

utt(t, x) + αut(t, x) = ∆u(t, x) + f(t, u) (t > 0, x ∈ Ω)

∂u

∂ν
(t, x) +

∫ t

0

k(t− s, x)us(s, x) ds = 0 (t > 0, x ∈ Γ0)

u(t, x) = 0 (t > 0, x ∈ Γ1)

u(0, x) = u0(x), ut(0, x) = u1(x) (x ∈ Ω)





(1)

where

- Ω is a bounded domain in Rn with a boundary Γ = ∂Ω of class C2

- (Γ0, Γ1) is a partition of Γ such that int Γ1 6= ∅
- ν(x) denotes the outward normal vector to Γ at x ∈ Γ
- ∂

∂ν is the normal derivative on Γ
- α is a real number the sign of which is to be precised later
- f, k, u0, u1 are given functions
- subscript t denotes differentiation with respect to t
- ∆ is the Laplacian.
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This problem models the evolution of sound in a compressible fluid with reflection
of sound at the surface of the material. The linear case was derived and studied by
Propst and Prüss in [15]. They proved existence of a strong regular solution u in
C(R+; H2(Ω)) ∩ C1(R+; V ) ∩ C2(R+;L2(Ω)) with R+ the set of all non-negative real
numbers, provided that (among other conditions) u0 ∈ H2(Ω) ∩ V and u1 ∈ V , for the
problem

utt(t, x) = ∆u(t, x) + g(t, x) (t > 0, x ∈ Ω)

∂u

∂ν
(t, x) +

∫ t

0

k(t− s, x)us(s, x) ds = h(t, x) (t > 0, x ∈ Γ0)

u(t, x) = 0 (t > 0, x ∈ Γ1)

u(0, x) = u0(x), ut(0, x) = u1(x) (x ∈ Ω).





(2)

Many boundary conditions such as

∂p

∂ν
(t, x) + ζ(x)pt(t, x) = 0 (t > 0, x ∈ Γ)

∂p

∂ν
(t, x) + β(x)pt(t, x) + α(x)p(t, x) = 0 (t > 0, x ∈ Γ)

m(x)δtt(t, x) + d(x)δt(t, x) + K(x)δ(t, x) = −p(t, x)
∂p

∂ν
(t, x) + δtt(t, x) = 0 (t > 0, x ∈ Γ)





may be regarded as special forms of the boundary condition (1)2. See [15] for the physical
meaning of these constraints and references therein for investigations of problems with
these boundary conditions.

In [6], the authors have considered problem (2) and proved a uniform stabilization
result provided the equation contains a mild dissipation inside the domain (or in the
boundary condition). A blow up result has been proved by the same authors in [7] for
problem (1) with the boundary condition ∂u

∂ν = −p(x)g(ut) on Γ0 and a mild (or strong)
antidissipation (i.e. α < 0) inside the domain. It was shown that the above mentioned
boundary dissipation may have no effect on the energy and blow up occurs for certain
types of sources.

It is the purpose of this work to establish some non-existence results for problem
(1). The plan of the paper is as follows: in Section 2 we prove a blow up result for
α ≥ 0, using the concavity method of Levine [8, 10, 11] as formulated in Kalantarov
and Ladyzhenskaya [5]. The result is then enlarged to another class of nonlinearities
in Section 3 via a technique by Sleeman [17] (which is in fact a modification of the
concavity method) and an analogue to the Kalantarov and Ladyzhenskaya theorem for
the new class of non-linearities. We consider negative initial energy, vanishing initial
energy as well as positive initial energy. For the latter case we combine the concavity
method with the potential well method. In the case k(x, t) = p(x)e−t another proof
based on an argument due to Tsutsumi [19] and an appropriate energy functional is
given. This is established in Section 4.
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2. The mildly damped problem

In this section and Section 3 we need the following theorem which may be found in [3]
(see also [18]).

Theorem 1. If k ∈ C(R+) is non-negative, non-increasing and convex, then

|(k ∗ u)(t)|2 ≤ 2k(0+)<
∫ t

0

u(τ)(k ∗ u)(τ) dτ. (3)

Next we prepare some material necessary to our investigation. By a positive definite
function a ∈ L1

loc(R+) it is meant a function satisfying
∫ T

0

v(t)
∫ t

0

a(t− s)v(s) dsdt ≥ 0 (4)

for all v ∈ C(R+) and every T > 0. It is known that if a is a twice differentiable function
such that

(−1)na(n)(t) ≥ 0 (t > 0, n ∈ N0) and a′ 6= 0,

then a is positive definite (see [13]). We set

V =
{
u ∈ H1(Ω) : u|Γ1 = 0

}
.

The Poincaré inequality and the trace inequality yield the existence of constants δ > 0
and β > 0 such that

‖v‖22 ≤ δ ‖∇v‖22 (5)

and ∫

Γ0

v2dσ ≤ β

(∫

Ω

v2dx +
∫

Ω

|∇v|2dx

)
, (6)

respectively, for all v ∈ V . We will also need the existence of a constant η > 0 such that
the following Sobolev-Poincaré inequality (cf. [9] for instance)

‖v‖p ≤ η ‖∇v‖2 (7)

holds for all v ∈ V where 1 ≤ p ≤ 2n
n−2 for n ≥ 3 and 1 ≤ p < ∞ for n = 1, 2. We shall

use repeatedly the algebraic inequality

ab ≤ µa2 + 1
4µb2 (8)

for all a, b ∈ R and µ > 0.

Firstly, the function f(t, u) is assumed to satisfy the following rather general as-
sumptions:

(H1) f : R+×R→ R is a function such that there exists a continuously differentiable
function F : R+ × R→ R satisfying

F ′(t, u) = Ft(t, u) + utf(t, u) for all t ≥ 0

where the prime denotes Fréchet differentiation with respect to t and the sub-
script t denotes partial differentiation with respect to t the first variable.

(H2) Ft(t, u) ≥ 0 for all u and t ≥ 0.

We begin by a lemma which assembles some results from [8] and [10] in the form
given in [5].
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Lemma 2. Suppose that there exists a twice differentiable positive function ϕ sat-
isfying the inequality

ϕ(t)ϕ′′(t)− (1 + γ)(ϕ′(t))2 ≥ −2C1ϕ(t)ϕ′(t)− C2ϕ(t)2 (t ≥ 0) (9)

for some γ > 0 and C1, C2 ≥ 0.
(a) Let C1 + C2 > 0 and ϕ(0) > 0.
(i) If ϕ′(0) > −γ2γ

−1ϕ(0), then ϕ(t) → +∞ as

t → t1 ≤ T =
1

2
√

C2
1 + γC2

ln
{

γ1ϕ(0) + γϕ′(0)
γ2ϕ(0) + γϕ′(0)

}
(10)

where γ1 = −C1 +
√

C2
1 + γC2 and γ2 = −C1 −

√
C2

1 + γC2.
(ii) If ϕ′(0) = −γ2γ

−1ϕ(0), then either the solution blows up in finite time or else
ϕ(t) = ϕ(0)e−γ−1γ2t.

(iii) If ϕ′(0) < −γ2γ
−1ϕ(0), then either the solution blows up in finite time or else

ϕ(t) ≤ ϕ(0)e−γ−1γ2t.

(b) Let C1 = C2 = 0 and ϕ(0) > 0. This case is the concavity method with a blow
up time t2 ≤ ϕ(0)

γϕ′(0) .

Proof. (a) Let us define the new function Φ(t) = ϕ−γ(t). It is easy to see that Φ
satisfies the second order differential equation

Φ′′(t) + 2C1Φ′(t)− γC2Φ(t) = l(t) ≤ 0 (11)

and the solution is given by

Φ(t) = β1e
γ1t + β2e

γ2t + 1
γ1−γ2

∫ t

0

l(s)
{

eγ1(t−s) − eγ2(t−s)
}

ds

with
β1 + β2 = Φ(0)

β1γ1 + β2γ2 = Φ′(0)

}
.

Solving for β1 and β2, we find

β1 = −(γ1 − γ2)−1 {γ2ϕ(0) + γϕ′(0)}ϕ−1−γ(0)

β2 = (γ1 − γ2)−1 {γ1ϕ(0) + γϕ′(0)}ϕ−1−γ(0).

(i) Clearly, we have β1 < 0 and β2 > 0. As l(t) ≤ 0 we deduce that Φ(t) must vanish
for some finite time t1 estimated by (10). Consequently, ϕ(t) → +∞ as t approaches t1.

(ii) If ϕ′(0) = −γ2γ
−1ϕ(0), then β1 = 0 and β2 = ϕ−γ(0). Hence by (11), ϕ(t) ≥

ϕ(0)e−γ−1γ2t. We set χ(t) = eγ−1γ2tϕ(t). Therefore, either χ(t) is constant or else
χ′(t̃) > 0 for some t̃ and the argument in (i) will apply for t̃ in place of 0.
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(iii) Condition ϕ′(0) < −γ2γ
−1ϕ(0) means that χ′(0) < 0. We deduce that χ′(t) < 0

for all t ≥ 0 unless there exists a finite time t̂ for which χ′(t̂) = 0. The first possibility
leads to the relation ϕ(t) ≤ ϕ(0)e−γ−1γ2t. The second possibility with the help of the
argument in (ii) implies the blow up in finite time, the alternative ϕ(t) = ϕ(0)e−γ−1γ2t

being excluded since it leads to the case ϕ′(0) = −γ2γ
−1ϕ(0).

(b) If C1 = C2 = 0, we meet the concavity method. Indeed, (11) yields Φ′′(t) ≤ 0
and by integration we find

Φ(t) ≤ Φ(0) + Φ′(0)t or ϕγ(t) ≥ ϕγ(0)
{
1− γϕ−1(0)ϕ′(0)t

}−1
.

We conclude as in the first case (a)

Let us define the energy functional by

E(t) = 1
2

∫

Ω

(u2
t + |∇u|2) dx−

∫

Ω

F(t, u) dx (12)

and for C1 = 1
2α, C2 = 1

2k(0)β and γ2 as in Lemma 2 we set

A(u0, u1) = 2
∫

Ω

u0u1dx + γ2
γ

∫

Ω

u2
0dx

and assume that ‖u0‖2 6= 0.

We are now ready to state and prove our first theorem. For simplicity we shall
consider kernels which are independent of the spatial variable x.

Theorem 3. Suppose that k = k(t) satisfies the assumptions in Theorem 1. Besides
assumptions (H1) and (H2) assume that f(t, u) satisfies assumption

(H3) uf(t, u) ≥ (1 +
√

1 + 2k(0)β)F(t, u) for some γ > 0 and all u and t ≥ 0 where
β is the best constant in (6).

(a) If E(0) < 0 and A(u0, u1) ≥ 0, then any regular solution of problem (1) blows
up in finite time estimated by (10).

(b) If E(0) = 0 and

(i) A(u0, u1) > 0, then we have the same conclusion as in (a)

(ii) A(u0, u1) = 0, then either the solution blows up in finite time or else ‖u‖22 =
‖u0‖22e−γ−1γ2t

(iii) A(u0, u1) < 0, then either the solution blows up in finite time or else ‖u‖22 ≤
‖u0‖22e−γ−1γ2t.

Proof. (a) Differentiating the energy functional E(t) (see (12)) we get

E′(t) = −α

∫

Ω

u2
t dx−

∫

Γ0

ut

(∫ t

0

k(t− s)us(s) ds

)
dσ −

∫

Ω

Ft(t, u) dx. (13)
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Integrating (13) over [0, t] we find

E(t)− E(0) = −
∫ t

0

∫

Γ0

us

(∫ s

0

k(s− r)ur(r) dr

)
dσds

− α

∫ t

0

∫

Ω

u2
t dxds−

∫ t

0

∫

Ω

Ft(s, u)dxds.

(14)

By assumption (H2) and (4) it follows that

E(t) ≤ E(0) < 0 for all t ≥ 0. (15)

On the other hand, putting

G(t) =
∫

Ω

u2dx (16)

we see that G′(t) = 2
∫
Ω

uutdx and G′′(t) = 2
∫
Ω
(u2

t + uutt) dx. Using problem (1) we
obtain

G′′(t) = −2
∫

Ω

|∇u|2dx− 2
∫

Γ0

u

(∫ t

0

k(t− s)us(s) ds

)
dσ

+ 2
∫

Ω

u2
t dx + 2

∫

Ω

uf(t, u) dx− 2α

∫

Ω

uutdx,

and by (6), (8) and (14) - (16) it follows that

G′′(t) ≥ −2(1 + µβ)
∫

Ω

|∇u|2dx + 2
∫

Ω

u2
t dx− 2µβG(t)

− αG′(t) + 2k(0)
µ E(t) + 2

∫

Ω

uf(t, u) dx.

If we set W := G(t)G′′(t)− (1 + γ)(G′(t))2, then

W ≥ G(t)
{
−2(1 + µβ)

∫

Ω

|∇u|2dx + 2
∫

Ω

u2
t dx− 2µβG(t)

−αG′(t) + 2k(0)
µ E(t) + 2

∫

Ω

uf(t, u) dx

}
− 4(1 + γ)

{∫

Ω

uutdx

}2

.

By the Schwarz inequality it appears that

W ≥ G(t)
{
−2(1 + µβ)

∫

Ω

|∇u|2dx− 2(1 + 2γ)
∫

Ω

u2
t dx + 2k(0)

µ E(t)

−2µβG(t)− αG′(t) + 2
∫

Ω

uf(t, u) dx

}
.

Let µ = 2γ. Then by the definition of E(t) we have

W ≥ G(t)
{
− 2

(
2 + 4γ − k(0)β

2γ

)
E(t)− 2µβG(t)− αG′(t)

+ 2
∫

Ω

uf(t, u) dx− 4(1 + 2γ)
∫

Ω

F(t, u) dx− 2a(1 + 2γ)
}

.
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Taking γ = 1
4

(− 1 +
√

1 + 2k(0)β
)
, we see that assumption (H3) implies

W ≥ G(t)
{
−

√
1 + 2k(0)βG(t)− αG′(t)

}
. (17)

Applying Lemma 2 with the constants C1 = 1
2α and C2 =

√
1 + 2k(0)β, we conclude.

An estimation of the escape time is given in Lemma 2.

(b) If E(0) = 0, then (i) when the initial data satisfy A(u0, u1) > 0 the argument in
(a) still holds giving the same conclusion. Statements (ii) and (iii) follow readily from
(ii) and (iii) of Lemma 2

For the next proposition let us consider the case f(t, u) = |u|p−1u (p > 1) (easy
assumptions may be found for general functions f(t, u)).

Proposition 4. The set of initial data u0, u1 satisfying E(u0, u1) < 0 and A(u0, u1)
≥ 0 is not empty.

Proof. Recall that

E(u0, u1) = 1
2

∫

Ω

(u2
1 + |∇u0|2) dx−

∫

Ω

F(0, u0) dx

and
A(u0, u1) = 2

∫

Ω

u0u1dx + C0

∫

Ω

u2
0dx

with C0 = −γ2
γ . First observe that we can always find a sufficiently large δ such that

u0 = δv0 satisfies

1
8C2

0

∫

Ω

u2
0dx + 1

2

∫

Ω

|∇u0|2dx < 1
p+1

∫

Ω

|u0|p+1dx.

Suppose on the contrary that

1
p+1

∫

Ω

|u0|p+1dx ≤ C2
0
8

∫

Ω

u2
0dx + 1

2

∫

Ω

|∇u0|2dx

for all δ > 0. Then

δp−1

p+1

∫

Ω

|v0|p+1dx ≤ C2
0
8

∫

Ω

v2
0dx + 1

2

∫

Ω

|∇v0|2dx

for all δ > 0. This is a contradiction.
We choose u1 such that u1(x) < C0

2 u0(x) and

1
8C2

0

∫

Ω

u2
0dx < 1

2

∫

Ω

u2
1dx < 1

p+1

∫

Ω

|u0|p+1dx− 1
2

∫

Ω

|∇u0|2dx.

Then, clearly, E(u0, u1) < 0 and 2
∫
Ω

u0u1dx > C0

∫
Ω

u2
0dx, that is A(u0, u1) > 0
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Remark 1. It is sufficient to require that hypothesis concerning f(t, u) be satisfied
only for the solution of the problem. The same remark is valid for the hypothesis below.

Remark 2. Note that Theorem 3 gives the blow up in finite time for the solution
in the L2-norm.

Remark 3. Theorem 3 is interesting from the theoretical point of view. In practice
it is enough to use the concavity method of Levine provided we find the appropriate
functional. In our case, the choice of the functional

G(t) = ‖u‖22 + α

{∫ t

0

‖u(s)‖22ds + (T0 − t)‖u0‖22
}

+ a(t + t0)2

would simplify the term α
∫
Ω

uutdx and thereafter G′(t) in (17). As for G(t) we combine
the Poincaré and Trace inequalities instead of (6).

Hypothesis (H3) is satisfied by the class of functions f(t, u) = g(t) |u|p−1u with

p ≥
√

1 + 2k(0)β. (18)

Next we shall see that even for positive initial energy it is possible to obtain a blow
up result. We consider the non-linearity

f(t, u) ≡ f(u) = |u|p−1u.

Let us introduce the sets

P =
{

v ∈ H2(Ω) ∩ V : P (v) := ‖∇v‖22 − ‖v‖p+1
p+1 < 0

}

and for γ > 1
2

√
βk(0), the best constant η in (7) and q = 2 p+1

p−1 ,

E =
{

(v, w) ∈ H2(Ω) ∩ V × V : E(v, w) := E(t) <
4γ2 − βk(0)
4γ(1 + 2γ)

η−q

}
.

In the next proposition it will be proved, for solutions of problem (1), that P and E
are invariant sets. That is, if we start in these sets we remain inside these sets as long
as the solution exists (see [14] and references therein for the method of proof).

Proposition 5. Let u(t) be a solution of problem (1), p ≥ 3 + 4γ, u0 ∈ P and
(u0, u1) ∈ E. If p ≤ 5 when n = 3 (in this case k(0) must satisfy k(0) < 1

β ) and
p < +∞ when n = 1, 2, then u ∈ P and (u, ut) ∈ E. Moreover,

‖∇u‖22 > η−q for all t ≥ 0. (19)

Proof. From E(t) ≤ E(0) (first inequality of (15)) and (u0, u1) ∈ E we have
(u, ut) ∈ E . Let u0 ∈ P and

T := sup
{

t ∈ [0, +∞) : P (u(s)) < 0 for 0 ≤ s < t
}

.
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As P is an open set, it is clear that T > 0. Suppose for contradiction that T < +∞.
Then

E(u(T )) ≥ 1
2‖∇u(T )‖22 − 1

p+1‖u(T )‖p+1
p+1 = p−1

2(p+1)‖∇u(T )‖22. (20)

On the other hand, using the Sobolev-Poincaré inequality (7) we find

‖∇u(T )‖p+1
2 ≥ η−(p+1)‖u(T )‖p+1

p+1 = η−(p+1)‖∇u(T )‖22. (21)

Therefore ‖∇u(T )‖p−1
2 ≥ η−(p+1). From (20) and (21) we deduce that E(u(T )) ≥

p−1
2(p+1)η

−q. Observing that p ≥ 3+4γ implies the relation p−1
2(p+1) ≥ 4γ2−βk(0)

4γ(1+2γ) we obtain

E(u(t)) ≥ 4γ2−βk(0)
4γ(1+2γ) η−q. This is a contradiction. Consequently, T = +∞.

Finally, if u ∈ P, then (19) holds from the Sobolev-Poincaré inequality (7) and the
fact P (u) < 0. Indeed, ‖∇u‖p+1

2 ≥ η−(p+1)‖u‖p+1
p+1 > η−(p+1)‖∇u‖22. This completes the

proof

Let us consider A(u0, u1) with C1 = 1
2α and C2 = k(0)β

γ .

Theorem 6. Assume that u ∈ P, (u0, u1) ∈ E, A(u0, u1) > 0 and p ≥ 3+4γ holds.
If p ≤ 5 when n = 3 and p < +∞ when n = 1, 2, then the solution of problem (1) blows
up in a finite time estimated by (10).

Proof. From (12), (14), (16) and the assumption p ≥ 3 + 4γ we have

W ≥ G(t)
{
−2(1 + µβ)‖∇u‖22 − 4(1 + 2γ)E(t) + 2k(0)

µ E(t)

− 2k(0)
µ E(0) + 2(1 + 2γ)‖∇u‖22

}
− 2µβG2(t)− αG(t)G′(t)

or
W ≥ G(t)

{
2(2γ − µβ)‖∇u‖22 − 2(2 + 4γ − k(0)

µ )E(t)− 2k(0)
µ E(0)

}

− 2µβG2(t)− αG(t)G′(t).

We choose µ = k(0)
2γ . It follows that

W ≥ G(t)
{

2
(
2γ − β k(0)

2γ

)
‖∇u‖22 − 4(1 + 2γ)E(0)

}
− k(0)

γ βG2(t)− αG(t)G′(t)

or

W ≥ 4(1 + 2γ)G(t)
{

4γ2−βk(0)
4γ(1+2γ) ‖∇u‖22 − E(0)

}
− k(0)

γ βG2(t)− αG(t)G′(t).

Hence W ≥ −k(0)
γ βG2(t)− αG(t)G′(t). The rest is clear from Lemma 2

Remark 4. For large values of the initial data u0 it may be worthy to use the
argument in Knops, Levine and Payne [8: p. 65].
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3. A modification of the concavity method

The following is a generalization of an idea by Sleeman [17] on a modification of the
concavity method.

Theorem 7. Let Ψ be a twice differentiable positive function such that

Ψ(t)Ψ′′(t) + (γ − 1)(Ψ′(t))2 ≤ −2C1Ψ(t)Ψ′(t) + C2Ψ(t)2 (t ≥ 0)

for some γ > 1 and constants C1, C2 ≥ 0.

(a) Let C1 + C2 > 0 and Ψ(0) > 0.
(i) If Ψ′(0) < γ2

γ Ψ(0), then Ψ(t) cannot exist beyond the time

T1 =
1

2
√

C2
1 + γC2

ln
{
γ1Ψ(0)− γΨ′′(0)γ2Ψ(0)− γΨ′′(0)

}
(22)

where γ1 = −C1 +
√

C2
1 + γC2 and γ2 = −C1 −

√
C2

1 + γC2.
(ii) If Ψ′(0) = γ2

γ Ψ(0), then either Ψ(t) cannot exist beyond a finite time or else

Ψ(t) = Ψ(0)eγ−1γ2t.
(iii) If Ψ′(0) > γ2

γ Ψ(0), then either Ψ(t) cannot exist beyond a finite time or else

Ψ(t) ≥ Ψ(0)eγ−1γ2t.

(b) If C1 = C2 = 0, Ψ(0) > 0 and Ψ′(0) < 0, we meet Sleeman’s modified concavity
method with the finite time T2 = −γ Ψ(0)

Ψ′(0) .

Proof. The method of proof is similar to that of Lemma 2. We use however the
intermediate function Φ = Ψγ instead of the first one. The details are omitted

Let us set
D(u0, u1) = 2

∫

Ω

u0u1dx− γ2
γ

∫

Ω

u2
0dx

where C1 = 1
2α, C2 = 4γ and γ2 is as in Lemma 2.

Theorem 8. Assume that hypotheses (H1), (H2) and

(H4) uf(t, u) ≤ 2(1 − 2γ)F(t, u) for some γ > max
{
1, 1

4

(
1 +

√
1 + 2k(0)β

)}
for all

u and t ≥ 0

hold. If E(0) ≤ 0 and for γ satisfying assumption (H4)
(i) D(u0, u1) < 0, then no regular solution can exist beyond the time T1 given by

(22);
(ii) D(u0, u1) = 0, then either the solution cannot exist beyond a finite time or else

‖u‖22 = ‖u0‖22eγ−1γ2t;
(iii) D(u0, u1) > 0, then either the solution cannot exist beyond a finite time or else

‖u‖22 ≥ ‖u0‖22eγ−1γ2t.

Moreover, limt→T−1

∫
Ω

u2
t dx = +∞.
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Proof. Let G(t) =
∫
Ω

u2dx. Then

G′(t) = 2
∫

Ω

uutdx and G′′(t) = 2
∫

Ω

(uutt + u2
t ) dx.

Forming the expression W = GG′′ + (γ − 1)(G′)2 we obtain

W = G(t)
{
−2

∫

Ω

|∇u|2dx− 2
∫

Γ0

u

(∫ t

0

k(t− s)us(s) ds

)
dσ

−2α

∫

Ω

uutdx + 2
∫

Ω

u2
t dx + 2

∫

Ω

uf(t, u) dx

}
+ 4(γ − 1)

{∫

Ω

uutdx

}2

.

Using the Schwarz inequality, (6), (3) and (8) we find

W ≤ G(t)
{
−2

∫

Ω

|∇u|2dx + 2βµ

∫

Ω

u2dx + 2βµ

∫

Ω

|∇u|2dx

+ 2k(0)
µ

∫ t

0

∫

Γ0

us

∫ s

0

k(s− z)uz(z) dzdσds− αG′(t)

+2(2γ − 1)
∫

Ω

u2
t dx + 2

∫

Ω

uf(t, u) dx

}
.

With the aid of (12), (14) and assumption (H4) we obtain

W ≤ G(t)
{

2
(
2βµ− 2− k(0)

µ

)
E(t) + 2(2γ − βµ)

∫

Ω

u2
t dx + 2βµG(t)− αG′(t)

}
.

Choosing µ = 2 γ
β , we get

W ≤ G(t)
{

2
(
4γ − 2− k(0)β

2γ

)
E(t)

}
+ 4γG2(t)− αG′(t)G(t).

From our assumption γ > 1
4

(
1+

√
1 + 2k(0)β

)
it follows that 4γ−2− k(0)β

2γ ≥ 0. Hence
W ≤ 4γG2(t)− αG′(t)G(t). We next apply Theorem 7.

For the second part of the theorem we recall the second order differential equation
(11) satisfied by Φ = Gγ

Φ′′(t) + 2C1Φ′(t)− γC2Φ(t) = h(t) ≤ 0.

The proof will be carried out for statement (i). We change the starting point for the
other cases. An integration of the last expression over [0, t] yields

Φ′(t) ≤ Φ′(0) + 2C1Φ′(0) + γC2

∫ t

0

Φ(s) ds

or

G′(t) ≤ G−γ+1(t)
{

Gγ−1(0)G′(0) + 2C1γ
−1Gγ(0) + C2

∫ t

0

Φ(s) ds

}
.
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We know that Φ(t) ≤ β1e
γ1t + β2e

γ2t, therefore

∫ t

0

Φ(s) ds < β1
γ1

eγ1t + β2
γ2

eγ2t − β1
γ1
− β2

γ2
< −β1

γ1
− β2

γ2
(t > 0)

or

C2

∫ t

0

Φ(s) ds <
{−2C1γ

−1G(0)−G′(0)
}

Gγ−1(0) (t > 0).

Hence {
2C1γ

−1Gγ(0) + Gγ−1(0)G′(0) + C2

∫ t

0

Φ(s) ds

}
< 0.

Observe also that for t > 0 we may write

{
2C1γ

−1Gγ(0) + Gγ−1(0)G′(0) + C2

∫ t

0

Φ(s) ds

}
< −A.

We obtain
G′(t) ≤ (−A)G−γ+1(t). (23)

On the other hand, it is clear that

G′(t) = 2
∫

Ω

uutdx ≥ −2
(∫

Ω

u2dx

) 1
2

(∫

Ω

u2
t dx

) 1
2

≥ −2G
1
2 (t)

(∫

Ω

u2
t dx

) 1
2

. (24)

From (23) and (24) it follows that

(∫

Ω

u2
t dx

) 1
2

≥ A
2 G−γ+ 1

2 (t) ≥ A
2

(
β1e

γ1t + β2e
γ2t

)−1+ 1
2γ .

Consequently, limt→T−1

∫
Ω

u2
t dx = +∞ with T1 as in (22)

Remark 5. A class of non-linearities satisfying assumption (H4) may be of the form
f(t, u) = h(t)u−(4α−1)φ(u) (u > 0) where φ is a monotone non-decreasing function.

Remark 6. Theorems 7 and 8 remain valid if γ < 1. The proofs are very much
the same. After computation we remark that even the formulations of the theorems are
similar. Indeed, it suffices only to replace γ by 2− γ.



Non-Existence Results for a Hyperbolic Problem 465

4. The case k(x, t) = p(x)e−t

In this section another result on the blow up in finite time is proved. It concerns the
case where the boundary material is characterized by the kernel k(x, t) = p(x)e−t. The
function p is assumed to be non-negative and uniformly bounded by M . The method of
proof is based on a suitable choice of the energy functional combined with an argument
by Tsutsumi [19]. This method has the advantage of working even in the case α < 0.
The problem we consider is then

utt(t, x) + αut(t, x) = ∆u(t, x) + f(t, u) (t > 0, x ∈ Ω)

∂u

∂ν
(t, x) +

∫ t

0

p(x)e−(t−s)us(s, x) ds = 0 (t > 0, x ∈ Γ0)

u(t, x) = 0 (t > 0, x ∈ Γ1)

u(0, x) = u0(x), ut(0, x) = u1(x) (x ∈ Ω).





(25)

Theorem 9. Let assumptions (H1) and (H2) hold. Further, suppose that the fol-
lowing hypothesis hold:

(H5)
∫
Ω

u0u1dx > 0 and
∫
Ω
(u2

1 + |∇u0|2) dx < 2
∫
Ω
F(0, u0)dx

(H6)
∫
Ω

{
uf(t, u) − (D + M)F(t, u)

}
dx ≥ C1‖u‖2p

2 for all u and t ≥ 0, for some
constant C1 > 0, p > 1, D = max{α− 2, αδ + β̃ + 2} and β̃ = β(δ + 1)

or
(H7)

∫
Ω

{
uf(t, u) − (D + 1)F(t, u)

}
dx ≥ C2‖u‖2p

2 for all u and t ≥ 0, for some
constant C2 > 0, p > 1, D = max{α− 3, αδ + Mβ̃ + 1} and β̃ = β(δ + 1).

Then the solution of problem (25) blows up in finite time.

Proof. First assume that assumption (H6) holds. Suppose for contradiction that
u exists globally in time. Let us define the energy functional by

E(t) = 1
2

∫

Ω

(u2
t + |∇u|2) dx + 1

2

∫

Γ0

p(x)
(∫ t

0

e−(t−s)us(s) ds

)2

dσ −
∫

Ω

F(t, u) dx. (26)

Then

E′(t) = −α

∫

Ω

u2
t dx +

∫

Γ0

ut
∂u

∂η
dσ +

∫

Ω

utf(t, u) dx

−
∫

Ω

utf(t, u) dx−
∫

Ω

Ft(t, u) dx

+
∫

Γ0

p(x)
{

ut −
∫ t

0

e−(t−s)us(s) ds

} (∫ t

0

e−(t−s)ut(s) ds

)
dσ

= −α

∫

Ω

u2
sdx−

∫

Ω

Ft(t, u) dx−
∫

Γ0

p(x)
(∫ t

0

e−(t−s)us(s)ds

)2

dσ

≤ 0.
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Thus E(t) ≤ E(0) < 0. Next introducing the function G(t) =
∫
Ω

u2dx it appears that

G′′(t) = 2‖ut‖22 − 2α

∫

Ω

uutdx− 2‖∇u‖22 + 2
∫

Ω

uf(t, u) dx

− 2
∫

Γ0

up(x)
∫ t

0

e−(t−s)us(s) dxdσ.

Using (5), (6) and

∣∣∣∣2
∫

Γ0

up(x)
(∫ t

0

e−(t−s)us(s)ds

)
dσ

∣∣∣∣

≤ β̃‖∇u‖22 + M

∫

Γ0

p(x)
(∫ t

0

e−(t−s)us(s)ds

)2

dσ

(27)

we obtain

G′′(t) ≥ 2‖ut‖22 − α‖ut‖22 − 2‖∇u‖22 − αδ‖∇u‖22 − β̃‖∇u‖22

+ 2
∫

Ω

uf(t, u) dx−M

∫

Γ0

p(x)
(∫ t

0

e−(t−s)us(s) ds

)2

dσ.

By the definition of E(t) (26) we see that

G′′(t) ≥ (2− α)‖ut‖22 − (2 + β̃ + αδ)‖∇u‖22 + 2
∫

Ω

uf(t, u) dx

− 2M

{
E(t)− 1

2‖ut‖22 − 1
2‖∇u‖22 +

∫

Ω

F(t, u) dx

}

or
G′′(t) ≥ (2− α + M)‖ut‖22 − (2 + β̃ + αδ −M)‖∇u‖22

+ 2
∫

Ω

uf(t, u) dx− 2ME(t)− 2M

∫

Ω

F(t, u) dx.

Again, the definition of E(t) yields

G′′(t) ≥ −2max{α− 2, 2 + β̃ + αδ}
(

E(t) +
∫

Ω

F(t, u) dx

)

+ 2
∫

Ω

uf(t, u) dx− 2ME(t)− 2M

∫

Ω

F(t, u) dx

or

G′′(t) ≥ −2(D + M)E(0) + 2
{∫

Ω

uf(t, u) dx− (D + M)
∫

Ω

F(t, u) dx

}
.

From assumption (H6) it results that

G′′(t) ≥ −2(D + M)E(0) + C1G(t)p. (28)
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This leads us to an argument by Tsutsumi [19] (see also [1]). Clearly, G′(t) > 0 for all
t ≥ 0. Multiplying (28) by G′(t) and integrating we find

1
2G′(t)2 − 1

2G′(0)2 ≥ −2(D + M)E(0){G(t)−G(0)}+ C1
p+1{G(t)p+1 −G(0)p+1}

or

G′(t) ≥
{

C3 − 4(D + M)E(0)G(t) + 2 C1
p+1G(t)p+1

} 1
2

,

with C3 = G′(0)2 + 4(D + M)E(0)G(0) − 2 C1
p+1G(0)p+1. Consequently, by integration

we deduce

tmax ≤ T0 =
∫ ∞

‖u0‖22

{
C3 − 4(D + M)E(0)z + 2 C1

p+1zp+1
}− 1

2
dz. (29)

As T0 is finite, (29) provides a contradiction.

In the case of assumption (H7) the proof is similar, we use the estimate

∣∣∣∣ 2
∫

Γ0

up(x)
(∫ t

0

e−(t−s)us(s) ds

)
dσ

∣∣∣∣

≤ β̃M‖∇u‖22 +
∫

Γ0

p(x)
(∫ t

0

e−(t−s)us(s) ds

)2

dσ

instead of (27)

Acknowledgments. The authors wish to express their gratitude to the referee for
valuable comments and suggestions.

References

[1] Bainov, D. and E. Minchev: An estimate of the interval of existence of solutions of the
nonlinear Kirchhoff equation. Computers Math. Appli. 31 (1996)2, 63 – 65.

[2] Georgiev, V. and G. Todorova: Existence of a solution of the wave equation with nonlinear
damping and source terms. J. Diff. Eqs. 109 (1994), 295 – 308.

[3] Gripenberg, G.: On some positive definite forms and Volterra integral operators. Appl.
Anal. 11 (1981), 211 – 222.

[4] Kalantarov, V. K.: Collapse of the solutions of parabolic and hyperbolic equations with
nonlinear boundary conditions. J. Soviet Math. 27 (1984), 2601 – 2606.

[5] Kalantarov, V. K. and O. A. Ladyzhenskaya: The occurence of collapse for quasilinear
equations of parabolic and hyperbolic types. J. Soviet Math. 10 (1978), 53 – 70.

[6] Kirane, M. and N. Tatar: A memory type boundary stabilization of a mildly damped wave
equation (to appear).

[7] Kirane, M. and N. Tatar: Blowing up of solutions to the wave equation with nonlinear
boundary feedback (to appear).



468 M. Kirane and N.-e. Tatar

[8] Knops, R. J., Levine, H. A. and L. E. Payne: Nonexistence, instability and growth theo-
rems for solutions of a class of abstract nonlinear equations with applications to nonlinear
elastodynamics. Arch. Rat. Mech. Anal. 55 (1974), 52 – 72.

[9] Ladyzhenskaya, O. A., Solonnikov, V. A. and N. N. Ural’ceva: Linear and Quasilinear
Equations of Parabolic Type. Providence: Amer. Math. Soc. 1968.

[10] Levine, H. A.: Instability and nonexistence of global solutions to nonlinear wave equations
of the form Putt = Au + F(u). Trans. Amer. Math. Soc. 192 (1974), 1 – 21.

[11] Levine, H. A. and P. E. Sacks: Some existence and non-existence theorems for solutions
of degenerate parabolic equations. J. Diff. Eqs. 52 (1984), 135 – 161.

[12] Levine, H. A. and J. Serrin: Global nonexistence theorems for quasilinear evolution equa-
tions with dissipation. Arch. Rat. Mech. Anal. 137 (1997), 341 – 361.

[13] Nohel, J. A. and D. F. Shea: Frequency domain methods for Volterra equations. Adv.
Math. 22 (1976), 278 – 304.

[14] Ono, K.: Global existence, decay, and blow up of solutions for some mildly degenerate
nonlinear Kirchhoff strings. J. Diff. Eqs. 137 (1997), 273 – 301.

[15] Propst, G. and J. Prüss: On wave equations with boundary dissipation of memory type.
J. Int. Eqs. Appl. 8 (1996), 99 – 123.

[16] Prüss, J.: Evolutionary Integral Equations and Applications. Basel: Birkhäuser Verlag
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