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A Universal Constant
for Exponential Riesz Sequences

A. M. Lindner

Abstract. The aim of this paper is to study certain correlations between lower and upper
bounds of exponential Riesz sequences, in particular between sharp lower and upper bounds,
where we show that the product of the sharp bounds of an exponential Riesz sequence is
bounded from above by a universal constant. The result is applied to the norms of coefficient
and frame operators and their inverses.
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1. Introduction

Let H be a separable Hilbert space over C. A sequence Φ = (ϕn)n∈Z of elements in
H is called a Riesz-Fischer sequence or a Bessel sequence for H, if there is a constant
A > 0 or B > 0 such that for all numbers n ∈ N and c−n, . . . , cn ∈ C

A

n∑

j=−n

|cj |2 ≤
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n∑

j=−n

cjϕj

∥∥∥∥
2

H

(1)

or ∥∥∥∥
n∑

j=−n

cjϕj
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2

H

≤ B

n∑

j=−n

|cj |2, (2)

respectively. If Φ is both a Bessel and a Riesz-Fischer sequence, it is called a Riesz
sequence for H. The constants A and B are called lower and upper bounds, respectively.
It is an easy matter to check that the supremum of all lower bounds and the infimum of
all upper bounds of a Riesz sequence is again a lower bound and an upper bound, which
we denote by Aopt(Φ) and Bopt(Φ), respectively. The constants Aopt(Φ) and Bopt(Φ)
are called the sharp lower and the sharp upper bounds for Φ, respectively.

In this paper, we shall be concerned with exponential Riesz sequences for L2(−σ, σ),
i.e. with Riesz sequences for L2(−σ, σ) of the form (eiλn•)n∈Z, where σ > 0 and (λn)n∈Z
is a sequence of complex numbers. From (1) and (2) it follows readily that if (eiλn•)n∈Z

A. M. Lindner: Math. Inst. Univ. Erlangen-Nürnberg, Bismarckstr. 1 1/2, D-91054 Erlangen
e-mail: lindnera@mi.uni-erlangen.de

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



554 A. M. Lindner

is a Riesz sequence for L2(−σ, σ), then the sequence (=λn)n∈Z of imaginary parts must
be uniformly bounded.

Young (see [9: Proposition 1/Corollary 1] and [10: Chapter 4/Propositions 2 and 3,
Theorem 3 and Chapter 2/Remark following Theorem 17]) has shown that for a sequence
(eiλn•)n∈Z of exponentials to be a Riesz sequence for L2(−σ, σ) it is sufficient that it be
a Riesz-Fischer sequence for L2(−σ, σ), provided (=λn)n∈Z is uniformly bounded. We
shall have a closer look at this result and the occuring bounds. In particular, if σ, τ > 0
and (λn)n∈Z is a sequence of complex numbers such that

sup
n∈Z

|=λn| ≤ τ (3)

and (eiλn•)n∈Z is a Riesz-Fischer sequence for L2(−σ, σ) with lower bound A, we shall
construct an upper bound B for (eiλn•)n∈Z, depending only on A, σ and τ (Proposition
1). From this we shall obtain a universal constant for the product of the sharp bounds
of exponential Riesz sequences (Theorem 1).

The results of this paper are part of the author’s doctoral thesis [5: Chapter 4].

2. Results

We need the following

Definition 1. A sequence (λn)n∈Z of complex numbers is called separated by δ > 0,
if infn6=m |λn − λm| ≥ δ. The sequence is called separated, if there is some δ > 0 such
that (λn)n∈Z is separated by δ.

Proposition 1. Let τ ≥ 0, σ > 0, A > 0 and (λn)n∈Z be a sequence of complex
numbers satisfying (3), such that (eiλn•)n∈Z is a Riesz-Fischer sequence for L2(−σ, σ)
with lower bound A. Then there holds:

1. (λn)n∈Z is separated by δ = δ(A, σ, τ), where

δ(A, σ, τ) =
1
σ

log
(

1 + e−στ

√
A

σ

)
.

2. (eiλn•)n∈Z is a Riesz sequence for L2(−σ, σ) with upper bound B = B(A, σ, τ),
where

B(A, σ, τ) =
2
σ

(e2σ(τ+1) − 1)
(
1 +

2
δ

)2

=
2
σ

(e2σ(τ+1) − 1)


1 +

2σ

log
(
1 + e−στ

√
A
σ

)




2

.
(4)

Remark 1. Proposition 1 states more explicitly a result of Young (see [9: Propo-
sition 1, Corollary 1] and [10: Chapter 4/Propositions 3 + 2, Theorem 3 and Chapter
2/Remark following Theorem 17]) who proved that, under the assumptions of Proposi-
tion 1, the sequence (λn)n∈Z must be separated and that (eiλn•)n∈Z is a Riesz sequence.

From Proposition 1 we shall obtain



A Universal Constant 555

Theorem 1. For every σ > 0 and every τ ≥ 0, there exists a constant C(σ, τ) > 0
such that the following holds:

If (λn)n∈Z is a sequence of complex numbers satisfying (3) and such that Φ =
(eiλn•)n∈Z is a Riesz sequence for L2(−σ, σ), then the product of the sharp bounds
Aopt(Φ) and Bopt(Φ) is bounded from above by C(σ, τ):

Aopt(Φ) Bopt(Φ) ≤ C(σ, τ). (5)

The constant C(σ, τ) can be chosen as

C(σ, τ) = 256 e4στ+2σ(σ + 1
8 )2. (6)

Remark 2. There is no universal constant D(σ, τ) > 0 such that Aopt(Φ) Bopt(Φ) ≥
D(σ, τ) for all exponential Riesz sequences Φ = (eiλn•)n∈Z for L2(−σ, σ) satisfying (3).

Counterexample. For 0 < ε < 1 we define

λε
n =

{
n for n ∈ Z\{0}
1− ε for n = 0

and Φε = (eiλε
n•)n∈Z.

From the orthonormality of ( 1√
2π

ein•)n∈Z in L2(−π, π) it follows that, for 0 < ε < 1,

Φε is a Riesz sequence for L2(−π, π) and Bopt(Φε) ≤ 4π. However, from ‖eiλε
0• −

eiλε
1•‖2L2(−π,π) → 0 for ε → 0 we conclude Aopt(Φε) → 0 for ε → 0. This shows

Aopt(Φε)Bopt(Φε) → 0 for ε → 0.

Definition 2. A sequence Φ = (ϕn)n∈Z in a separable Hilbert space H over C is
called a frame for H (cf. Duffin and Schaeffer [3: Section 3]), if there exist constants
A > 0 and B > 0 such that for all f ∈ H

A ‖f‖2H ≤
∑

n∈Z
|(f, ϕn)H |2 ≤ B ‖f‖2H .

The constants A and B are called lower and upper frame bounds, respectively. The
operators

TΦ : H → l2(Z), f 7→ ((f, ϕn)H)n∈Z
and

SΦ : H → H, f 7→
∑

n∈Z
(f, ϕn)Hϕn

are called the coefficient operator and the frame operator, respectively, corresponding
to the frame Φ.

Remark 3. From Definition 2 it follows easily that the coefficient operator corre-
sponding to a frame is an injective, bounded linear operator, with bounded inverse on
its range. Furthermore, it can be shown that SΦ is a well-defined, bijective, bounded
linear map (cf. Duffin and Schaeffer [3: Section 3]; the sum converges in the norm of
H).

Definition 3. A frame in a separable Hilbert space over C is called an exact frame
(or a Riesz basis), if it is no longer a frame after any of its elements is removed.

Remark 4. Every exact frame is a Riesz sequence with the same bounds (cf. Duffin
and Schaeffer [3: Lemma X] and Kölzow [4: Section II.1/Corollary 1 to Theorem 8]).

As a consequence of Theorem 1, we have



556 A. M. Lindner

Corollary 1. For the constant C(σ, τ) of Theorem 1 there holds:
If (λn)n∈Z is a sequence of complex numbers satisfying (3) and such that Φ =

(eiλn•)n∈Z is an exact frame for L2(−σ, σ), then we have the following inequalities for
the norms of the coefficient and frame operator and their inverses:

‖TΦ‖ ≤
√

C(σ, τ) ‖T−1
Φ ‖

‖SΦ‖ ≤ C(σ, τ) ‖S−1
Φ ‖

‖TΦ‖2 ≤ C(σ, τ) ‖S−1
Φ ‖.

Remark 5. A statement analog to Corollary 1 does not hold for arbitrary (non-
exact) exponential frames.

Counterexample. We define the sequence Φm = (ei n
m•)n∈Z where m ∈ N. It can

be shown that Φm is a frame for L2(−π, π), but ‖TΦm
‖2 = ‖T−1

Φm
‖−2 = ‖SΦm

‖ =
‖S−1

Φm
‖−1 = 2πm.

Definition 4. Denote by PW 2
σ the Paley-Wiener space, consisting of all entire

functions of exponential type at most σ, whose restriction to R belongs to L2(R). The
norm on PW 2

σ is the usual L2(R)-norm.

For a sequence Λ = (λn)n∈Z of complex numbers, the operator IΛ is defined by

IΛ : PW 2
σ → CZ, F 7→ (F (λn))n∈Z.

Remark 6. If, for Λ = (λn)n∈Z, (eiλn•)n∈Z is an exact frame for L2(−σ, σ), then IΛ

defines a bijective, bounded linear operator from PW 2
σ onto l2(Z) (i.e. Λ is a complete

interpolating sequence, cf. Young [10: Chapter 4/Theorem 9]).

From Corollary 1 we obtain

Corollary 2. For the constant C(σ, τ) of Theorem 1 there holds:
If Λ = (λn)n∈Z is a sequence of complex numbers satisfying (3) and such that

(eiλn•)n∈Z is an exact frame for L2(−σ, σ), and if IΛ : PW 2
σ → l2(Z) is the bijec-

tion considered above, then

‖IΛ‖ ≤
√

C(σ, τ)
2π

‖I−1
Λ ‖.

3. Proofs

We shall need the following

Lemma 1 (see [6: Lemma 1]). Let δ, σ > 0, τ ≥ 0, and (λn)n∈Z be a sequence
of complex numbers, separated by δ and satisfying (3). Then for all functions F of the
Paley-Wiener space PW 2

σ the inequality
∑

n∈Z
|F (λn)|2 ≤ e2σ(τ+1) − 1

πσ

(
1 +

2
δ

)2
∫

R
|F (x)|2dx (7)

holds.

It should be noted that for separated real sequences the first inequality of type (7)
(with a different constant) was given by Plancherel and Pólya [8: p. 126].
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Proof of Proposition 1.
1. For the following proof that (λn)n∈Z is separated we use similar arguments as

Pavlov did in [7: Theorem 1]. Let k, n ∈ Z, where k 6= n. Then we have from (1)

2A = A(|1|2 + | − 1|2)

≤
∫ σ

−σ

|eiλkx − eiλnx|2dx

=
∫ σ

−σ

|eiλkx|2|1− ei(λn−λk)x|2dx

≤ e2στ

∫ σ

−σ

|1− ei(λn−λk)x|2dx.

(8)

For x ∈ (−σ, σ) we have

|1− ei(λn−λk)x| =
∣∣∣∣∣
∞∑

m=1

(i(λn − λk)x)m

m!

∣∣∣∣∣

≤
∞∑

m=1

(|λn − λk| |σ|)m

m!

= e|λn−λk|σ − 1.

Hence we conclude from (8)

2A ≤ e2στ2σ(e|λn−λk|σ − 1)2.

From this it follows easily that

|λn − λk| ≥ 1
σ

log
(
1 + e−στ

√
A

σ

)
= δ(A, σ, τ),

i.e. (λn)n∈Z is separated by δ = δ(A, σ, τ).
2. From Lemma 1 and assertion 1 we derive (7) with δ = δ(A, σ, τ). By the

Paley-Wiener theorem, this is equivalent to
∑

n∈Z
|(f, eiλn•)|2 ≤ 2

σ
(e2σ(τ+1) − 1)

(
1 +

2
δ

)2

‖f‖2

for all f ∈ L2(−σ, σ). By a theorem of Boas [2: Theorem 1] (cf. Young [10: Chapter
4/Theorem 3]) the latter inequality is equivalent to (eiλn•)n∈Z being a Bessel sequence
with upper bound B = B(A, σ, τ), as defined by (4)

Proof of Theorem 1. Let σ > 0, τ ≥ 0, and (λn)n∈Z be a sequence of complex
numbers satisfying (3) and such that Φ = (eiλn•)n∈Z is a Riesz sequence with sharp
bounds A = Aopt(Φ) and Bopt(Φ). From Proposition 1 we conclude

Bopt(Φ) ≤ 2(e2σ(τ+1) − 1)
σ


1 +

2σ

log
(
1 + e−στ

√
A
σ

)




2

. (9)
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From
A ≤ ‖eiλn•‖2L2(−σ,σ) ≤ 2σ e2στ (n ∈ Z)

we derive
1√
8

e−στ

√
A

σ
≤ 1

2
. (10)

Using log(1 + x) ≥ x
2 for x ∈ [0, 1

2 ), we thus obtain

log
(

1 + e−στ

√
A

σ

)
≥ log

(
1 +

1√
8

e−στ

√
A

σ

)
≥ 1

2
1√
8

e−στ

√
A

σ
.

Using (9) and (10), we conclude

Bopt(Φ) ≤ 2
σ

(e2σ(τ+1) − 1)
(

1 + 4
√

8 σ eστ

√
σ

A

)2

≤ 2
σ

(e2σ(τ+1) − 1)
(1

8
+ σ

)2
(

4
√

8 eστ

√
σ

A

)2

≤ 256 e4στ+2σ
(1

8
+ σ

)2 1
A

.

This shows Aopt(Φ) Bopt(Φ) ≤ C(σ, τ) for C(σ, τ) defined by (6)

Proof of Corollary 1. Let Φ = (eiλn•)n∈Z be an exact frame for L2(−σ, σ). Since
the frame bounds of the exact frame Φ coincide with the bounds of Φ as a Riesz sequence
(Remark 4), we conclude that for all f ∈ L2(−σ, σ)

Aopt(Φ) ‖f‖2 ≤
∑

n∈Z
|(f, eiλn•)|2 ≤ Bopt(Φ) ‖f‖2 (11)

and that Aopt(Φ) and Bopt(Φ) are the best possible constants in this inequality. From
this we derive

‖TΦ‖ =
√

Bopt(Φ) and ‖T−1
Φ ‖ =

1√
Aopt(Φ)

. (12)

The norms of SΦ and S−1
Φ also can be expressed by the best constants occuring in (11).

It holds

‖SΦ‖ = Bopt(Φ) and ‖S−1
Φ ‖ =

1
Aopt(Φ)

(13)

(cf. Benedetto and Walnut [1: Theorem 3.2/a]). Thus the result follows from inequali-
ties (5), (12) and (13)

Proof of Corollary 2. It follows from Corollary 1 and the Paley-Wiener theorem
(cf. Young [10: Chapter 2/Theorem 18])
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Open questions.

1. For what classes of exact frames (not of exponential type) do analogues to
Theorem 1 and Corollary 1 exist? It can be thought, e.g., of the class of all exact Gabor
frames with discretisation parameters t0 and ω0 such that t0 ω0 = 1.

2. What is the best constant Copt(σ, τ) fulfilling inequality (5)? We conjecture that
Copt(π, 0) = 4π2.
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