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Identity Surfaces

W. Tutschke

Abstract. It is well-known that the zeros of holomorphic functions in more than one complex
variable are not isolated. Nevertheless, there exist so-called identity surfaces such that a holo-
morphic function vanishes identically everywhere if only it equals zero on an identity surface.
In the paper identity surfaces will be constructed using the technique of completely integrable
overdetermined systems of partial differential equations. Moreover, identity surfaces will be
constructed not only for holomorphic functions but also for solutions of more general first order
systems of partial differential equations.
The present paper deals only with systems with real-analytic coefficients and, therefore, the
classical Cauchy-Kovalevskaya and Holmgren theorems are applicable (while many recent pa-
pers deal with infinitely differentiable coefficients or they solve initial value problems with gen-
eralized analytic initial functions). Using the compatibility conditions of an overdetermined
system, in the present paper the construction of identity surfaces (of minimal dimension) is
carried out as some kind of inverse problem to an initial value problem.

Keywords: Overdetermined systems of partial differential equations, compatibility conditions,
initial value problems
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1. Preliminaries on overdetermined first order systems

Let x = (x1, ..., xm) be a point in Rm, and let uσ (σ = 1, ..., s) be real- or complex-
valued functions depending on x. Let k be a given natural number. Suppose the
functions uσ = uσ(x) satisfy r = k · s linear differential equations of the form

∑
σ,µ

A%σµ(x)
∂uσ

∂xµ
= 0 (1)

where % = 1, ..., r, σ = 1, ..., s, µ = 1, ..., m and the given coefficients A%σµ possess local
power series representations in their variables. The natural number k − 1 is called the
degree of overdetermination.

To be short consider system (1) for s = 1, i.e., consider

∑
µ

A%µ(x)
∂u

∂xµ
= 0
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where % = 1, ..., k and u = u(x1, ..., xm) is a desired real- or complex-valued function.
Then the degree of overdetermination equals k − 1. Introducing new variables

Xµ = Φµ(x1, ..., xm) (µ = 1, ..., m)

(with real-analytic Φµ), this system passes into
∑

ν

B%ν(X)
∂u

∂Xν
= 0 where B%ν =

∑
µ

A%µ
∂Φν

∂xµ
.

Now suppose that this system can be solved for ∂u
∂X%

with % = 1, ..., r. Then the system
under consideration can be rewritten in the form

∂u

∂Xλ
=

m∑

µ=k+1

αλµ(X)
∂u

∂Xµ
(λ = 1, ..., k, k ≤ m− 1). (2)

Note that the αλµ have local power-series representations. System (2) is overdetermined
if k > 1. In the sequel we shall make use of the fact that the initial value problem

u(0, ..., 0, Xk+1, ..., Xm) = ϕ(Xk+1, ..., Xm) (3)

is uniquely solvable provided the system is compatible (see, for instance, the book [2] of
E. Goursat or the book [5]. 1) In accordance with the general theory of overdetermined
systems, the variables X1, ..., Xk in (2) are called essential, while Xk+1, ..., Xm are called
parametric ones. Let u = u(X1, ..., Xm) = u(X) be any twice continuously differentiable
function, and consider the expressions

Uλ =
∂u

∂Xλ
−

m∑

µ=k+1

αλµ(X)
∂u

∂Xµ
(λ = 1, ..., k).

Obviously, u = u(X) is a solution of system (2) if Uλ ≡ 0 for all λ = 1, ..., k.
If Xλ and Xκ are essential variables, then the expression

∂Uλ

∂Xκ
− ∂Uκ

∂Xλ
(4)

contains second order derivatives of u(X) with respect to one parametric and one es-
sential variable. Such second order derivatives, however, can be expressed by first order
derivatives of the Uλ with respect to parametric variables. That way we see that ex-
pression (4) is a linear combination of parametric derivatives of the three functions Uκ,
Uλ and u. An easy calculation shows that the coefficient of ∂u

∂Xµ
is given by

[∗]λ,κ,µ =
(

∂ακµ

∂Xλ
− ∂αλµ

∂Xκ

)
+

∑

µ̃

(
ακµ̃

∂αλµ

∂Xµ̃
− αλµ̃

∂ακµ

∂Xµ̃

)
. (5)

System (2) is said to be compatible in the case [∗]λ,κ,µ ≡ 0 for any 1 ≤ λ, κ ≤ k and any
k + 1 ≤ µ ≤ m.

The following statement is true.

1) Concerning compatible systems in several complex variables see, for instance, R. P. Gilbert
and J. L. Buchanan [1] and [5].
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Lemma. The initial value problem (2) − (3) is uniquely solvable provided the sys-
tem is compatible and the initial function ϕ = ϕ(Xk+1, ..., Xm) has local power-series
representations.

Sketch of the proof. The solution can be constructed by freezing the essential
variables step by step, and by solving k Cauchy-Kovalevskaya problems in one essential
variable each (see Goursat [2]). The uniqueness of the solution follows from Holmgren’s
theorem. The compatibility conditions [∗]λ,κ,µ ≡ 0 imply that system (2) is satisfied
(locally) not only in frozen variables but also in arbitrary ones. Concerning the classical
Cauchy-Kovalevskaya and Holmgren theorems in one essential variable see, for instance,
F. Treves [4], while the case of several essential variables can be reduced to the case of
one variable by the above mentioned method of freezing variables

Since u ≡ 0 is a solution of system (2) one has also the following statement which
will be used for the construction of identity surfaces.

Corollary 1. If the initial values ϕ(Xk+1, ..., Xm) are identically equal to zero,
then the solution u of the initial value problem (2)− (3) vanishes everywhere.

2. Identity surfaces for linear and homogeneous systems

Now consider system (1) for several desired (real- or complex-valued) functions uσ =
uσ(x). Introducing new coordinates

Xµ = Φµ(x1, ..., xm),

one gets the new system ∑
σ,µ

B%σµ(X)
∂uσ

∂Xµ
= 0

Suppose this system can be solved for the derivatives of all functions with respect to
X1, ..., Xk, k ≤ m− 1. Then one has

∂u%

∂Xλ
=

∑
σ,µ

α%λσµ
∂uσ

∂Xµ

where %, σ = 1, ..., s, while λ = 1, ..., k and µ = k +1, ..., m. Denote the difference of the
left- and right-hand sides of the last equation by U%λ. Then one has to calculate the
expression

∂U%λ

∂Xκ
− ∂U%κ

∂Xλ
(6)

instead of (4). An easy calculation shows that [∗]λ,κ,µ is to be replaced by an expression
[∗]λ,κ,µ,%,σ which is given by

(
∂α%κσµ

∂Xλ
− ∂α%λσµ

∂Xκ

)
+

∑

σ̃,µ̃

(
α%κσ̃µ̃

∂ασ̃λσµ

∂Xµ̃
− α%λσ̃µ̃

∂ασ̃κσµ

∂Xµ̃

)
.
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While [∗]λ,κ,µ,%,σ comes from the coefficient ∂uσ

∂Xµ
in expression (6), in the case of several

desired functions an additional term [∗∗]λ,κ,µ,µ̃,%,σ (coming from ∂2uσ

∂Xµ∂Xµ̃
) has to vanish

identically. This expression is given by
∑

σ̃

(
α%κσµασλσ̃µ̃ − α%λσµασκσ̃µ̃

)
.

Theorem. Suppose the degree of overdetermination of the system
∑
σ,µ

A%σµ(x)
∂uσ

∂xµ
= 0

is k − 1, k ≥ 2. Suppose, further, that the compatibility conditions

[∗]λ,κ,µ,%,σ = 0

[∗∗]λ,κ,µ,µ̃,%,σ = 0

}

are satisfied. Then the (m− k)-dimensional surface defined by

Φµ(x1, ..., xm) = 0 (µ = 1, ..., k)

is an identity surface.

Notice that in the case of one desired (real- or complex-valued) function (s = 1) the
conditions [∗∗]λ,κ,µ,µ̃,%,σ = 0 can be omitted, one has also the following

Corollary 2. In the case s = 1 the above theorem is true if only the compatibility
conditions [∗]λ,κ,µ,%,σ = 0 are satisfied.

Moreover, since the compatibility conditions [∗]λ,κ,µ,%,σ = 0 are always satisfied if
the α%λσµ are constant, the following corollary is true, too.

Corollary 3. Consider a system
∑

µ

A%µ
∂u

∂xµ
= 0

with constant coefficients whose degree of overdetermination is equal to k − 1, i.e.,
% = 1, ..., k, k ≥ 1. Choose constants cµν (µ, ν = 1, ..., k) such that its determinant is
different from zero. Then for any choice of further constants c0µ the (m−k)-dimensional
plane ∑

ν

cµνxν = c0µ (µ = 1, ..., k)

is an identity plane.

The last corollary shows the following connexion between the degree of overdeter-
mination and the dimension of an identity surface:

Corollary 4. The higher the degree of overdetermination, the smaller the dimen-
sion of an identity surface.

Note that this statement is true also for more general systems with non-constant
coefficients.
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3. Identity surfaces for holomorphic functions in several
variables

Denote the variables in C2n by zj = xj + iyj and ζj = ξj + iηj (j = 1, ..., n). Suppose
the complex-valued function w = w(z1, ..., zn, ζ1, ..., ζn) is holomorphic, i.e., the Cauchy-
Riemann system

∂w

∂xj
+ i

∂w

∂yj
= 0

∂w

∂ξj
+ i

∂w

∂ηj
= 0





is satisfied.

Corollary 5. The complex-n-dimensional conjugate complex diagonal surface de-
fined by zj = ζj (j = 1, ..., n) is an identity plane.

Proof. Introducing new (real) variables

Xj = xj − ξj

Yj = yj

Ξj = ξj

Hj = yj + ηj

the above diagonal surface is given by the equations

Xj = 0

Hj = 0

}

while the Cauchy-Riemann system passes into

∂w

∂Xj
=

1
2

∂w

∂Ξj
− i

2
∂w

∂Yj
(7)

∂w

∂Hj
=

i

2
∂w

∂Ξj
− 1

2
∂w

∂Yj
. (8)

The variables Xj and Hj are thus essential, whereas Ξj and Yj turn out to be parametric.
Denote the differences of the left- and right-hand sides of equations (7) and (8) by W1j

and W2j , and consider the expressions

∂W1j

∂Xk
− ∂W1k

∂Xj
,

∂W1j

∂Hk
− ∂W2k

∂Xj
,

∂W2j

∂Hk
− ∂W2k

∂Hj

which are analogous to (6). Using system (7) - (8) it follows that these expression vanish
identically for any twice continuously differentiable functions depending on Xj , Yj , Ξj

and Hj . Hence system (7) - (8) is compatible. This proves the corollary

Obviously, an analytic set is not an identity surface for holomorphic functions in
several complex variables. In order to explain why the method of compatible differential
equations does not work in this case, consider the following
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Example 1. Since w(z, ζ) = z − ζ vanishes only on the complex-one-dimensional
diagonal surface defined by z = ζ, this plane cannot be an identity surface.

Indeed, introduce new variables

X = x− ξ

Y = y

Ξ = ξ

H = y − η

where again z = x+iy and ζ = ξ+iη. Then the diagonal surface z = ζ can be described
by X = 0 and H = 0. Rewriting the Cauchy-Riemann system in the new coordinates
X, Y, Ξ,H, one gets

∂w

∂X
+ i

∂w

∂Y
+ i

∂w

∂H
= 0

− ∂w

∂X
+

∂w

∂Ξ
− i

∂w

∂H
= 0.





The method of compatible systems is not applicable because the last system cannot
be solved for ∂w

∂X and ∂w
∂H . On the contrary, the corresponding system (7) - (8) can be

solved for these derivatives in the case one considers the conjugate complex diagonal
surface z = ζ. Therefore, the question whether a surface is an identity surface or not is
reduced to the question if the rewritten Cauchy-Riemann system can be solved for the
corresponding derivatives or not.

The next example shows how this connexion between identity surfaces and solvabil-
ity can be used for the construction of identity surfaces.

Example 2. For holomorphic functions in two complex variables z and ζ the plane
defined by

2z = (1− c)ζ + (1 + c)ζ (9)

is an identity surface if c is any real constant different from −1.

Indeed, introducing new variables

X = x− ξ

Y = y

Ξ = ξ

H = y + cη

one sees that the Cauchy-Riemann system can be solved for ∂w
∂X and ∂w

∂H if and only if
c 6= −1 and, further, that the new system is compatible. The statement of Example 2
is true because equation (9) is equivalent to

x− ξ = 0

y + cη = 0.

}

Note, finally, that for c = −1 the plane (9) is the diagonal surface z = ζ which is not
an identity surface in accordance with Example 1.



Identity Surfaces 535

4. Non-overdetermined systems

The above considerations are also applicable to systems whose degree of overdetermi-
nation is equal to zero. This will be shown for linear systems of the form

Aj1(x, y)
∂u

∂x
+ Aj2(x, y)

∂u

∂y
+ Aj3(x, y)

∂v

∂x
+ Aj4(x, y)

∂v

∂y
= 0 (j = 1, 2)

for two desired (real- or complex-valued) functions u = u(x, y) and v = v(x, y) in the
(x, y)-plane. Introducing new coordinates

X = Φ(x, y)

Y = Ψ(x, y)

}

the new system can be solved for ∂u
∂Y and ∂v

∂Y in the case

d13

(
∂Ψ
∂x

)2

+ (d14 + d23)
∂Ψ
∂x

∂Ψ
∂y

+ d24

(
∂Ψ
∂y

)2

6= 0 (10)

where

dij =
∣∣∣∣
A1i A1j

A2i A2j

∣∣∣∣ .

Provided the Aij have power-series representations in x and y, the above considerations
lead to the following

Corollary 6. If condition (10) is satisfied, the curve Ψ(x, y) = 0 is an identity
line.

Condition (10) is satisfied if the quadratic expression on the left-hand side is positive
definite, and thus the following result is true:

Corollary 7. Suppose
(d14 + d23)2 < 4d13d24. (11)

Then each curve defined by Ψ(x, y) = 0 is an identity line.

Consider the system
∂u

∂x
− ∂v

∂y
= 0 (12)

∂u

∂y
− ε

∂v

∂x
= 0 (13)

where ε is any real constant. In this case one has
d12 = d24 = 1

d13 = ε

d23 = d14 = 0





(14)

and condition (11) reads 0 < ε, i.e., (11) is satisfied for positive ε only. For ε = 1
the system is the Cauchy-Riemann system, and then Corollary 7 is obvious because
the zeros of a non-constant holomorphic function are isolated. 2) In the case ε ≤ 0,
however, the existence of non-identity lines can be expected. Easy calculations show
the existence of non-identity lines which are defined by linear functions:

2) The same is true for generalized analytic functions, cf. I.N. Vekua’s book [7]. Hence similar
arguments can be applied to elliptic systems which are more general than (12) - (13).
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Example 3. In the case ε = 0 system (12) - (13) has the solution

u(x, y) = 0

v(x, y) = cx

}

where c is any constant. This solution vanishes on the y-axis, while it does not vanish
identically.

Example 4. In the case ε = −1 special solutions of (12) - (13) are given by

u(x, y) = c(x + y)

v(x, y) = c(x + y)

}
and

u(x, y) = c(x− y)

v(x, y) = −c(x− y)

}

where c is any constant. These solutions are not identically equal to zero, although they
vanish on the straight lines which are defined by y = −x and y = x, respectively.

In view of (14) condition (10) passes into

ε

(
∂Ψ
∂x

)2

+
(

∂Ψ
∂y

)2

6= 0. (15)

Choosing Ψ(x, y) = k1x + k2y, the left-hand side of (10) equals zero for k2
2 = −εk2

1 in
accordance with Examples 3 and 4.

5. Concluding remarks

The present paper is not aimed at theorems which are as general as possible. On the
contrary, the main goal is to explain how the technique of compatibility conditions can
be used for getting uniqueness theorems for partial differential equations. Of course,
there are various possible generalizations and applications such as the following:

Remark 1. A linear or non-linear system for s desired real- or complex-valued
functions uσ (σ = 1, ..., s) is said to be homogeneous if uσ ≡ 0 for σ = 1, ..., s is
a solution. Since Corollary 1 is true for arbitrary homogeneous systems, the above
Theorem is also true for arbitrary non-linear systems if only they are homogeneous and
compatibel. Note, however, that the formulation of the compatibility conditions is more
complicated as in the linear case.

Remark 2. Initial value problems for (hyperbolic) first order systems can also be
solved by methods of Clifford Analysis (see E. Obolashvili’s book [3]). Consequently,
identity surfaces can also be constructed using the corresponding uniqueness theorems.
Since the paper [6] generalizes the results of [3] in the hyperbolic case, the methods of
the paper [6] lead also to identity surfaces.

Remark 3. Notice, finally, that the methods of the present paper can also be
used for the construction of solutions with prescribed initial values on identity surfaces.
Therefore, identity surfaces can be compared with surfaces which are non-characteristic.
This is also expressed by relations such as (10).
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Remark 4. Similar constructions can also be carried out for overdetermined sys-
tems whose coefficients are not real-analytic.

Remark 5. Finally consider the following application of the above results to second
order differential equations:

Let w = w(z1, ζ1, z2, ζ2) be a complex-valued and continuously differentiable solution
of the differential equation ∂2w

∂z1∂ζ1
+ ∂2w

∂z2∂ζ2
= 0 in the unit ball |z1|2+|ζ1|2+|z2|2+|ζ2|2 <

1 of C4 which is still continuous on its boundary. Such a solution is uniquely determined
by its (complex) values on the boundary of the intersection of the unit ball with the
conjugate complex diagonal surface ζ1 = z1, ζ2 = z2. Indeed, on the diagonal surface
the given differential equation passes into the Laplace equation and thus a solution
can be characterized by its boundary values. The above statement then follows from
Corollary 5. Note, in addition, that to arbitrary (continuous) boundary values in the
intersection there exists a uniquely determined solution in the complex-four-dimensional
(open) unit ball having the prescribed boundary values in the real-four-dimensional
intersection. The extension can be constructed by replacing the four real variables xj

and yj (j = 1, 2) by the four complex variables zj and ζj where 2xj = zj + ζj and
2yj = i(ζj − zj).
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