
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 19 (2000), No. 2, 511–528

Multiple Solutions
for a

System of (ni, pi) Boundary Value Problems

P. J. Y Wong and R. P. Agarwal

Abstract. We consider the system of boundary value problems

u
(ni)
i (t) + fi(t, u1(t), . . . , um(t)) = 0

u
(j)
i (0) = 0

u
(pi)
i (1) = 0

9
>>=
>>;

for t ∈ [0, 1], i = 1, . . . , m and 0 ≤ j ≤ ni−2 where ni ≥ 2 and 1 ≤ pi ≤ ni−1. Several criteria
are offered for the existence of single and twin solutions of the system that are of fixed signs.
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1. Introduction

In this paper we shall consider the system of boundary value problems

u
(ni)
i (t) + fi(t, u1(t), . . . , um(t)) = 0

u
(j)
i (0) = 0

u
(pi)
i (1) = 0





(1.1)

for t ∈ [0, 1], i = 1, . . . , m and 0 ≤ j ≤ ni−2. Throughout, for each i, it is assumed that
ni ≥ 2 and 1 ≤ pi ≤ ni − 1. A solution u = (u1, . . . , um) of system (1.1) will be sought
in B = (C[0, 1])m = C[0, 1]×· · ·×C[0, 1] (m times). We say that u is a solution of fixed
sign if for each 1 ≤ i ≤ m we have γiui ≥ 0 on [0, 1] where γi ∈ {1,−1}. Throughout,
with γi ∈ {1,−1} given, we define

K =
{

u = (u1, . . . , um) ∈ B
∣∣∣ γiui ≥ 0 for all 1 ≤ i ≤ m

}
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and

K+ = K\0 =
{

u = (u1, . . . , um) ∈ K
∣∣∣ γjuj > 0 for some j ∈ {1, . . . , m}

}
.

For each 1 ≤ i ≤ m, it is assumed that fi is continuous on [0, 1]×K.
The aim of this paper is to provide various conditions on the nonlinearities fi (1 ≤

i ≤ m) so that system (1.1) has single as well as twin solutions that are of fixed signs.
Specifically, we shall consider two cases. The first is when fi (1 ≤ i ≤ m) satisfy certain
‘fixed-sign’ condition, namely,

(A)
{

γifi(t, u1, . . . , um) ≥ 0 if (t, u) ∈ [0, 1]×K

γifi(t, u1, . . . , um) > 0 if (t, u) ∈ [0, 1]×K+

and the second is when condition (A) is relaxed.
There are numerous recent investigations on the existence of solutions of boundary

value problems, these are well documented in the monographs [1, 2, 4, 5]. In fact,
particular cases of system (1.1) when m = 1 arise in various physical phenomena such as
gas diffusion through porous media, nonlinear diffusion generated by nonlinear sources,
thermal self-ignition of a chemically active mixture of gases in a vessel, catalysis theory,
chemically reacting systems, infectious diseases, adiabatic tubular reactor processes,
as well as concentration in chemical or biological problems [7 - 10, 14, 15, 18, 19].
Our present work extends the vast literature on boundary value problems to a system
of boundary value problems. For other related work on systems of boundary value
problems, we refer to recent contributions of [3, 6, 20 - 23]. It is noted that in all
these works, the criteria developed are different from our current work, and some of the
systems are not as general as what we are considering here.

The outline of the paper is as follows. In Section 2 we shall state Krasnosel’skii’s
fixed point theorem in a cone and present some inequalities for a certain Green’s function
which are needed later. Under the assumption of condition (A), the existence of single
and twin fixed-sign solutions of system (1.1) is treated in Sections 3 and 4, respectively.
Finally, in Sections 5 and 6 we discuss the case when condition (A) is removed.

2. Preliminaries

In this section we shall state Krasnosel’skii’s fixed point theorem in a cone which is used
later to establish existence criteria for the solution of system (1.1). Certain inequalities
involving Green’s function related to system (1.1) are also included. These inequalities
are important in defining an appropriate cone which is essential in Krasnosel’skii’s fixed
point theorem.

Theorem 2.1 (see [17]). Let B = (B, ‖ · ‖) be a Banach space, and let C ⊂ B be a
cone in B. Assume Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 and Ω1 ⊂ Ω2, and let

S : C ∩ (Ω2\Ω1) → C

be a completely continuous operator such that either
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(a) ‖Su‖ ≤ ‖u‖ (u ∈ C ∩ ∂Ω1) and ‖Su‖ ≥ ‖u‖ (u ∈ C ∩ ∂Ω2)

or

(b) ‖Su‖ ≥ ‖u‖ (u ∈ C ∩ ∂Ω1) and ‖Su‖ ≤ ‖u‖ (u ∈ C ∩ ∂Ω2).

Then S has a fixed point in C ∩ (Ω2\Ω1).

To obtain a solution of system (1.1), we require a mapping whose kernel Gi(t, s) is
Green’s function of the (ni, pi) boundary value problem

−y(ni)(t) = 0

y(j)(0) = 0

y(pi)(1) = 0





(2.1)

for t ∈ [0, 1] and 0 ≤ j ≤ ni − 2. It is known (see [4: p. 191]) that

Gi(t, s) = 1
(ni−1)!

{
tni−1(1− s)ni−pi−1 − (t− s)ni−1 if s ∈ [0, t]
tni−1(1− s)ni−pi−1 if s ∈ [t, 1]

(2.2)

and
∂j

∂tj
Gi(t, s) ≥ 0 (2.3)

for 0 ≤ j ≤ pi and (t, s) ∈ [0, 1]× [0, 1].

Lemma 2.1 (see [4: p. 192]). For (t, s) ∈ [ 14 , 3
4 ]× [0, 1] we have

Gi(t, s) ≥
(

1
4

)ni−1 1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ].

Lemma 2.2 (see [4: p. 191]). For pi ≥ 1 and (t, s) ∈ [0, 1]× [0, 1] we have

Gi(t, s) ≤ 1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ].

Throughout, we shall denote the interval I = [ 14 , 3
4 ].

3. Existence of a fixed-sign solution under condition (A)

In this section we shall tackle the existence of a fixed-sign solution when fi (1 ≤
i ≤ m) fulfil condition (A). To begin, let the Banach space B = (C[0, 1])m. For
u = (u1, . . . , um) ∈ B define the norm

‖u‖ = max
1≤i≤m

sup
t∈[0,1]

|ui(t)| = max
1≤i≤m

|ui|0

where we denote |ui|0 = supt∈[0,1] |ui(t)| (1 ≤ i ≤ m). Define the operator S : B → B
by

Su(t) =
(
S1u(t), . . . , Smu(t)

)
(3.1)
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for t ∈ [0, 1] where

Siu(t) =
∫ 1

0

Gi(t, s) fi

(
s, u1(s), . . . , um(s)

)
ds (3.2)

for t ∈ [0, 1] and 1 ≤ i ≤ m. Clearly, a fixed point of the operator S is a solution of
system (1.1). Let

C =

{
u =

(
u1, . . . , um

) ∈ B

∣∣∣∣∣
for each 1 ≤ i ≤ m, γiui(t) ≥ 0 for t ∈ [0, 1]

and min t∈I γiui(t) ≥
(

1
4

)ni−1|ui|0

}
. (3.3)

It is noted that C is a cone in B. Further, C ⊂ K. If u ∈ C is a solution of system
(1.1), then obviously u is a fixed-sign solution of that system.

Lemma 3.1. The operator S maps C into itself.

Proof. Let u ∈ C (⊂ K). In view of condition (A) and (2.3), we obtain for
t ∈ [0, 1] and 1 ≤ i ≤ m

γiSiu(t) =
∫ 1

0

Gi(t, s)γifi

(
s, u1(s), . . . , um(s)

)
ds ≥ 0. (3.4)

Next, application of (3.4) and Lemma 2.2 yields

|Siu(t)| = γiSiu(t)

≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ] γifi

(
s, u1(s), . . . , um(s)

)
ds

for all t ∈ [0, 1] and 1 ≤ i ≤ m. Consequently,

|Siu|0 ≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]

× γifi

(
s, u1(s), u2(s), . . . , um(s)

)
ds

(3.5)

for all 1 ≤ i ≤ m. Now, using (3.4), Lemma 2.1 and (3.5), for each 1 ≤ i ≤ m and t ∈ I
we find

γiSiu(t) ≥
∫ 1

0

(
1
4

)ni−1 1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ] γifi

(
s, u1(s), . . . , um(s)

)
ds

≥ (
1
4

)ni−1|Siu|0.

Hence
min
t∈I

γiSiu(t) ≥ (
1
4

)ni−1|Siu|0 (3.6)

for 1 ≤ i ≤ m. Coupling (3.4) and (3.6), we obtain S(C) ⊆ C. Also, the standard
arguments yield that S is completely continuous



Multiple Solutions for a System of Boundary Value Problems 515

Theorem 3.1. Suppose there exist two constants λ and η (6= λ) such that the
following conditions are satisfied:

(C1) For each 1 ≤ i ≤ m, we have

γifi(t, u1, . . . , um) ≤ λai

for (t, |u1|, . . . , |um|) ∈ [0, 1]× [0, λ]m where

ai =
{∫ 1

0

1
(ni−1)! (1− x)ni−pi−1[1− (1− x)pi ] dx

}−1

. (3.7)

(C2) For some 1 ≤ i ≤ m, we have

γifi(t, u1, . . . , um) ≥ ηbi

for all (t, |u1|, . . . , |um|) ∈ I ×Kj and j = 1, . . . , m where

Kj =

{
(v1, . . . , vm)

∣∣∣∣∣ vj ∈
[(

1
4

)nj−1
η, η

]
and vk ∈ [0, η] for k 6= j

}
(3.8)

and

bi =
[∫

x∈I

Gi

(
1
4 , x

)
dx

]−1

. (3.9)

Then system (1.1) has a fixed-sign solution u∗ such that

min{λ, η} ≤ ‖u∗‖ ≤ max{λ, η}. (3.10)

Proof. We shall employ Theorem 2.1. For this, let

Ω1 =
{
u ∈ B : ‖u‖ < λ

}
and Ω2 =

{
u ∈ B : ‖u‖ < η

}
.

We shall show that

(i) ‖Su‖ ≤ ‖u‖ for u ∈ C ∩ ∂Ω1

(ii) ‖Su‖ ≥ ‖u‖ for u ∈ C ∩ ∂Ω2.

To justify statement (i), let u ∈ C ∩ ∂Ω1. So ‖u‖ = λ. Applying (3.4), Lemma 2.2 and
condition (C1), we get for t ∈ [0, 1] and 1 ≤ i ≤ m

|Siu(t)| = γiSiu(t)

≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ] γifi

(
s, u1(s), . . . , um(s)

)
ds

≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]λai ds

= λ

= ‖u‖.
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Hence, |Siu|0 ≤ ‖u‖ for 1 ≤ i ≤ m and so ‖Su‖ = max1≤i≤m |Siu|0 ≤ ‖u‖.
Next, to verify statement (ii), let u ∈ C ∩ ∂Ω2. Then ‖u‖ = η. Suppose that

‖u‖ = |uj |0 for some j ∈ {1, . . . , m}. Since u ∈ C, it is clear that |uj(t)| ∈
[(

1
4

)nj−1
η, η

]
for t ∈ I. Further, |uk(t)| ∈ [0, η] for k 6= j and t ∈ I. Now, using condition (C2), we
find for some i ∈ {1, . . . , m}

∣∣Siu
(

1
4

)∣∣ = γiSiu
(

1
4

)

≥
∫

s∈I

Gi

(
1
4 , s

)
γifi

(
s, u1(s), . . . , um(s)

)
ds

≥
∫

s∈I

Gi

(
1
4 , s

)
ηbi ds

= η

= ‖u‖.
Consequently, |Siu|0 ≥ ‖u‖ and so ‖Su‖ ≥ ‖u‖.

Having obtained statements (i) and (ii), we conclude from Theorem 2.1 that S has
a fixed point u∗ ∈ C ∩ (Ω2\Ω1) or C ∩ (Ω1\Ω2). Therefore, (3.10) holds

Let M = {1, 2, . . . , m}. For 1 ≤ i, j ≤ m, we introduce the following definitions:

max f i,j
0 = lim

max1≤k≤m |uk|→0+
max

t∈[0,1]

γifi(t, u1, . . . , um)
|uj |

min f i,j
0 = lim

|uj |→0+
min

t∈[0,1]
|uk|∈[0,∞), k∈M\{j}

γifi(t, u1, . . . , um)
|uj |

max f i,j
∞ = lim

min1≤k≤m |uk|→∞
max

t∈[0,1]

γifi(t, u1, . . . , um)
|uj |

min f i,j
∞ = lim

|uj |→∞
min

t∈[0,1]
|uk|∈[0,∞), k∈M\{j}

γifi(t, u1, . . . , um)
|uj | .

Lemma 3.2. Suppose, for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m, that one of the
conditions

max f i,j
0 ∈ [0, ai) (3.11)

or
max f i,j

∞ ∈ [0, ai) (3.12)

is satisfied. Then condition (C1) holds for some λ > 0.

Proof. First, we shall show that (3.11) leads to (C1). Let ε = ai−max f i,j
0 (> 0).

Clearly, there exists λ > 0 (λ can be chosen arbitrarily small) such that

max
t∈[0,1]

γifi(t, u1, . . . , um)
|uj | ≤ max f i,j

0 + ε = ai

for all (|u1|, . . . , |um|) ∈ [0, λ]m. For each 1 ≤ i ≤ m, this subsequently implies

γifi(t, u1, u2, . . . , um) ≤ ai|uj | ≤ aiλ
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for all (t, |u1|, . . . , |um|) ∈ [0, 1]× [0, λ]m, i.e. condition (C1) holds.
Next, assume that (3.12) holds. Let δ = ai − max f i,j

∞ (> 0). Then there exists
θ > 0 (θ can be chosen arbitrarily large) such that

max
t∈[0,1]

γifi(t, u1, . . . , um)
|uj | ≤ max f i,j

∞ + δ = ai (3.13)

for all (|u1|, . . . , |um|) ∈ [θ,∞)m. For each 1 ≤ i ≤ m, there are two cases to consider.

Case 1: γifi(t, u1, . . . , um) is bounded. So there exists Γ > 0 such that

γifi(t, u1, . . . , um) ≤ Γ

for all (t, |u1|, . . . , |um|) ∈ [0, 1]×[0,∞)m. Take λ = Γ
ai

(since Γ can be chosen arbitrarily
large, λ can be chosen arbitrarily large). It follows that

γifi(t, u1, u2, . . . , um) ≤ λai

for all (t, |u1|, . . . , |um|) ∈ [0, 1]× [0, λ)m ⊆ [0, 1]× [0,∞)m.

Case 2: γifi(t, u1, . . . , um) is unbounded. Then there exists λ ≥ θ (λ can be chosen
arbitrarily large) and ti ∈ [0, 1] such that

γifi(t, u1, . . . , um) ≤ max
ρj∈{1,−1},1≤j≤m

γifi(ti, ρ1λ, . . . , ρmλ)

for all (t, |u1|, . . . , |um|) ∈ [0, 1] × [0, λ]m. In view of (3.13), the above inequality leads
to

γifi(t, u1, . . . , um) ≤ ai|ρjλ| = aiλ

for all (t, |u1|, . . . , |um|) ∈ [0, 1]× [0, λ]m.

Therefore, in both cases condition (C1) is fulfilled

Lemma 3.3. Suppose, for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m, that

min f i,j
0 ∈ (bi4nj−1,∞] (3.14)

or
min f i,j

∞ ∈ (bi4nj−1,∞] (3.15)

is satisfied. Then condition (C2) holds for some η > 0.

Proof. First, to show that (3.14) gives rise to condition (C2), we let ε = min f i,j
0 −

bi4nj−1 (> 0). Clearly, there exists η > 0 (η can be chosen arbitrarily small) such that

min
t∈[0,1]

|uk|∈[0,∞),k∈M\{j}

γifi(t, u1, . . . , um)
|uj | ≥ min f i,j

0 − ε = bi4nj−1

for all |uj | ∈ [0, η]. Hence, for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m, we find

γifi(t, u1, . . . , um) ≥ bi4nj−1|uj | ≥ bi4nj−1
(

1
4

)nj−1
η = biη (3.16)
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for all (t, |u1|, . . . , |um|) ∈ I ×Kj ⊆ [0, 1]× [0,∞)j−1 × [0, η]× [0,∞)m−j . So condition
(C2) holds.

Next, assume that (3.15) is satisfied. Let δ = min f i,j
∞ − bi4nj−1 (> 0). Then there

exists η > 0 (η can be chosen arbitrarily large) such that

min
t∈[0,1]

|uk|∈[0,∞),k∈M\{j}

γifi(t, u1, . . . , um)
|uj | ≥ min f i,j

∞ − δ = bi4nj−1

for all |uj | ∈
[(

1
4

)nj−1
η,∞)

. Thus, for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m, (3.16)
follows for (t, |u1|, . . . , |um|) ∈ I ×Kj ⊆ [0, 1]× [0,∞)j−1× [(

1
4

)nj−1
η,∞)× [0,∞)m−j .

So condition (C2) is fulfilled

Corollary 3.1. Suppose one of the following conditions is satisfied:

(a) (3.11) holds for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m, and (3.15) holds for some
1 ≤ i ≤ m and each 1 ≤ j ≤ m

or
(b) (3.12) holds for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m, and (3.14) holds for

some 1 ≤ i ≤ m and each 1 ≤ j ≤ m.

Then system (1.1) has a fixed-sign solution u∗.

Proof. It follows from Theorem 3.1 and Lemmas 3.2 and 3.3

Remark 3.1. In [11 - 13, 16] (m = 1), the existence criteria developed require
max f0, min f0, max f∞, min f∞ ∈ {0,∞}. However, there are functions that do not
satisfy this condition. Hence, our results generalize and extend all these recent investi-
gations. To cite some examples, for m = 2 and γ1 = γ2 = 1, we have:

(a) fi(t, u1, u2) = eu1+u2−1
1+t2 , max f i,j

0 = 1, min f i,j
0 = 0.5, max f i,j

∞ = min f i,j
∞ =

∞ (j = 1, 2).

(b) fi(t, u1, u2) = (t + 1) sinh(u1 + u2), max f i,j
0 = 2, min f i,j

0 = 1, max f i,j
∞ =

min f i,j
∞ = ∞ (j = 1, 2).

(c) fi(t, u1, u2) = u1 + t2e−u2 , max f i,j
0 = ∞, max f i,j

∞ = 1 (j = 1, 2), min f i,1
0 =

min f i,1
∞ = 1, min f i,2

0 = min f i,2
∞ = 0.

Example 3.1. Consider the system

x(5)(t) +
ex+y − 1
1 + t2

= 0

y(4)(t) + (t + 1) sinh(x + y) = 0

x(j)(0) = x(p1)(1) = 0

y(k)(0) = y(p2)(1) = 0





(3.17)

for t ∈ [0, 1], j = 0, 1, 2, 3 and k = 0, 1, 2. Here n1 = 5, n2 = 4, 1 ≤ p1 ≤ 4, 1 ≤ p2 ≤
3,m = 2, f1(t, x, y) = ex+y−1

1+t2 and f2(t, x, y) = (t + 1) sinh(x + y). Fix γ1 = γ2 = 1.
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Clearly, condition (A) is satisfied. Since min f i,j
∞ = ∞ for i, j ∈ {1, 2}, by Lemma 3.3

condition (C2) is fulfilled for some η > 0. Next, for λ > 0 it is clear that

f1(t, x, y) =
ex+y − 1
1 + t2

≤ e2λ − 1

f2(t, x, y) = (t + 1) sinh(x + y) ≤ 2 sinh(2λ)

for (t, |x|, |y|) ∈ [0, 1]× [0, λ]2. Thus condition (C1) is satisfied if we can find some λ > 0
such that

e2λ − 1 ≤ λa1

2 sinh(2λ) ≤ λa2

}
. (3.18)

It can be checked by direct computation that (3.18) holds for λ = 1. Hence we conclude
by Theorem 3.1 that system (3.17) has a positive solution u∗ = (x∗, y∗).

4. Existence of two fixed-sign solutions under condition (A)

By applying the results of Section 3, in this section we obtain criteria for the existence
of at least two fixed-sign solutions when fi (1 ≤ i ≤ m) satisfy condition (A).

Theorem 4.1. Suppose condition (C1) holds for some λ > 0. Further, let (3.14)−
(3.15) be satisfied for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m. Then system (1.1) has two
fixed-sign solutions u∗ and ū such that

0 < ‖u∗‖ ≤ λ ≤ ‖ū‖. (4.1)

Proof. By Lemma 3.3, condition (3.14) leads to condition (C2)|η=η1 and (3.15)
gives rise to condition (C2)|η=η2 , where η1 and η2 can be chosen arbitrarily small and
large, respectively. Therefore, it is clear that

η1 < λ < η2. (4.2)

It now follows from Theorem 3.1 that system (1.1) has a solution u∗ such that η1 ≤
‖u∗‖ ≤ λ, and another solution ū with λ ≤ ‖ū‖ ≤ η2. Hence, (4.1) is immediate

Theorem 4.2. Suppose condition (C2) holds for some η > 0. Further, let (3.11)−
(3.12) be satisfied for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m. Then system (1.1) has two
fixed-sign solutions u∗ and ū such that

0 < ‖u∗‖ ≤ η ≤ ‖ū‖. (4.3)

Proof. Applying Lemma 3.2, we find that condition (3.11) implies (C1)|λ=λ1 and
(3.12) leads to (C1)|λ=λ2 , where λ1 and λ2 can be chosen arbitrarily small and large,
respectively. Hence, it is clear that

λ1 < η < λ2. (4.4)

We now conclude from Theorem 3.1 that system (1.1) has a solution u∗ with λ1 ≤ ‖u∗‖ ≤
η and another solution ū satisfying η ≤ ‖ū‖ ≤ λ2. Thus, (4.3) follows immediately
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5. Existence of a fixed-sign solution

In this section the non-linearities fi (1 ≤ i ≤ m) are not required to fulfil condition
(A). We shall consider the Banach space (B, ‖ · ‖) as in Section 3.

Lemma 5.1. Let Lk (1 ≤ k ≤ m) be given non-negative constants. Then the
system

u
(ni)
i (t) + γiLi = 0

u
(j)
i (0) = 0

u
(pj)
i (1) = 0





(5.1)

for t ∈ [0, 1], i = 1, . . . , m and 0 ≤ j ≤ ni − 2 has a fixed-sign solution uL ∈ C (see
(3.3)). In particular, for Lk = 0 (1 ≤ k ≤ m) we can take uL(t) = 0 (t ∈ [0, 1]).

Proof. It is immediate from Theorem 3.1

Theorem 5.1. Suppose there exist non-negative constants Lk (1 ≤ k ≤ m) and
two positive constants λ and η (6= λ) such that the following conditions are satisfied:

(D1) For each 1 ≤ i ≤ m we have

γifi(t, u1, . . . , um) + Li ≥ 0 (5.2)

for all (t, u) ∈ [0, 1]×K.
(D2) For each 1 ≤ i ≤ m we have

ai(u) ≡
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ] [γifi(s, u1, . . . , um) + Li] ds ≤ λ

for all (|u1|, . . . , |um|) ∈ [0, λ]m.
(D3) For some 1 ≤ i ≤ m we have

bi(u) ≡
∫

s∈I

Gi

(
1
4 , s

)
[γifi(s, u1, . . . , um) + Li] ds ≥ η

for all (|u1|, . . . , |um|) ∈ ∪m
j=1Kj where

Kj =
{

(v1, . . . , vm)
∣∣∣ vj ∈

[(
1
4

)nj−1
η∗j , η

]
, vk ∈ [0, η] for k 6= j

}
(5.3)

and

η∗j =





η if Lk = 0 (1 ≤ k ≤ m)[
1− 1

2

(
1
4

)nj−1]
η if Lk 6= 0 for some k and η > 2(4)nj−1‖uL‖ > 0

0 if Lk 6= 0 for some k and η is small enough.
(5.4)

Then system (1.1) has a fixed-sign solution u∗ such that

min{λ, η} ≤ ‖u∗ + uL‖ ≤ max{λ, η} (5.5)
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where uL is as in Lemma 5.1.

Proof. It is clear that system (1.1) has a solution u if and only if q = u + uL is a
solution of the operator equation

q = Tq (5.6)

where T : B → B is defined by

Tq(t) =
(
T1q(t), . . . , Tmq(t)

)
(t ∈ [0, 1]) (5.7)

Tiq(t) =
∫ 1

0

Gi(t, s)hi

(
s, (q − uL)(s)

)
ds (t ∈ [0, 1], 1 ≤ i ≤ m) (5.8)

hi(t, x1, . . . , xm) = fi(t, ρ1, . . . , ρm) + γiLi (1 ≤ i ≤ m) (5.9)

and, for 1 ≤ i ≤ m,

ρi =
{

xi if γixi ≥ 0
0 otherwise.

(5.10)

From (5.9) we see that hi : [0, 1]× Rm → R is continuous and well defined. Further, T
is continuous and completely continuous.

To show that equation (5.6) has a solution, we shall employ Theorem 2.1. First, we
shall prove that T maps C (see (3.3)) into itself. For this, let q ∈ C (⊂ K). In view of
condition (D1) and (2.3), we obtain, for t ∈ [0, 1] and 1 ≤ i ≤ m,

γiTiq(t) =
∫ 1

0

Gi(t, s)γihi

(
s, (q − uL)(s)

)
ds ≥ 0. (5.11)

Next, an application of (5.11) and Lemma 2.2 yields

|Tiq(t)| = γiTiq(t)

≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]γihi

(
s, (q − uL)(s)

)
ds

for all t ∈ [0, 1] and 1 ≤ i ≤ m. Hence

|Tiq|0 ≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]γihi

(
s, (q − uL)(s)

)
ds (5.12)

for all 1 ≤ i ≤ m. Now, using (5.11), Lemma 2.1 and (5.12), for each 1 ≤ i ≤ m and
t ∈ I we find

γiTiq(t) ≥
∫ 1

0

(
1
4

)ni−1 1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]γihi

(
s, (q − uL)(s)

)
ds

≥ (
1
4

)ni−1|Tiq|0.

It follows that
min
t∈I

γiTiq(t) ≥
(

1
4

)ni−1|Tiq|0 (5.13)
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for all 1 ≤ i ≤ m. Coupling (5.11) and (5.13), we obtain T (C) ⊆ C.
Next, define the set

CL =

{
q ∈ C

∣∣∣∣∣
for each 1 ≤ i ≤ m, γi(qi − uL

i )(t) ≥ 0 for t ∈ [0, 1]

and mint∈I γi(qi − uL
i )(t) ≥ (

1
4

)ni−1|qi − uL
i |0

}
. (5.14)

Note that CL contains the element uL + γ where γ = (γ1, . . . , γm). Let

Ω1 =
{
q ∈ CL| ‖q‖ < λ

}
and Ω2 =

{
q ∈ CL| ‖q‖ < η

}
.

We claim that

(i) ‖Tq‖ ≤ ‖q‖ for q ∈ C ∩ ∂Ω1

(ii) ‖Tq‖ ≥ ‖q‖ for q ∈ C ∩ ∂Ω2.

To verify statement (i), let q ∈ C ∩ ∂Ω1. So ‖q‖ = λ which implies ‖q−uL‖ ≤ λ. Using
(5.11), Lemma 2.2 and (D2), we obtain for t ∈ [0, 1] and 1 ≤ i ≤ m

|Tiq(t)| =
∫ 1

0

Gi(t, s)γihi

(
s, (q − uL)(s)

)
ds

=
∫ 1

0

Gi(t, s)γi

[
fi

(
s, (q − uL)(s)

)
+ γiLi

]
ds

≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]

[
γifi

(
s, (q − uL)(s)

)
+ Li

]
ds

= ai(q − uL)

≤ λ

= ‖q‖.
As a result, |Tiq|0 ≤ ‖q‖ for 1 ≤ i ≤ m and so ‖Tq‖ = max1≤i≤m |Tiq|0 ≤ ‖q‖.

To show statement (ii), let q ∈ C ∩ ∂Ω2. Then ‖q‖ = η and ‖q − uL‖ ≤ η. Suppose
that ‖q − uL‖ = |qj − uL

j |0 for some j ∈ {1, . . . ,m}. Then for t ∈ I

|(qj − uL
j )(t)| ≥ (

1
4

)nj−1‖q − uL‖ ≥ (
1
4

)nj−1(‖q‖ − ‖uL‖) ≥ (
1
4

)nj−1
η∗j .

Thus |(qj − uL
j )(t)| ∈ [(

1
4

)nj−1
η∗j , η

]
for t ∈ I. Further, |(qk − uL

k )(t)| ∈ [0, η] for k 6= j
and t ∈ I. Now, applying condition (D3), we find that the following holds for some
i ∈ {1, . . . ,m}:

∣∣Tiq
(

1
4

)∣∣ = γiTiq
(

1
4

)

≥
∫

s∈I

Gi

(
1
4 , s

)
γi

[
fi

(
s, (q − uL)(s)

)
+ γiLi

]
ds

= bi(q − uL)

≥ η

= ‖q‖.
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Consequently, |Tiq|0 ≥ ‖q‖ and so ‖Tq‖ ≥ ‖q‖.
Now that we have established statements (i) and (ii), it follows from Theorem 2.1

that T has a fixed point q∗ ∈ C ∩ (Ω2\Ω1 ∪ Ω1\Ω2) ⊆ CL. Therefore, min{λ, η} ≤
‖q∗‖ ≤ max{λ, η}. Since q∗ = u∗ + uL, where u∗ is a solution of system (1.1), and also
q∗ ∈ CL, it is clear that u∗ is also of fixed sign. The proof of the theorem is complete

Let M = {1, . . . ,m}. For 1 ≤ i, j ≤ m we introduce the following definitions:

max fL,i,j
0 = lim

max1≤k≤m |uk|→0+
max

t∈[0,1]

γifi(t, u1, . . . , um) + Li

|uj |

min fL,i,j
0 = lim

|uj |→0+
min
t∈I

|uk|∈[0,∞),k∈M\{j}

γifi(t, u1, . . . , um) + Li

|uj |

max fL,i,j
∞ = lim

min1≤k≤m |uk|→∞
max
t∈[0,1]

γifi(t, u1, . . . , um) + Li

|uj |

min fL,i,j
∞ = lim

|uj |→∞
min
t∈I

|uk|∈[0,∞),k∈M\{j}

γifi(t, u1, . . . , um) + Li

|uj | .

Further, for 1 ≤ i ≤ m we denote

αi =
{∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ] ds

}−1

(5.15)

and

βi =
{∫

s∈I

Gi

(
1
4 , s

)
ds

}−1

. (5.16)

Lemma 5.2. Suppose there exist non-negative constants Lk (1 ≤ k ≤ m) such
that condition (D1) holds. If, for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m, one of the
conditions

max fL,i,j
0 ∈ [0, αi) (5.17)

or
max fL,i,j

∞ ∈ [0, αi) (5.18)

is satisfied, then condition (D2) holds for some λ > 0.

Proof. First, we shall show that (5.17) implies (D2). Let ε = αi−max fL,i,j
0 (> 0).

Clearly, there exists λ > 0 (λ can be chosen arbitrarily small) such that

max
t∈[0,1]

γifi(t, u1, . . . , um) + Li

|uj | ≤ max fL,i,j
0 + ε = αi

for all (|u1|, . . . , |um|) ∈ [0, λ]m. This subsequently provides

γifi(t, u1, . . . , um) + Li ≤ αi|uj | ≤ αiλ (5.19)
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for all (t, |u1|, . . . , |um|) ∈ [0, 1] × [0, λ]m. Therefore, for each 1 ≤ i ≤ m and (|u1|, . . . ,
|um|) ∈ [0, λ]m, using (5.19) we get

ai(u) =
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]

[
γifi(s, u1, . . . , um) + Li

]
ds

≤
∫ 1

0

1
(ni−1)! (1− s)ni−pi−1[1− (1− s)pi ]αiλ ds

= λ

which is (D2).
Next assume that (5.18) holds. Let δ = αi −max fL,i,j

∞ (> 0). Then there exists
w > 0 (w can be chosen arbitrarily large) such that

max
t∈[0,1]

γifi(t, u1, . . . , um) + Li

|uj | ≤ max fL,i,j
∞ + δ = αi (5.20)

for all (|u1|, . . . , |um|) ∈ [w,∞)m. For each 1 ≤ i ≤ m we shall consider two cases.

Case 1: γifi(t, u1, . . . , um) + Li is bounded. So there exists R > 0 such that

γifi(t, u1, . . . , um) + Li ≤ R

for all (t, |u1|, . . . , |um|) ∈ [0, 1] × [0,∞)m. Take λ = R
αi

(since R can be chosen
arbitrarily large, λ can be chosen arbitrarily large). It follows that

γifi(t, u1, u2, . . . , um) + Li ≤ λαi

for all (t, |u1|, . . . , |um|) ∈ [0, 1] × [0, λ)m ⊆ [0, 1] × [0,∞)m. As seen earlier, this gives
rise to condition (D2).

Case 2: γifi(t, u1, . . . , um) + Li is unbounded. Then there exists λ ≥ w (λ can be
chosen arbitrarily large) and ti ∈ [0, 1] such that

γifi(t, u1, . . . , um) + Li ≤ max
ρj∈{1,−1}, 1≤j≤m

γifi(ti, ρ1λ, . . . , ρmλ) + Li

for all (t, |u1|, . . . , |um|) ∈ [0, 1]× [0, λ]m. In view of (5.20) this inequality leads to

γifi(t, u1, . . . , um) + Li ≤ αi|ρjλ| = αiλ

for all (t, |u1|, . . . , |um|) ∈ [0, 1]× [0, λ]m. Hence, condition (D2) is readily obtained

Lemma 5.3. Suppose there exist non-negative constants Lk (1 ≤ k ≤ m) such
that condition (D1) holds. If, for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m, we have

min fL,i,j
∞ ∈

{
(βi4nj−1,∞] if Lk = 0, 1 ≤ k ≤ m(
βi4nj−1

[
1− 1

2

(
1
4

)nj−1]−1
,∞]

if Lk 6= 0 for some k,
(5.21)

then condition (D3) holds for some η > 0.
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Proof. Suppose that Lk 6= 0 for some k. Let ε = min fL,i,j
∞ − βi4nj−1

[
1 −

1
2

(
1
4

)nj−1]−1 (> 0). Then there exists η > 0 (η can be chosen arbitrarily large)
such that

min
t∈[0,1]

|uk|∈[0,∞),k∈M\{j}

γifi(t, u1, . . . , um) + Li

|uj | ≥ min fL,i,j
∞ − ε = βi4nj−1

[
1− 1

2

(
1
4

)nj−1]−1

for all |uj | ∈
[(

1
4

)nj−1[1 − 1
2

(
1
4

)nj−1]
η,∞)

. Thus, for some 1 ≤ i ≤ m and each
1 ≤ j ≤ m, we find

γifi(t, u1, . . . , um) + Li ≥ βi4nj−1
[
1− 1

2

(
1
4

)nj−1]−1|uj |
≥ βi4nj−1

[
1− 1

2

(
1
4

)nj−1]−1( 1
4

)nj−1[1− 1
2

(
1
4

)nj−1]
η

= βiη

(5.22)

for all (t, |u1|, . . . , |um|) ∈ I × Kj ⊆ I × [0,∞)j−1 × [(
1
4

)nj−1[1 − 1
2

(
1
4

)nj−1]
η,∞) ×

[0,∞)m−j . Employing (5.22), for some 1 ≤ i ≤ m and (|u1|, . . . , |um|) ∈ ∪m
j=1Kj we get

bi(u) =
∫

s∈I

Gi

(
1
4 , s

)[
γifi(s, u1, . . . , um) + Li

]
ds ≥

∫

s∈I

Gi

(
1
4 , s

)
βiη ds = η.

So condition (D3) is fulfilled. The case when Lk = 0 for all k can be similarly verified

Lemma 5.4. Let Lk = 0 (1 ≤ k ≤ m) and let condition (D1) be satisfied. If, for
some 1 ≤ i ≤ m and each 1 ≤ j ≤ m, we have

min fL,i,j
0 ∈ (βi4nj−1,∞], (5.23)

then condition (D3) holds for some η > 0.

Proof. Let ε = min fL,i,j
0 − βi4nj−1 (> 0). Clearly, there exists η > 0 (η can be

chosen arbitrarily small) such that

min
t∈I

|uk|∈[0,∞),k∈M\{j}

γifi(t, u1, . . . , um)
|uj | ≥ min fL,i,j

0 − ε = βi4nj−1

for all |uj | ∈ [0, η]. Hence, for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m, we find

γifi(t, u1, . . . , um) ≥ βi4nj−1|uj | ≥ βi4nj−1
(

1
4

)nj−1
η = βiη

for all (t, |u1|, . . . , |um|) ∈ I ×Kj ⊆ I × [0,∞)j−1 × [0, η] × [0,∞)m−j . As seen in the
proof of Lemma 5.3, this leads to condition (D3)

Remark 5.1. In order to show that fi satisfies condition (D3) (η > 2(4)nj−1‖uL‖),
the condition Lk = 0 for all k in Lemma 5.4 is essential.

Corollary 5.1. Suppose there exist non-negative constants Lk (1 ≤ k ≤ m) such
that condition (D1) holds. Let one of the conditions

(a) (5.17) holds for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m, and (5.21) holds for some
1 ≤ i ≤ m and each 1 ≤ j ≤ m

or
(b) Lk = 0 (1 ≤ k ≤ m), (5.18) holds for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m,

and (5.23) holds for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m

be fulfilled. Then system (1.1) has a fixed-sign solution u∗.

Proof. It is a direct consequence of Theorem 5.1 and Lemmas 5.2 - 5.4
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Remark 5.2. A remark similar to Remark 3.1 applies. As an illustration, for
m = 2 and γ1 = γ2 = 1 we have the following:

(a) fi(t, u1, u2) = eu1+u2−1
1+t2 −3, Li = 3, max fL,i,j

0 = 1, min fL,i,j
0 = 16

25 , max fL,i,j
∞ =

min fL,i,j
∞ = ∞ (j = 1, 2).

(b) fi(t, u1, u2) = (t + 1) sinh(u1 + u2) − 2, Li = 2, max fL,i,j
0 = 2, min fL,i,j

0 = 5
4 ,

max fL,i,j
∞ = min fL,i,j

∞ = ∞ (j = 1, 2).

(c) fi(t, u1, u2) = u1+t2e−u2−5, Li = 5, max fL,i,j
0 = ∞, max fL,i,j

∞ = 1 (j = 1, 2),
min fL,i,1

0 = min fL,i,1
∞ = 1, min fL,i,2

0 = ∞, min fL,i,2
∞ = 0.

Example 5.1. Consider the system

x(5)(t) +
ex+y − 6t2 − 7

1 + t2
= 0

y(4)(t) + [7 sinh(x + y) + t + 1] sinh(x + y)− 7 cosh2(x + y) = 0

x(j)(0) = x(p1)(1) = 0

y(k)(0) = y(p2)(1) = 0





(5.24)

for t ∈ [0, 1], j = 0, 1, 2, 3 and k = 0, 1, 2. Here n1 = 5, n2 = 4, 1 ≤ p1 ≤ 4, 1 ≤ p2 ≤ 3,
m = 2 and

f1(t, x, y) =
ex+y − 6t2 − 7

1 + t2

f2(t, x, y) = [7 sinh(x + y) + t + 1] sinh(x + y)− 7 cosh2(x + y)
.

Fix γ1 = γ2 = 1, L1 = 6 and L2 = 7. Then we see that condition (D1) is satisfied.
Since min fL,i,j

∞ = ∞ for i, j ∈ {1, 2}, by Lemma 5.3 condition (D3) is fulfilled for some
η > 0. Next, it is clear that for λ > 0

f1(t, x, y) + L1 =
ex+y − 1
1 + t2

≤ e2λ − 1
1 + t2

f2(t, x, y) + L2 = (t + 1) sinh(x + y) ≤ (t + 1) sinh(2λ)

for all (|x|, |y|) ∈ [0, λ]2. Thus, condition (D2) is fulfilled if we can find some λ > 0 such
that

∫ 1

0

1
(n1−1)! (1− s)n1−p1−1[1− (1− s)p1 ]

e2λ − 1
1 + s2

ds ≤ λ (5.25)
∫ 1

0

1
(n2−1)! (1− s)n2−p2−1[1− (1− s)p2 ] (t + 1) sinh(2λ) ds ≤ λ. (5.26)

It can be checked by direct computation that (5.25) and (5.26) are satisfied when λ = 1.
Hence, we conclude by Theorem 5.1 that system (5.24) has a positive solution u∗ =
(x∗, y∗).
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6. Existence of two fixed-sign solutions

In this section, we apply the results of Section 5 to obtain criteria for the existence of
at least two fixed-sign solutions. Once again, the non-linearities fi (1 ≤ i ≤ m) need
not fulfil condition (A).

Theorem 6.1. Let Lk = 0 (1 ≤ k ≤ m), let condition (D1) be satisfied and
suppose condition (D2) holds for some λ > 0. Further, let (5.21) and (5.23) be satisfied
for some 1 ≤ i ≤ m and each 1 ≤ j ≤ m. Then system (1.1) has two fixed-sign solutions
u∗ and ū such that

0 < ‖u∗‖ ≤ λ ≤ ‖ū‖. (6.1)

Proof. The proof uses Theorem 5.1, Lemmas 5.3 and 5.4, and is similar to that of
Theorem 4.1

Theorem 6.2. Suppose there exist non-negative constants Lk (1 ≤ k ≤ m) such
that condition (D1) is fulfilled and let condition (D3) hold for some η > 0. Further, let
(5.17) and (5.18) be satisfied for each 1 ≤ i ≤ m and some 1 ≤ j ≤ m. Then system
(1.1) has two fixed-sign solutions u∗ and ū such that

0 < ‖u∗ + uL‖ ≤ η ≤ ‖ū + uL‖ (6.2)

where uL is as in Lemma 5.1.

Proof. The proof employs Theorem 5.1, Lemma 5.2, and a similar argument as in
the proof of Theorem 4.2
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