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The Classical and the Modified Neumann Problems
for the
Inhomogeneous Pluriholomorphic System
in Polydiscs

A. Mohammed

Abstract. The classical Neumann problem for the inhomogeneous pluriholomorphic system
in a polydisc is considered. Its solvability conditions and its solution are given. It is shown
that the problem is not well-posed. To fix the solution the boundary condition is modified.
For the modified problem the solvability conditions and the solution which is unique up to an
arbitrary constant are explicitly given.
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1. Introduction

The Neumann problem for the inhomogeneous pluriholomorphic system in the unit ball
was studied in [1]. However, about the Neumann problem even for the homogeneous
pluriholomorphic system in the unit polydisc nothing can be found in the literature,
although a great deal of research has been done about the d-Neumann problem in
polydiscs (see, e.c., [2, 3, 6]).
Let
D" = {z: (21,...,2n) €C" 1 |z <1 (1 §k§n)}

be the unit polydisc, fx; and v be given functions with fr;z, € L (D) N C(D") and

v € C(9pD™). Consider the inhomogeneous system of w independent equations
0%u
= 1<k 1< 1
o = fulz) <k t<n) )

with given right-hand sides satisfying the conditions

Ofwe  Ofs
_ — <s<n).
oz, oz, 0 (sss=n)

Jre(z) = fue(2) and
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Problem (N,). Find a C!'(D")-solution of system (1) satisfying the Neumann
condition

SU—(@)  (Ce D) @
Ve

where g—y“g denotes the outward normal derivative of u at the point ¢ € JyD™.

By definition it is known (see [4]) that the Neumann condition (2) for the unit
polydisc turns out to be

3 (zjg—; +Ej§7fj) =70 (ceap) (3)

Jj=1

with v(¢) = v0(¢)y/n. It is known that the general solution to system (1) is representable
as

u(z) = ¢o(2) + (#(2), 2) + uo(2) (4)

where ¢(z) = (¢1(2), el aﬁn(z)), every ¢ (k = 0,...,n) being an arbitrary funtion
analytic in D", and wug is a special solution to system (1) given by

n

_ +1 2
Uy = Z(—l)“ Z Téu .. -T€2T£1f€1£1?e2~f

Lu
pn=1 1<£1<n

+Z(—1)V Z Tgu "'T£1f£1£2653“'2e,/

v=2 1<t <...<l,<n

(see [5]).

It is well known that for any given real-valued continuous function v on 9D there
exists an analytic function w in D, the real part of which has the boundary values
on 0D, Rew = 7. A solution can be given by the Schwarz integral S+ which is the
complex counterpart of the Poisson integral P~. Hence ~ turns out to be the boundary
values of a harmonic function in D. For two complex variables in order that a given
real-valued function on the distinguished boundary dyD? of the unit bidisc D? is the
boundary value function of the real part of an analytic function in D? it has to belong
to the space OPhp: of boundary values of pluriharmonic functions in D?. It is known
that not any function defined on 9yD? is in Php: (see [1]). However, for our discussion
we need to look at the problem a litle bit further.

Let the real-valued function v on 9yD? be representable by a Fourier series

“+o0
Y(z1,22) = Z Qip2t 2y ((21,22) € BD?)
i,k=—o00
1 —i =k dCl dCQ

aip = e /3011))2 ’Y(ClyCz)QCz?E (a—i,—k = QiK)-
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Thus for the given v we have two real pluriharmonic functions in C?: one in D+ =
D? (D=~ ={z = (21,22) : |21] > 1 and |23] > 1}), i.e

o
ik —i =k
g {aikzle + a_i7_k2122} — a0,0,
i,k=0

and one in DT~ = {z = (21,22) : |21] < 1 and |22| > 1} (D™T), i.e.

“+o00

Z {ai,_kziz2 +a_;rz; z2}

ik=1

Clearly, if v € OPhpz, then obviuosly a_; , = a;,—r = 0 for i,k € N, i.e.

—1 =i kdﬁ dce _ :
(2mi)2 /8011)2 Y(C15C2)C1 G . S =0 (i,k € N)

Qg =

or, equivalently,

1 21 Zola  dCy d(s -
W/aomﬂ 7(C17<2)1—211611_72C2Z_11E_0 ((z1,22) € D?). (5)

If v € OPhp+-, then a; , = a_; _, =0 for i,k € {0} UN. This means v satisfies

1 i~k dG1 dG; ,
Gk = iR /8 GG =0 ke {0 uN)

or, equivalently,

1 / (1. G) 1 1 d¢y dés

: (G, — — =
(27m8)% Jo,p2 b2y 2161 1 —20C5 C1 G2
Evidently, it is easy to see that OPhp2: = 0Php-- and OPhp+- = OPhp-+. Further,

if v belongs to dHp2 (the space of boundary values of functions, holomorphic in D?),
then ~y satisfies condition (5) and

=0 ((21,22) S DQ)

1 G s | y
A—i,—k = (27_”)2 /80]]])2 7(41)62)4‘14‘2 Cl CZ =0 (Z,ké{O}UN,Z+k7§O)

as well, i.e.

1 1 1 dG dGa 2
W /80]1])2 7(Cl’CQ)(l —Z1G1 1 = %20 - 1> C1 Cz =0 ((Zl’ZQ) €l )

or, equivalently,

1 zZ1G Z2G2  Z1Q ZaG2  \dGdC
(27i)2 /80]1)2 7(C17C2)<1 —Z1(1 " 1 =220 1-Z1G1 —32C2) a G =0

On the basis of [1: Theorem 5.1] and from our discussion above we can get the following
conclusion about the boundary values of holomorphic functions in polydiscs.
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Lemma 1. Let~y be a real-valued continuous function on 0oD™ satisfying v € OHpn :

)S)DID SR / O~ [T 2% ¢
@) Jogon | 2 Qe — 2k ¢

v=1 ) =0 1<k1<...<kp<n T =241 <k37' - 'Zk‘r
1<k p1<...<ky<n

Then

1 dc
6C) = e M0
is analytic in D™ satisfying ¢(¢) = v(¢) on 9yD™.

2. The classical problem
From (4) it follows that

a¢0 -~ 8¢u (9u0

UEkzﬁbkz(Z)"‘UOEka uzk:_+ Zum— t+ o

where

n

Uoz, = Z(—l)u—i-l Z Tk, - 'TklfklkaQ”'Zk,, (1 <k< n)

v=1 1<k1<...<k,<n

Substituting these expressions into (3), we obtain an equality for ¢ € 9yD™:

k Ck Do
ch(m +Z@6C ch%)
N7 Sk Ouo Ck 51&0)
Evidently, this equality is satisfied if

0t | Gk 0¢o G [ 0uo} 9uo
ok () + ;QJ acj ZC] n ZCJ ¢ 8Ek

holds for any ( € 9pD™ and 1 < k < n. Since the left-hand side represents the boundary
values of a holomorphic function in D™, the right-hand side does too. Thus according
to Lemma 1, the problem is solvable if and only if the conditions

>y ¥ T S\ O Z@auo] matzun 2|

v=1A=0 1<k1<...<kj)<n
1<k i1<...<kp<n (7)

(6)

v

xﬁL H L%:O (z e D")
=2 Gk — 2k ¢

T or=A+1 Ck"’ — k.
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are satisfied. Then

+Z jazk leja_zjo

N 1 6u0 8u0 dC n
‘<2m>n/aom{[ Zgﬂacgl‘azk}c—z (D7)

is analytic in D™ and satisfies condition (7).

To derive the solution of problem (Nj3) we apply the Cauchy formula to (6), and by
taking into account

1 d¢ B . 1 ~ d¢ B
5 6DTf(C)C_Z—O, i.e. —(2772')” /aODnUOZk—C—Z_O

we get the partial differential equations for z € D"

By the transformation

w1 = 21
21

Wy = —
%)
21

n —
Zn 7/

we obtain for (8) the equations

091 ~ wi 9o 1 C1 — . dug
wla—wl +¢1 = “n 0wy + (2ri)" /80]1])” " {’Y(C) - ngja_(]]

» ¢y déa  dGy
GQ-w -5 G2t

Wn

2
g == | C—’@[wc)—Z@a—“ﬂ

nwy 0wy (2m)™ Jo,pn 1

d¢y d¢s ¢y
« k=2....n).
GQ-wi G- G- ( )
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Integrating these equations we get

. w1t28¢0 w1 1 8U0
“’1‘“—‘/0 zﬁ‘“*/o <zm>n/aow{ Z@acj
Ao _de _do e
t

X
G—te-o G-

N w1 t2 8(;50 w1 1 8160
ate=- [ | 2riy" /a”[ ZCJ ]

nwy Ot

d¢y  dG d¢n
x dt+Ch, (k=2,...,n).
G—tG—% (- & e )

Substituting w; = 0 on both sides we see that C, =0 (1 < k < n). Returning to the

original variables we have

zl¢1(2)=/01 (22)”/3 Q[V(C)—Z::ng—gk_sz ds

[t = Ck —~  Oug] dC
2195(2) = /0 —(2m')” /(%Dn g [7(0 - ;Cja_ég] C sz ds
—zl/ 52k Z 8% ) ds (k=2,...,n),
ie. for k=1,...,n we have
gb(z)—/l 1 / l Zg.auo} ds — 182ﬁd¢ (sz).
M o (2mi)" Jopn M 79¢ | ¢ — sz 0o N 0
Hence representation (4) gets the form
| (¢, 2) { - 8u0] d¢

_ N e d
w@) = [ e ) =

1
Fup(2) + do(2) — /0 <‘92n—52> depo (52).



The Classical and the Modified Neumann Problems 545

If we take ¢o(2) = |, |50 anz" (2 € D"), then

o)~ [ o)
2’ |2

= S o [R5 (8 0 s

|k|>0 Jj=1 *k|>1 J
Z a,z" —/ sl4’ Z ax|k|(sz)"ds
|#]>0 1] >1
|| 2] ] p

- O [ L R Sy 2

+||Z { n(wl +2))°
Thus B 1 1 <C, Z> n | an d{ ;
u(Z)—/O (2mi) /80[@n " [’Y(O_;C]a—cj]g_sz s+ up(2) N
EE n

Theorem 1. Problem (N3) is solvable if and only if its right-hand sides satisfy
condition (7) on JyD™. The general solution can be given by (9). The corresponding
homogeneous problem has infinitely many linearly independent non-trivial solutions

] 1212 }
1— —— 2" k| >0,zeD").

) 0 )
Problem (N2) is not well-posed.

3. The modified problem

Since solution (9) includes a free analytic function, clearly to get a fixed solution only
a Schwarz problem is needed to be solved. So we introduce an additional boundary
condition.

Problem (N3) Find a C!'(D") solution to system (1) satisfying the Neumann
condition (2) and

Reu(¢) =7"(¢) (¢ € D"). (10)
We call this problem the modified Neumann problem for system (1).
Let fre = 0in (1). Then the solvability condition (7) takes the form

n v—1 1 <<,Z> A 2k
2.2 2. (2mi)™ /@ODn n 1 71_[—1 Ckr — 2k,

v=1A=0 1<k1<...<kjx<n
1<kyy1<...<ky<n (11)

z d
X H ZkT C =0 (C € 0D™; ze D" U 80]1)”)
T= >\—|—1 Zk C
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and it means that every (;vy(¢) on 9pD" (1 < k < n) belongs to 0Hp~. Actually, it is
evident that v € OHpn. Note if (17(¢) = ¢1(¢) with @1 € OHpn, then v(¢) = C1o1(C).
If v ¢ OHpn, then (2¢101(¢) ¢ OHpn. But by the condition above (37(¢) € Hpn. This
is a contradiction. Hence condition (11) becomes

n v—1 v
1

A
2k, Zk. % B
2.2 2 (2mi)" /aomn 1) TH:1 Ckr = 2k, 1] o, — 2k, ¢ o 12

v=1)A=0 1<k1<...<ky<n T=X+1
1<kyi1<...<kp<n

Substituting (10) into (9) shows

Emzﬁ 4+ aC” . 1 n, ) i
T2tk -R ds =: 2I'
g;o 2+ [x] 7 (©) e/o : /&)Dn - ’V(??)n_sC s =: 2(¢),

i.e.

a(® n
Regoﬂw =T(¢) (¢ €D (13)

Due to the character of the left-hand side of (13), the right-hand side I" on 9yD" is also
the boundary value of a function, pluriharmonic in D™. This means the given function
I' on JpD™ must satisfy the condition

n v—1 1 v

A
2k, Zk,  dC
22 2 (2mi)n /30]1))" T TH:1 Chr — 2k, 11 k. — 2k, € 0. (4

v=2A=1 1<ki<...<ky<n T=A+1
1<ky41<...<kp<n

In fact, due to v € 9Hpn, it follows that

(s¢, Q)

2(() = 7(¢) — Re / 7(5) ds = 7*(C) — Re / $7(5) ds.

Hence Refo1 sv(sC) ds € OPhp» and condition (14) implies that v* € OPhpn, i.e.

n v—1 v
1

A
. 2k, Zp,  d¢ _
22 2 (2mi)" /aow T TH_1 Chr — 2k, 11 Cr, — 2k, € 0. (15)

v=2A=1 1<k1<...<ky<n T=A+1
1§kk+1<A“<kV§n

So if this condition is satisfied, then the Schwarz problem (13) is solvable and the
solution is given by

— 2 2C LS 1 e iC°
-Y o ) MO / T i
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with an arbitrary real constant CY, it is analytic in D" and satisfies equation (13) (see
[1]). One can see that

aozz—Ji—:é r()% 4 iaco
o D™

i) ¢
22+ |s) Sl
o= e [, TOT s> 0)

Hence if conditions (12) and (15) are satisfied, i.e. if v € 0Hp» and v* € OPhpn, then
problem (N3) with fi, = 0 is solvable and the solution is given by

uz) = 3 an [1_ %}+ /01 S Wl) /%Dn <C;1z>7(o< L

||=0

for z € D™. But from

~at 3 o /a i) [2 ! ’”'H_TW] O

_ 2 L4
‘““+<2m>n/aow2”°[1—zz 1}4

%150 ¢
2 1 d¢
ot G e 2r(©)| 1)
n— |z|? 0, =, d¢
> n(2mi)" /,%Dn O FE0) =

|k]|>0

n—1z20 1 / 1 } d¢
= — 2T = —1|—=
do+ n ot (271'2)” HoDn ( ) 1-— tZC C

¢
2 1|4
i /a 2(¢) [1 m 11 ¢

. n—|z20 1 1 d¢
wz)=icy+ LS L /8 2r<<>[ _tzz‘l]? )

1
1 2 ld¢
* Gy /a 200 [1 % 1} ¢

where Cj is an arbitrary real constant.

we get

Next we make some simplifications. Let

L= G /a 20 {1 s 1}% (= € D7),
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Then

_ 1 1 (n,¢) dn H 2 _]dc
"= Gy /B{R/ ri) /a i § Pl I

1 . 2 d
" @iy /a 7O [1 vy 1} ¢

=: —I1, — I1p + 1

1 b n,¢) dn {2_}@
2he = Gy /3/ @) /a il Fae S

By changing the order of integration, we get

Q) 1 2 |4
o L

2z ¢
n 1—507 1—2( ¢
ﬂka

aopn L — SCkTy

where

211(1 -

OoD™

but

n

1 2d¢ 1 (Cn)_dC
- H 1—5CTWTC—Z_(27Ti)n/<90®n n (- sy

T=1latopT#k

2 / {— STk ]
- e |G + ——m—
n(2mi)" 80D"77 P — G

1 1 d¢ (sn,n)
XHI_SCTHTI—ZCC n

leads to

1
1 7 dn
ZIa:/ - / 777[2 —1:|—Sd8.
' o(%ﬂ”awn() n— sz U

The second part of I; which has to be simplified is

_ 1 bl (n,¢) dn {2_}%
2he = o 4/ (i) /a el i




The Classical and the Modified Neumann Problems 549

By changing the order of the integrals

_ 1 1 ¢m 1 2 ¢ , dn
2l = Griyn /a/ ”(’”{(m)n /a n 1—snz{1—zz‘1}?}d87

and from

1 (Cm 1 N S
(2mi)™ /aO]D)n n 1—37}Z[I—ZZ 1}§

= 3 1, / Skl [1 + s1iC), + —(Snka)_g }

n = n
1 1 d
<] _ {2{1+—Z’€Ck_}1—[ _ —1}—€
=1 1 - 877’7'(7' ]- - Zka — ]. — SZTCT C
TF#E T#k

B 1 10 sC 2k Gy _ &
B 2mi /E)Dkn{gknk—i_s_‘_sl—snkzk]{Q[l_'_ 1—Zka] 1} Ck

—~ 1 1 ¢ 22,.C |d
= Z — / — {Ckﬁk + s+ S—Snka_ 1 {1 + Zka_ } ﬁ
271 Jop, 1 1 — snrCy 1—2kCk] Ck

we have

dn
Ui
2 Z,Mn) ——dn 1 ——dn
= 5 / < 77>v(n) + 55 / v
OpD™
Thus we have got I; calculated as

e

/01 <27r1i>n /aon)n " {QC S 1} %Sds
- (27fli)” /aODn <z;f>m% B 4(271”~)n /aomn m%

1 1 B %
b= G o PO i Y

Similar to I; it is easy to get
_ 1 . ¢ d¢
L= G [y 7O ek
¢

1 /o1 ¢
B 5/0 @) /a (©) L e 1} e o

1 (tz, () ——=dC
el M lOr

Now let
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So we have

u(z) = iCo + _n|z|2 %{ (2732-)” /80Dn 7 () L _Ctz - 1} d_cg

5T Sy 2O, (10
+ (27r1z')n /aom 70 {QC : 2 1} %
- %/01 (271@')71 /aoDn 7(¢) [2< —Csz N }%Sds

1 (2, () ——d( 1 ¢
~ (2mi)m /80]1))" n W(C)?  4(2mi)n /aomn 7(0?

where Cj is an arbitrary real constant.

Lemma 2. The modified Neumann problem (N%) for pluriholomorphic functions in
D™ is uniquely solvable if and only if conditions (12) and (15) are satisfied,i.e. v € OHpn
and v* € OPhpn. The solution unique up to an arbitrary real constant is given by (16).
The problem is well-posed.

Next we clarify the solution and the solvability conditions of the modified problem
(N3) for the inhomogeneous system (1). By substituting condition (10) into represen-
tation (9) we have

g 1
Y (@ +an >|/-;|+2

|r[=0

=77(¢) — Reuo(¢)

_Re/ol (27T1i)"/8010>n<” [ Zl j] .

—: 2F(()

for ¢ € 9pD™, i.e

Re 3 S5 SFQ) (CeaD”) a7)

|k |>0
This means again F' € dPhp» because the left-hand side belongs to OPhpn, i.e.

n v—1 A v

1 / 2k Zk d¢
uz::w\z::l 1§k1<Z:<kA§n (2mi)™ Joopn 7];[1 Chr = 2k, 7:1:I+1 Chr — 2k, §
1<ky41<...<ky<n
for z € D™. Then the Schwarz problem (17) is solvable and the solution can be given by

agz® 1 ¢ L ldC .
> | = F(C)[Q 1] : +iC
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and from it one can derive that

2 c | om
90 = riyn /aomm PO +i2e
2245 [ e

K= “mi)r oo c ([ >0)

where C! is an arbitrary real constant. Substituting them into (9) we get

u(z) = /01 (27rlz.)n /(%Dn <, { ZC] (Z’Zj] de = ds + ug(2)

2+ |x| { _M] 2wdl oo
+|n|zzo (2mi)™ Jaymn ! n(|x| +2) F(O)(=0) C—HQ

for all z € D™. Similarly to the case of the pluriholomorphic system we obtain
1
1 / (¢, [ 3“01 d¢ .
u(z) = , ¢ ds + ug(z) +iC*
=), @ e Z e o)
PP 1
_i_gn ]z| / F(C){ __1}%
ot n(2mi)™ Jg,pn 1—1tzC ¢

+ﬁ/aomﬂo{1—2i_l}d?<

where C* is an arbitrary real constant.

(19)

t=1

Theorem 2. The modified Neumann problem (N3) for the inhomogeneous pluri-
holomorphic system (1) in D™ is solvable if and only if conditions (7) and (18) are
satisfied. The solution which is unique up to an arbitrary real constant, is given by (19).
The problem is well-posed.

A simple application. Find the sums

,k%% and %Olk!w’“ (J21] < 1,....leal < 1).
By the above method we get
> oyt :/1< 1 1 _1>@
|k|0k1+ + Ky, o \1— sz 1— sz, S
and
Z et (zlfl xﬁn) - 32(1 —1851:1 1 —1sxn a 1) s=1
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