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Abstract. Basic inverse problems for identification of memory kernels in linear heat conduc-
tion and viscoelasticity in the infinite time interval (0,∞) are treated by Laplace transform
method in coupling with Fourier’s method for the direct initial-boundary value problem of the
corresponding integro-differential equation. Under suitable assumptions on the data existence
and uniqueness of the memory kernel are shown.
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0. Introduction

In recent time different methods are developed in dealing with inverse problems for
identification of memory kernels in linear heat conduction and viscoelasticity. In the
thermal case we especially refer to the papers Lorenzi and Sinestrari [19], Grasselli [3]
and our papers [10 - 12], in the viscoelastic case to Grasselli, Kabanikhin and Lorenzi
[6 - 7], Grasselli [4 - 5] and our papers [13 - 14]. See further the papers Lorenzi [17],
Lorenzi and Paparoni [18], Bukhgeim [1] and the overview on our papers [10 - 11, 13]
in [21]. In all these papers the inverse problems are formulated in a finite time interval
[0, T ] and treated by a fixed point argument in a Banach space of functions defined on
[0, T ].

If the memory kernels are defined (or extended) to the infinite time interval [0,∞),
the method of Laplace transform can be used for solving corresponding inverse problems.
This has been done in Janno [8 - 9] for a particular viscoelastic problem, see also the
general remarks in Tobias and Engelbrecht [20].

In the present paper the method of Laplace transform is applied to two basic inverse
problems for memory kernels in linear heat conduction and viscoelasticity where again
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the solution of the direct problem is constructed by the classical Fourier method as in
our papers [10 - 11] and [13 - 14], respectively. Under suitable assumptions on the data
we prove existence and uniqueness of the memory kernel and also estimate the kernel
by an exponential function. The method should be applicable further to the cases of
general linear heat flow [12], of weakly singular kernels in viscoelasticity [14], of thermal-
and poro-viscoelasticity [15] and of viscoelasticity with dominating Newtonian viscosity
[16].

1. Statement of problems in heat conduction

In the linear theory of heat flow in a rigid isotropic body consisting of material with
thermal memory the generalized heat equation

βut − div(λ∇u) +

t∫

0

m(t− τ) div(λ∇u(x, τ)) dτ = f (1)

holds in the cylinder Ω = D × {t > 0}, where D is a bounded domain in RN with
piecewise smooth boundary S (cf. [10, 11] or [21]). Here u is the temperature of the
body which we suppose as zero for t < 0 and ∇u denotes the gradient of u with respect
to x ∈ D. Further, m is the memory kernel of heat flux and f the heat supply. The
heat conduction coefficient λ and β = cρ, where c is the specific caloric coefficient and
ρ the mass density, are given positive continuous functions on D.

An analogous parabolic integro-differential equation as (1) occurs in the theory of
flow in porous media where u now denotes the pressure, λ = κρ with permeability κ
and mass density ρ again, β is the reciprocal of Biot’s modulus with the corresponding
memory kernel m and f is the mass source density (cf. [15], for instance). Besides
equation (1) the function u satisfies the initial and boundary conditions

u(x, 0) = ϕ(x) on D (2)

u(x, t) = 0 or λ
∂u

∂n
+ µu = 0 on Σ = S × {t > 0} (3)

with given continuous functions ϕ on D and µ ≥ 0 on S, where n is the outer normal
to S.

In the inverse problem we have to find the kernel m such that the corresponding
function u satisfies equations (1) - (3) and an additional condition of the form

Ψ[u](t) = h(t) (t > 0) (4)

or

Ψ[u](t)−
t∫

0

m(t− τ)Ψ[u](τ) dτ = h(t) (t > 0) (5)

where Ψ is a suitable linear observation functional on u(·, t), for instance Ψ[u](t) =
u(x0, t) (x0 ∈ D) in the case of (4) and Ψ[u](t) = ∂u

∂n (x0, t) (x0 ∈ S) in the case of
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(5) corresponding to a measurement of the temperature and the flux in some point x0,
respectively. The given continuous and differentiable function h represents the output
of the observation.

The solution u of the direct problem (1) - (3) is taken in form of the Fourier series

u(x, t) =
∞∑

k=1

ak(t)vk(x) (6)

where vk are the eigenfunctions of the problem

div(λ∇v) + µβv = 0 in D (7)

with (3) and the positive (non-negative) eigenvalues µk. In view of (1) and (2) the
coefficient functions ak in (6) satisfy the initial value problem

ȧk(t) + µkak(t)− µk

t∫

0

m(t− τ)ak(τ) dτ = rk(t)

ak(0) = ϕk





(8)

where

ϕ(x) =
∞∑

k=1

ϕkvk(x) and r(x, t) ≡ f

β
=

∞∑

k=1

rk(t)vk(x). (9)

By representation (6) for u the additional conditions (4) and (5) take the form

∞∑

k=1

γkak(t) = h(t) (t > 0) (10)

and
∞∑

k=1

γk


ak(t)−

t∫

0

m(t− τ)ak(τ) dτ


 = h(t) (t > 0), (11)

respectively, where γk = Ψ(vk) are the ”observation coefficients”.
We assume the existence of the in L2(0) complete orthogonal system of eigenfunc-

tions {vk} of (7) with (3). There are sufficient conditions on the data ϕ, r for the
convergence of the Fourier series (9) and the existence of a generalized solution u to the
initial-boundary value problem (1) - (3). For instance, for a continuous memory kernel
m the conditions ϕ ∈ L2(D), r ∈ L2(ΩT ), ΩT = D × (0, T ) are sufficient for the conver-
gence of (9) and the existence of a solution u ∈ H1,0(ΩT ) with arbitrary T > 0. But
we prefer here to make no concrete assumptions on the data ϕ, r beside the existence of
the Fourier coefficients ϕk, rk(t) and working with the formal solution (6) of the direct
problem (1) - (3). Concentrating on the inverse problems for their solvability indeed the
convergence conditions (33), (34) in Theorem 1 below are natural assumptions which
are coupled conditions on the data ϕ, r of the direct problem and on the observation
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functional Ψ in the additional conditions for the inverse problems. These conditions can
be fulfilled by different pairs of conditions for ϕ, r on one side and for Ψ on the other
side yielding a related generalized solution of the direct problem.

We now apply the Laplace transform

Lt→p(ω) =

∞∫

0

e−ptω(t) dt

to equations (8) and (10) - (11). Equation (8) is transformed to

pAk(p)− ϕk + µkAk(p)− µkM(p)Ak(p) = Rk(p) (12)

where
Ak = Lt→p(ak)

M(p) = Lt→p(m)

Rk = Lt→p(rk).





From (12) the relations for Ak

Ak(p) =
µk

p + µk
M(p)Ak(p) +

ϕk + Rk(p)
p + µk

(13)

and

Ak(p) =
1

1− µk

p+µk
M(p)

· ϕk + Rk(p)
p + µk

(14)

follow. Equations (10) and (11) go over into

∞∑

k=1

γkAk(p) = H(p) (15)

and ∞∑

k=1

γkAk(p)−M(p)
∞∑

k=1

γkAk(p) = H(p) (16)

where H = Lt→p(h).
In the first inverse problem with condition (4), from (15) observing (13), we obtain

the equation for M(p)

M(p)
∞∑

k=1

γk
µk

p + µk
Ak(p) = H(p)−

∞∑

k=1

γk
ϕk + Rk(p)

p + µk
. (17)

Multiplying this equation by p2 and introducing

d1 :=
∞∑

k=1

γkµkϕk 6= 0 (by assumption), (18)
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we get for M(p) the fixed point equation

M(p) = − 1
d1

M(p)
∞∑

k=1

γkµkBk(p) + G1(p) (19)

where

Bk(p) = Bk[M ](p) =
p2

p + µk
Ak(p)− ϕk (20)

with Ak = Ak[M ] given by (14) and

G1(p) =
p2

d1

(
H(p)−

∞∑

k=1

γk
ϕk + Rk(p)

p + µk

)
. (21)

By (20) and (14) the explicit expression for Bk

Bk(p) =
1

1− µk

p+µk
M(p)

[
µk

p + µk
ϕkM(p) + Φk(p)

]
(22)

follows where

Φk(p) =
p2

(p + µk)2
Rk(p)− 2µkp + µ2

k

(p + µk)2
ϕk. (23)

In the second inverse problem with condition (5), from (16) and (13) the equation
for M(p) writes

M(p)
∞∑

k=1

γk

[
µk

p + µk
− 1

]
Ak(p) = H(p)−

∞∑

k=1

γk
ϕk + Rk(p)

p + µk
. (24)

Multiplying this equation by p and introducing

d0 := −
∞∑

k=1

γkϕk 6= 0 (by assumption), (25)

the fixed point equation for M(p)

M(p) = − 1
d0

M(p)
∞∑

k=1

γkBk(p) + G0(p) (26)

follows where Bk = Bk[M ] are given by (22) and

G0(p) =
p

d0

(
H(p)−

∞∑

k=1

γk
ϕk + Rk(p)

p + µk

)
. (27)
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2. Existence theorem in heat conduction

The fixed point equations (19) and (26) for M(p) in both inverse problems have the
form

M(p) = − 1
dν

M(p)
∞∑

k=1

γkµν
kBk[M ](p) + Gν(p) (28)

where ν = 1 in the first inverse problem and ν = 0 in the second one. The functions
Bk are given by (22) with (23), the constants dν and functions Gν are defined by (18),
(25) and (21), (27), respectively.

We are looking for analytic solutions M(p) of equation (28) in a half-plane Re p >
σ (σ > 0). For this end we introduce the norm

‖f‖γ,σ := sup
Re p>σ

[|p|γ |f(p)|] (γ ≥ 0, σ > 0) (29)

and the Banach space of complex-valued functions in Re p > σ (σ > 0)

Aγ,σ =
{

f : f(p) holomorphic on Re p > σ with ‖f‖γ,σ < ∞
}

(γ ≥ 0).

We note that Aγ,σ ⊂ Aγ,σ′ with ‖ · ‖γ,σ′ ≤ ‖ · ‖γ,σ for σ′ > σ.

Let now α and β be two real numbers such that

0 < β ≤ 1 and 1 < α ≤ 1 + β. (30)

Further, let w = w(t) (t > 0) be a real-valued function with Laplace transform W (p) =
Lt→pw satisfying the condition

W ∈ Aβ,σ0 with some σ0 > 0. (31)

For instance, w could have power-type singularities at t = 0 as in the example

w(t) =
n∑

i=1

cit
−βie−sit, W (p) =

n∑

i=1

ci
Γ(1− βi)

(p + si)1−βi

with real constants ci, si ≥ 0 and 0 ≤ βi ≤ 1 − β. Finally, we introduce the space for
the solutions M(p)

MW,σ =
{

M : M(p) = W (p) + N(p) where N ∈ Aα,σ

}
(σ ≥ σ0).

Then the following existence theorem holds.
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Theorem 1. Let beside (30) and (31) the following assumptions be fulfilled for
ν ∈ {0, 1}:

dν = (−1)1+ν
∞∑

k=1

γkµν
kϕk 6= 0 (32)

∞∑

k=1

|γk|µ1+ν
k |ϕk| < ∞ (33)

Φk ∈ A1,σ0 ,

∞∑

k=1

|γk|µν
k‖Φk‖1,σ0 < ∞ (34)

for Φk defind by (23) and σ0 > 0 from (31) and

Gν = W + Kν ∈MW,σ0 . (35)

Then there exists σ1 ≥ σ0 such that equation (28) has a unique solution M = W + N ∈
MW,σ1 .

Proof. At first we state some auxiliary inequalities for p from Re p > σ > 0. We
have the obvious inequalities

|p + µk| ≥ |p| > σ if Re p > σ > 0 (36)∣∣∣∣
µk

p + µk

∣∣∣∣ <
µk

σ + µk
< 1 if Re p > σ > 0 (37)

and from (36) it follows that
∣∣∣∣

1
p + µk

∣∣∣∣ |p|1−β ≤ 1
|p|β <

1
σβ

if Re p > σ > 0. (38)

Now, denoting N = M − W and observing Kν = Gν − W from (35), equation (28)
reduces to the equation for N

N = AN (39)

where

(AN)(p) = − 1
dν

(
N(p) + W (p)

) ∞∑

k=1

γkµν
kBk[N + W ](p) + Kν(p). (40)

The theorem holds if we prove that equation (39) has a unique solution N ∈ AW,σ1 for
some σ1 ≥ σ0.

In the sequel we show that the operator A is a contraction in the balls

Dα,σ(ρ) =
{
N ∈ Aα,σ : ‖N‖α,σ ≤ ρ

}

for suitably chosen σ ≥ σ0 and ρ > 0. For N ∈ Dα,σ(ρ) we estimate the Bk from (22).
Observing inequalities (36) - (38) and the assumption Φk ∈ A1,σ0 , we obtain

‖Bk[N + W ]‖1,σ ≤
µk|ϕk|

(
‖W‖β,σ

σβ + ‖N‖α,σ

σα

)
+ ‖Φk‖1,σ

1− ‖W‖β,σ

σβ − ‖N‖α,σ

σα

≤
µk|ϕk|

(
‖W‖β,σ

σβ + ρ
σα

)
+ ‖Φk‖1,σ

1− ‖W‖β,σ

σβ − ρ
σα

(41)
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if σ ≥ σ0 and ‖W‖β,σ

σβ + ρ
σα < 1. From (41) and assumptions (33) - (35) of the theorem

the estimation of the norm of AN

‖AN‖α,σ ≤ 1
|dν |

1

1− ‖W‖β,σ

σβ − ρ
σα

(‖W‖β,σ

σ1+β−α
+

ρ

σ

)

×
[(‖W‖β,σ

σβ
+

ρ

σα

) ∞∑

k=1

|γk|µ1+ν
k |ϕk|+

∞∑

k=1

|γk|µν
k‖Φk‖1,σ

]
+ ‖Kν‖α,σ

follows if σ ≥ σ0 and ‖W‖β,σ

σβ + ρ
σα < 1. For every ρ > ρ0 = ‖Kν‖α,σ0 we can then

choose σ2 = σ2(ρ) ≥ σ0 such that

‖AN‖α,σ ≤ ρ if σ ≥ σ2(ρ) and ρ > ρ0. (42)

Moreover, AN is a holomorphic function on Re p > σ2(ρ). This follows from the holo-
morphy of N ∈ Dα,σ(ρ),W ∈ Aβ,σ0 , Φk ∈ A1,σ0 ,Kν ∈ Aα,σ0 , Bk ∈ A1,σ and from the
uniform convergence of the series in (40) which can be seen from (41) and assumptions
(33) and (34). Therefore by (42) we have

A : Dα,σ(ρ) → Dα,σ(ρ) if σ ≥ σ2(ρ), ρ > ρ0. (43)

Next we show that the operator A is a contraction in Dα,σ(ρ) for σ ≥ σ3(ρ) with
some σ3(ρ) ≥ σ0. From (22) the difference of Bk for N1 and N2 is given by

Bk[N1 + W ]−Bk[N2 + W ] =
µk

p+µk
(ϕk + Φk)(N1 −N2)[

1− µk

p+µk
(W + N1)

] [
1− µk

p+µk
(W + N2)

] .

In view of (36) - (38) for N1, N2 ∈ Dα,σ(ρ) (σ ≥ σ0) we obtain

∥∥Bk[N1 + W ]−Bk[N2 + W ]
∥∥

1,σ
≤

|ϕk|
σα−1 + ‖Φk‖1,σ

σα

(1− ‖W‖β,σ

σβ − ρ
σα )2

‖N1 −N2‖α,σ (44)

if again σ ≥ σ0 and ‖W‖β,σ

σβ − ρ
σα < 1.

From (41) and (44) for the difference of AN1 and AN2 by (40) we derive the esti-
mation

‖AN1 −AN2‖α,σ

≤ 1
|dν |

‖N1 −N2‖α,σ

σ

∞∑

k=1

|γk|µν
k ‖Bk[N1 + W ]‖1,σ

+
1
|dν |

(‖W‖β,σ

σ1+β−α
+
‖N2‖α,σ

σ

) ∞∑

k=1

|γk|µν
k

∥∥Bk[N1 + W ]−Bk[N2 + W ]
∥∥

1,σ

≤ q(σ, ρ)‖N1 −N2‖α,σ
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where

q(σ, ρ) =
1
|dν |





(
‖W‖β,σ

σβ + ρ
σα

) ∞∑

k=1

|γk|µ1+ν
k |ϕk|+

∞∑

k=1

|γk|µν
k ‖Φk‖1,σ

σ
(
1− ‖W‖β,σ

σβ − ρ
σα

)

+

(
‖W‖β,σ

σ1+β−α + ρ
σ

) (
1

σα−1

∞∑

k=1

|γk|µν
k|ϕk|+ 1

σα

∞∑

k=1

|γk|µν
k ‖Φk‖1,σ

)

(
1− ‖W‖β,σ

σβ − ρ
σα

)2





.

For every ρ > 0 there exists σ3 = σ3(ρ) ≥ σ0 such that

‖W‖β,σ

σβ
+

ρ

σα
< 1 and q(σ, ρ) < 1 if σ ≥ σ3(ρ)

and A is a contraction in Dα,σ(ρ) for σ ≥ σ3(ρ). This together with (43) proves
that equation (39) possesses a unique solution in every ball Dα,σ(ρ) for ρ > ρ0 and
σ ≥ σ4(ρ) = max{σ2(ρ), σ3(ρ)}. Therefore a solution M of equation (28) in the space
MW,σ∞ with σ1 = minρ>ρ0 σ4(ρ) > 0 exists.

Finally, we show the uniqueness of the solution M of equation (28) in the whole
space MW,σ1 . Let M1 and M2 be two solutions of equation (28) in MW,σ1 and let
N1 = M1−W and N2 = M2−W the corresponding solutions of equation (39) in Aα,σ1 .
Let us fix some ρ1 > max{‖N1‖α,σ1 , ‖N2‖α;σ1 , ρ0}. Then ‖Ni‖α,σ1 ≤ ρ1 (i = 1, 2).
By the monotonicity of the norm ‖ · ‖α,σ with respect to σ and σ4(ρ1) ≥ σ1 we have
‖Ni‖α,σ4(ρ1) ≤ ‖Ni‖α,σ1 ≤ ρ1. Hence Ni ∈ Dα,σ4(ρ1)(ρ1) (i = 1, 2). In this ball
uniqueness of the solution N has already been shown. This proves that N1 = N2 and
consequently M1 = M2. Theorem 1 is completely proved

Remark 1. If the relation

Kν(p) =
1
dν

W (p)
∞∑

k=1

γkµν
kBk[W ](p)

between the functions W (p) and Kν(p), respectively Gν(p) holds, equation (39) with
(40) has the unique solution N = 0, i.e. M = W (p) is the solution to equation (28).

Corollary 1. Under the assumptions of Theorem 1 the inverse problems (1) - (4)
and (1) - (3), (5) have the unique solutions m of the form

m(t) = w(t) +
1

2πi

ζ+iγ∫

ζ−iγ

etpN(p)dp (ζ > σ1) (45)

with N ∈ Aα,σ1 .
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Since α > 1 by (30), this follows from a known inversion formula for the Laplace
transform (cf. [2: Theorem 21.3]). From representation (43) we have an estimation for
m of the form

|m(t)− w(t)| ≤ C1e
tσ1 (t > 0)

with positive constants C1 and σ1 and the limit (cf. [2: Theorem 24.5])

m(t)− w(t) → 0 for t → +0.

By (45) also stability estimates for m could be derived via stability estimates for N
obtainable in usual way.

From the physical point of view the existence of memory kernels m with the stronger
property of exponential decay (instead of the proven exponential growth) is important.
For this it has to be shown that the solutions M of equations (28) can be analytically
continued into a half-plane of the form Re p > σ1 with some σ1 < 0. But no simple
sufficient conditions on the data are known which guarantee this and also other basic
physically relevant properties as positiveness and monotonous decreasing of the memory
kernel m.

Further we discuss assumptions (34) and (35) of Theorem 1. For this end we state
two lemmata which can be easily proved using integration by parts and Hölder’s in-
equality.

Lemma 1. Let g be an absolutely continuous function on t ≥ 0 satisfying

g(0) = 0 and e−σtg′(t) ∈ Lγ(0,∞) (γ = 1
2−α ) (46)

for some σ ≥ 0 and α > 1. Then Lt→p(g) ∈ Aα,σ.

Lemma 2. Let g be an absolutely continuous function on t ≥ 0 satisfying

e−σtg′(t) ∈ L1(0,∞) (47)

for some σ ≥ 0. Then Lt→p(g) ∈ A1,σ and we have the estimation

‖Lt→p(g)‖1,σ ≤ |g(0)|+
∞∫

0

e−σt|g′(t)| dt. (48)

From definition (23) of Φk and (36) we obtain

‖Φk‖1,σ0 ≤ ‖Rk‖1,σ0 + 2µk|ϕk|. (49)

Let now the functions rk be absolutely continuous on t ≥ 0 and satisfying

e−σ0tṙk(t) ∈ L1(0,∞). (50)

Then by Lemma 2 we have Rk ∈ A1,σ0 and hence also Φk ∈ A1,σ0 . Further, by (48)
and (49)

∞∑

k=1

|γk|µν
k‖Φk‖1,σ0 ≤

∞∑

k=1

|γk|µν
k


|rk(0)|+

∞∫

0

e−σ0t|ṙk(t)| dt


 + 2

∞∑

k=1

|γk|µ1+ν
k |ϕk|

< ∞
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follows if (33) and the condition

∞∑

k=1

|γk|µν
k


|rk(0)|+

∞∫

0

e−σ0t|ṙk(t)| dt


 < ∞ (51)

hold. So (34) is satisfied if beside (33) the assumptions (50) and (51) are fulfilled.

Condition (35) means that Kν ∈ Aα,σ0 . For ν = 0 by (27) this is equivalent to the
condition

G0(p)−W (p) ∈ Aα,σ0 (52)

where

G0(p) =
1
d0

[
Lt→p(h0) + h(0)−

∞∑

k=1

γkϕk

]
(53)

with

h0(t) = h′(t) +
∞∑

k=1

γkµkϕke−µkt −
∞∑

k=1

γkrk(t) +
∞∑

k=1

γkµk

t∫

0

e−µk(t−τ)rk(τ) dτ. (54)

Here we used the known relation L(e−µkt) = 1
p+µk

and the formulas for the Laplace
transform of derivative and convolution.

By (31) with β ≤ 1 and (52) with α > 1 it follows that it must be limRe p→∞G0(p) =
0 which by (53) implies the compatibility condition (cf. [21])

h(0) =
∞∑

k=1

γkϕk. (55)

If this is fulfilled, we can apply Lemma 1 to the function g(t) = 1
d0

h0(t)−w(t). Therefore
the absolute continuity of g and the further compatibility condition

1
d0

h0(t)− w(t)
∣∣∣
t=0

= 0 (56)

and the condition

e−σ0t

(
1
d0

h0(t)− w(t)
)′
∈ Lγ(0,∞) (γ = 1

2−α ) (57)

are sufficient for (52) and hence for (35) in the case ν = 0.

Analogously, for ν = 1 in (35) we have to insure the condition

G1(p)−W (p) ∈ Aα,σ0 (58)
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where by (21)

G1(p) =
1
d1

[
Lt→p(h1) + p

(
h(0)−

∞∑

k=1

γkϕk

)

+

(
h′(0) +

∞∑

k=1

γkµkϕk −
∞∑

k=1

γkrk(0)

)] (59)

with

h1(t) = h′′(t)−
∞∑

k=1

γkµ2
kϕke−µkt +

∞∑

k=1

γkµkrk(t)

−
∞∑

k=1

γkṙk(t)−
∞∑

k=1

γkµ2
k

t∫

0

e−µk(t−τ)rk(τ)dτ.

(60)

This leads to the compatibility conditions (cf. [21] again)

h(0) =
∞∑

k=1

γkϕk

h′(0) +
∞∑

k=1

γkµkϕk =
∞∑

k=1

γkrk(0).





(61)

If in addition the function ĝ(t) = 1
d1

h1(t)−w(t) is absolutely continuous and the further
compatibility condition

1
d1

h1(t)− w(t)
∣∣∣
t=0

= 0 (62)

and the summability condition

e−σ0t

(
1
d1

h1(t)− w(t)
)′
∈ Lγ(0,∞) (γ = 1

2−α ) (63)

are satisfied, relation (58) follows. This means that assumptions (61) - (63) are sufficient
for (35) in the case ν = 1.

We summarize these results in

Theorem 2. Let beside (30) and (31) assumptions (32), (33) and (50), (51) for
ν = 0, 1 as well as conditions (55) - (57) with (54) in the case ν = 0 and (61) - (63) with
(60) in the case ν = 1 be satisfied. Then the inverse problems (1) - (4) for ν = 1 and
(1) - (3), (5) for ν = 0 have the unique solutions m of the form (45) where N ∈ Aα,σ1

with some σ1 ≥ σ0.
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3. Statement of problems in viscoelasticity

We deal with the linear hyperbolic integro-differential equation

ρutt − div (λ∇u) +

t∫

0

m(t− τ) div(λ∇u(x, τ)) dτ = f (64)

in the cylinder Ω = D × {t > 0}, where again D is a bounded domain in RN with
piecewise smooth boundary S and ρ, λ are given positive continuous functions on D, f
is a given continuous function on Ω (cf. [13] or [21]).

In the case N = 1 equation (64) appears for inelastic wave propagation in a material
governed by the Boltzmann stress-strain relation

σ(x, t) = λ(x)


ε(x, t)−

t∫

0

m(t− τ)ε(x, τ) dτ




between the strain ε and the stress σ, where ε = ∂u
∂x with the displacement u which is

supposed as zero if t < 0. Then ρ denotes the mass density and f the force density.
Besides equation (64) the function u satisfies the initial and boundary conditions

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) on D (65)

u(x, t) = 0 or λ
∂u

∂n
+ µu = 0 on Σ = S × {t > 0} (66)

with given continuous functions ϕ,ψ on D and µ ≥ 0 on S, where n again denotes the
outer normal to S.

In the inverse problem we have to find the kernel m such that the corresponding
function u satisfies equations (64) - (66) and an additional condition of the form (4) or
(5). In particular, (4) now contains the case of displacement observation and (5) the
case of the observation of the traction.

The solution u of the direct problem (64) - (66) is again taken in the form of the
Fourier series (6) with β replaced by ρ in equation (7) for the eigenfunctions. In view
of (64) and (65) the coefficient functions ak in (6) now satisfy the initial value problem

äk(t) + µkak(t)− µk

t∫

0

m(t− τ)ak(τ) dτ = rk(t)

ak(0) = ϕk, ȧk(0) = ψk





(67)

where

ϕ(x) =
∞∑

k=1

ϕkvk(x)

ψ(x) =
∞∑

k=1

ψkvk(x)

r(x, t) ≡ f

ρ
=

∞∑

k=1

rk(t)vk(x).




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The additional conditions (4) and (5) again take the form (10) and (11), respectively.
As above in the heat conduction problem at this moment we suppose only the

existence of the Fourier coefficients ϕk, ψk and rk(t) shifting specifying conditions on
them to assumptions (81), (82) for the inverse problems in Theorem 3. For an absolutely
continuous kernel m the conditions ϕ ∈ H̊1(D) or ϕ ∈ H1(D), for the first or third
boundary condition respectively, ψ ∈ L2(D) and r ∈ L2(ΩT ) are sufficient for the
existence of a solution u ∈ H1(ΩT ) of the direct problem (64) - (66) for any T > 0.

Applying the Laplace transform to (67), we obtain the equation

p2Ak(p)− pϕk − ψk + µkAk(p)− µkM(p)Ak(p) = Rk(p) (68)

where Ak,M and Rk are the Laplace transforms of ak,m and rk, respectively. From
(68) the relations for Ak

Ak(p) =
µk

p2 + µk
M(p)Ak(p) +

pϕk + ψk + Rk(p)
p2 + µk

(69)

and

Ak(p) =
1

1− µk

p2+µk
M(p)

· pϕk + ψk + Rk(p)
p2 + µk

(70)

follow. Equations (10) and (11) for the additional conditions (4) and (5) in the inverse
problems are transformed to the equations (15) and (16) again.

In the first inverse problem with condition (4), from (15) observing (69) we obtain
the equation for M(p)

M(p)
∞∑

k=1

γk
µk

p2 + µk
Ak(p) = H(p)−

∞∑

k=1

γk
pϕk + ψk + Rk(p)

p2 + µk
.

Multiplying this equation by p3 and introducing d1 by (18) again, we get the equation
for M(p)

M(p) = − 1
d1

M(p)
∞∑

k=1

γkµkBk(p) + G1(p) (71)

where

Bk(p) = Bk[M ](p) =
p3

p2 + µk
Ak(p)− ϕk (72)

with Ak = Ak[M ] given by (70) and

G1(p) =
p3

d1

(
H(p)−

∞∑

k=1

γk
pϕk + ψk + Rk(p)

p2 + µk

)
. (73)

By (72) and (70) the explicit expression for Bk

Bk(p) =
1

1− µk

p2+µk
M(p)

[
µk

p2 + µk
ϕkM(p) + Φk(p)

]
(74)
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follows where

Φk(p) =
p3

(p2 + µk)2
(
ψk + Rk(p)

)− 2µkp2 + µ2
k

(p2 + µk)2
ϕk. (75)

In the second inverse problem with condition (5), from (16) and (69) the equation
for M(p) writes

M(p)
∞∑

k=1

γk

[
µk

p2 + µk
− 1

]
Ak(p) = H(p)−

∞∑

k=1

γk
pϕk + ψk + Rk(p)

p2 + µk
. (76)

Multiplying this equation by p and introducing d0 by (25) again, the equation for M(p)

M(p) = − 1
d0

M(p)
∞∑

k=1

γkBk(p) + G0(p) (77)

follows where Bk = Bk[M ] are given by (74) and

G0(p) =
p

d0

(
H(p)−

∞∑

k=1

γk
pϕk + ψk + Rk(p)

p2 + µk

)
. (78)

4. Existence theorem in viscoelasticity

Equations (71) and (77) for M(p) have the fixed point form

M(p) = − 1
dν

M(p)
∞∑

k=1

γkµν
kBk[M ](p) + Gν(p) (79)

where again ν = 1 in the first inverse problem and ν = 0 in the second one. The
functions Bk are given by (74) with (75), the constants dν and functions Gν are defined
by (18), (25) and (73), (78), respectively.

Let α be a real number with 1 < α ≤ 2. We introduce the solution space

Nc,σ =
{

M : M(p) =
c

p
+ N(p) where N ∈ Aα,σ

}
(σ > 0)

for given real constant c, where the space Aα,σ is defined as above in the case of heat
conduction. The choice of Nc,σ means that in the viscoelastic case we deal with smooth
memory kernels only, for reasons of simplicity.

Then the following existence theorem holds.
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Theorem 3. Let be 1 < α ≤ 2 and let the following assumptions be fulfilled for
ν ∈ {0, 1} :

dν = (−1)1+ν
∞∑

k=1

γkµν
kϕk 6= 0 (80)

∞∑

k=1

|γk|µ1+ν
k |ϕk| < ∞ (81)

Φk ∈ A1,σ0 ,

∞∑

k=1

|γk|µν
k‖Φk‖1,σ0 < ∞ (82)

for Φk defined by (75) and some σ0 > 0, and

Gν =
c

p
+ Kν ∈ Nc,σ0 . (83)

Then there exists σ1 ≥ σ0 such that equation (79) has a unique solution M = c
p + N ∈

Nc,σ1 .

Proof. At first we prove two further auxiliary inequalities for p from Re p > σ > 0.
We have

|p2 + µk|2 = (Re2p− Im2p + µk)2 + 4(Re p Im p)2

= Re2p(Re2p + 2Im2p + 2µk) + (Im2p− µk)2

≥ Re2p(|p|2 + 2µk)

implying the inequality

|p2 + µk| > σ
√
|p|2 + 2µk > max{σ

√
2µk, σ2} (84)

for Re p > σ > 0. Further, by the first inequality of (84), |p2 + µk| > σ|p| holds. Hence
we obtain

∣∣∣∣
1
p

µk

p2 + µk

∣∣∣∣ =
∣∣∣∣
1
p
− p

p2 + µk

∣∣∣∣ ≤
1
|p| +

|p|
|p2 + µk| <

1
|p| +

|p|
σ|p| <

2
σ

,

i.e. ∣∣∣∣
1
p

µk

p2 + µk

∣∣∣∣ <
2
σ

if Re p > σ > 0. (85)

Now, denoting N = M − c
p and observing (83), equation (79) reduces to the equation

for N
N = AN (86)

where

(AN)(p) = − 1
dν

(
N(p) +

c

p

) ∞∑

k=1

γkµν
kBk

[
N +

c

p

]
(p) + Kν(p). (87)

As in the proof of Theorem 1 we will show that the operator A is a contraction in the
balls Dα,σ(ρ) for suitably chosen parameter σ ≥ σ0 and radius ρ > 0.
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For N ∈ Dα,σ(ρ) we estimate the Bk from (74). Due to the assumption Φk ∈ A1,σ0

and inequality (84) we have

∥∥∥Bk

[
N +

c

p

]∥∥∥
1,σ

≤
µk|ϕk|

(
|c|
σ2 + ‖N‖α,σ

σ1+α

)
+ ‖Φk‖1,σ

1− 2
(
|c|
σ + ‖N‖α,σ

σα

)

≤
µk|ϕk|

(
|c|
σ2 + ρ

σ1+α

)
+ ‖Φk‖1,σ

1− 2
(
|c|
σ + ρ

σα

)
(88)

if σ ≥ σ0 and |c|
σ + ρ

σα < 1
2 . From (88) and assumptions (81) - (83) of the theorem the

estimation of the norm of AN

‖AN‖α,σ ≤ 1
|dν |

1

1− 2
( |c|

σ + ρ
σα

)
( |c|

σ2−α
+

ρ

σ

)

×
[( |c|

σ2
+

ρ

σ1+α

) ∞∑

k=1

|γk|µ1+ν
k |ϕk|+

∞∑

k=1

|γk|µν
k ‖Φk‖1,σ

]
+ ‖Kν‖α,σ

follows if σ ≥ σ0 and |c|
σ + ρ

σα < 1
2 . For every ρ > ρ0 = ‖Kν‖α,σ0 , we can then choose

σ2 = σ2(ρ) ≥ σ0 such that

‖AN‖α,σ ≤ ρ if σ ≥ σ2(ρ) and ρ > ρ0. (89)

Furthermore, as in the proof of Theorem 1 we can show that AN is a holomorphic
function on Re p > σ2(ρ). Therefore, by (89) we again have

A : Dα,σ(ρ) → Dα,σ(ρ) if σ ≥ σ2(ρ) and ρ > ρ0. (90)

For proving that A is a contraction in Dα,σ(ρ) for σ ≥ σ3(ρ) with some σ3(ρ) ≥ σ0,
we estimate the difference of Bk for N1 and N2 by (74) and using the inequalities (84)
and (85). This gives

∥∥∥Bk

[
N1 +

c

p

]
−Bk

[
N2 +

c

p

]∥∥∥
1,σ

≤
µk|ϕk|
σ1+α + 2‖Φk‖1,σ

σα[
1− 2

( |c|
σ + ρ

σα

)]2 ‖N1 −N2‖α,σ (91)

if again σ ≥ σ0 and |c|
σ + ρ

σα < 1
2 . From (88) and (91) for the difference of AN1 and

AN2 in Dα,σ(ρ) by (87) we have the estimation

‖AN1 −AN2‖α,σ ≤ q(σ, ρ)‖N1 −N2‖α,σ

where

q(σ, ρ) =
1
|dν |





(
|c|
σ2 + ρ

σ1+α

) ∑∞
k=1|γk|µ1+ν

k |ϕk|+
∑∞

k=1|γk|µν
k‖Φk‖1,σ

σ
[
1− 2

( |c|
σ + ρ

σα

)]

+

(
|c|

σ2−α + ρ
σ

) (
1

σ1+α

∞∑

k=1

|γk|µ1+ν
k |ϕk|+ 2

σα

∞∑

k=1

|γk|µν
k‖Φk‖1,σ

)

[
1− 2

( |c|
σ + ρ

σα

)]2





.
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For every ρ > 0 there exists σ3 = σ3(ρ) ≥ σ0 such that

|c|
σ

+
ρ

σα
<

1
2

and q(σ, ρ) < 1 if σ ≥ σ3(ρ)

and A is a contraction in Dα,σ(ρ) for σ ≥ σ3(ρ). This together with (90) implies
that equation (86) possesses a unique solution in every ball Dα,σ(ρ) for ρ > ρ0 and
σ ≥ σ4(ρ) = max{σ2(ρ), σ3(ρ)}. Therefore a solution M of equation (79) in the space
Nc,σ1 with σ1 = minρ>ρ0 σ4(ρ) > 0 exists for which uniqueness can be shown as in the
proof of Theorem 1. So Theorem 3 is completely proved

Corollary 2. Under the assumptions of Theorem 2 the inverse problems (64) -
(66), (4) and (64) - (66), (5) have the unique solution m of the form

m(t) = c +
1

2πi

ζ+i∞∫

ζ−i∞

etpN(p) dp (ζ > σ1) (92)

with N ∈ Aα,σ1 .

From (92) the relation m(0) = c and the estimation |m(t)| ≤ C1 etσ1 (t > 0) follow
with positive constants C1 and σ1. By (92) also stability estimates for m could be
derived via deriving stability estimates for N .

As in the heat conduction case above no simple sufficient conditions on the data are
known which guarantee positiveness and monotonous exponentially decreasing of m.

Further, we discuss assumptions (82) and (83) of Theorem 3. For estimating the
function Φk defined in (75) we at first show that

∣∣∣∣
p3

(p2 + µk)2

∣∣∣∣ ≤ C2(1 +
√

µk) for Re p > σ0 (93)

with some positive constants σ0 and C2 = C2(σ0). Using inequalies (84) and (85), and
2|p|√µk ≤ |p|2 + µk, we have

∣∣∣∣
p3

(p2 + µk)2

∣∣∣∣ =
∣∣∣∣
1
p
− 2pµk

(p2 + µk)2
− µ2

k

p(p2 + µk)2

∣∣∣∣

≤ 1
|p| +

(|p|2 + µk)
√

µk

σ2
0(|p|2 + 2µk)

+
µk

σ0

√
|p|2 + 2µk

∣∣∣∣
µk

p(p2 + µk)

∣∣∣∣

≤ 1
|p| +

√
µk

σ2
0

+
µk

σ0

√
2µk

· 2
σ0

≤ 1
σ0

+
√

µk

σ2
0

(1 +
√

2)
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from which (93) follows. By (93) and again (84) and (85) now we obtain

|p| |Φk(p)| =
∣∣∣∣

p3

(p2 + µk)2
pRk(p) +

(
1− 2p2µk + µ2

k

(p2 + µk)2

)
ψk − 2µkp3 + µ2

kp

(p2 + µk)2
ϕk

∣∣∣∣

≤ C2(1 +
√

µk)|p| |Rk(p)|+
(
1 +

2
σ2

0

µk

)
|ψk|

+ µk

[
2C2(1 +

√
µk) +

1
σ2

0

1
2
√

µk

]
|ϕk|

≤ C3

[
(1 +

√
µk)|p| |Rk(p)|+ (1 + µk)|ψk|+ µ

3
2
k |ϕk|

]
.

Consequently, we have the estimation

‖Φk‖1,σ0 ≤ C3[1 +
√

µk)‖Rk‖1,σ0 + (1 + µk)|ψk|+ µ
3
2
k |ϕk|] (94)

with some positive constant C3.
Let now the functions rk be absolutely continuous on t ≥ 0 and satisfying (50).

Then by Lemma 2 again we have Rk ∈ A1,σ0 and hence also Φk ∈ A1,σ0 . Further, by
(48) and (94),

∑∞
k=1 |γk|µν

k‖Φk‖1,σ0 < ∞ follows if (81) and the conditions

∞∑

k=1

|γk|µ
1
2+ν

k


|rk(0)|+

∞∫

0

e−σ0t|ṙk(t)|dt


 < ∞

∞∑

k=1

|γk|µ
3
2+ν

k |ϕk| < ∞
∞∑

k=1

|γk|µ1+ν
k |ψk| < ∞





(95)

hold. So (82) (and (81)) are satisfied if assumptions (50) and (95) are fulfilled.
Finally, as in the case of heat conduction we can show that (83) is satisfied if some

compatibility conditions and a summability condition are fulfilled. In the case ν = 0 we
introduce the function

h2(t) = h′(t) +
∞∑

k=1

γkµ
1
2
k ϕk sin

√
µkt

−
∞∑

k=1

γkψk cos
√

µkt−
∞∑

k=1

γk

t∫

0

rk(τ) cos
√

µk(t− τ)dτ.

(96)

Then in the case ν = 0 the formula for c

c =
1
d0

(
h′(0)−

∞∑

k=1

γkψk

)
, (97)
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the compatibility condition (cf. [21])

h(0) =
∞∑

k=1

γkϕk (98)

and the summability condition

e−σoth′2(t) ∈ Lγ(0,∞) (γ = 1
2−α ) (99)

are sufficient for (83).
In the case ν = 1 we define the function

h3(t) = h′′′(t)−
∞∑

k=1

γkµ
3
2
k ϕk sin

√
µkt +

∞∑

k=1

γkµkψk cos
√

µkt

+
∞∑

k=1

γkµk

t∫

0

rk(τ) cos
√

µk(t− τ) dτ −
∞∑

k=1

γkṙk(t).

(100)

Then in the case ν = 1 the formula for c

c =
1
d1

(
h′′′(0) +

∞∑

k=1

γkµkψk −
∞∑

k=1

γkṙk(0)

)
, (101)

the compatibility conditions (cf. [21] again)

h(0) =
∞∑

k=1

γkϕk

h′(0) =
∞∑

k=1

γkψk

h′′(0) =
∞∑

k=1

γk[rk(0)− µkϕk]





(102)

and the summability condition

e−σ0th′3(t) ∈ Lγ(0,∞) (γ = 1
2−α ) (103)

are sufficient for (83).
Summing up we obtain

Theorem 4. Let be 1 < α ≤ 2 and beside (80) the assumptions (50) and (95) for
ν = 0, 1 as well as the conditions (98) and (99) with (96) in the case ν = 0 and the
conditions (102) and (103) with (100) in the case ν = 1 be satisfied. Then the inverse
problems (64) - (66), (4) for ν = 1 and (64) - (66), (5) for ν = 0 have the unique solution
m of the form (92), where N ∈ Aα,σ1 with some σ1 ≥ σ0 and the constant c = m(0) is
given by (101) in the case ν = 1 and (97) in the case ν = 0.
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