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Abstract. In the paper the existence of almost periodic piecewise continuous functions of
Lyapunov’s type for impulsive differential equations is considered. The impulses take place at
fixed moments of time.
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1. Introduction

Many processes by physics, biology, etc. are characterized by the fact that at certain
moments they change their state by jumps. These processes during their evolution are
subject to short time perturbations whose duration is negligible in comparision with
the duration of the process. That is why we can assume that these perturbations are
carried out ”instantly”, in the form of impulses. Adequate mathematical models of
such processes are systems of impulsive differential equations. In the recent years these
equations have been the object of numerous investigations [1 - 5, 7].

In this paper we shall prove convers theorem of the type of Massera’s theorem [6],
i.e. that for impulsive differential equations there exists a piecewise continuous almost
periodic Lyapunov function with certain properties.

2. Preliminary notes

Let R = (−∞,∞), R+ = [0,∞), Rn be the n-dimensional Euclidean space with norm
‖ · ‖, D ⊂ Rn be a compact subset and Bα = {x ∈ Rn : ‖x‖ < α} for α = const > 0. By
B =

{{τk}∞k=−∞ ⊂ Rn : τk < τk+1

}
we denote the set of all sequences, unbounded and

strictly increasing, with distance ρ({τ (1)
k }, {τ (2)

k }) = infε>0{|τ (1)
k − τ

(2)
k | < ε (k ∈ Z)}.

We shall consider the system of impulsive differential equations

ẋ = f(t, x)

∆x(τk) = Ik(x(τk))

x(t0 + 0) = x0

(t 6= τk)

(k ∈ Z)

(t0 ∈ R)





(1)
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where
f : R×D → Rn

Ik : D → Rn

{τk}∞k=−∞ ∈ B

∆x(τk) = x(τk + 0)− x(τk).

We denote by x(t) = x(t; t0, x0) the solution of system (1) with the initial condition
x(t0 + 0; t0, x0) = x0.

We introduce the following assumptions:

(H1) f ∈ C(R×D,Rn) and f(t, 0) = 0 for t ∈ R.
(H2) The function f is Lipschitz continuous with respect to its second argument in

R×D, uniformly on t ∈ R, with constant L1(D) > 0, i.e. ‖f(t, x)− f(t, x)‖ ≤
L1(D)‖x− x‖ for x, x ∈ D.

(H3) Ik ∈ C(D,Rn) and Ik(0) = 0 (k ∈ Z).

(H4) The functions Ik (k ∈ Z) are Lipschitz continuous in D with constant L2(D) > 0,
i.e. ‖Ik(x)− Ik(x)‖ ≤ L2(D)‖x− x‖ for x, x ∈ D.

(H5) (I + Ik) : D → D (k ∈ Z), where I is the identity in Rn.

Recall (see [3: p. 46]) from assumptions (H1) - (H5) it follows that the solution
x(t) of system (1) is a piecewise continuous function with points of discontinuity at the
moments τk (k ∈ Z) at which it is continuous from the left.

We denote

Γ =
{

(t, x) ∈ R× Rn : x ∈ Bα (α = const > 0)
}

Gk =
{

(t, x) ∈ Γ : τk−1 < t < τk

}
and G =

⋃

k⊂Z
Gk

Sα =
{

(t, x) ∈ Γ : x ∈ Bα if (t, x) ∈ G and x + Ik(x) ∈ Bα if t = τk

}
.

Definition 1. We shall say that a function V : R× Rn → R+ belong to the class
V if the following conditions are satidfied:

1. V is continuous in G and V (t, 0) = 0 for all t ∈ R.

2. For each k ⊂ Z and each point x0 ∈ Bh the limits

V (τk − 0, x0) = lim
(t,x)→(τk,x0)

(t,x)∈Gk

V (t, x) and V (τk + 0, x0) = lim
(t,x)→(τk,x0)
(t,x)∈Gk+1

V (t, x)

exist and are finite, and the equality V (τk − 0, x0) = V (tk, x0) holds.

3. V is locally Lipschitz in x, i.e. for x, x ∈ Bα there exists a positive constant h(α)
such that

‖V (t, x)− V (t, x)‖ ≤ h(α)‖x− x‖ (2)

for t ∈ R.
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4. For any t ∈ R and any x ∈ Rn

V (t + 0, x + Ik(x)) ≤ V (t, x) (k ∈ Z) (3)

follows.
Let V ∈ V, t > t0 with t 6= τk and x ∈ Rn. We introduce the function

D+V (t, x(t)) = lim inf
δ→0+

V (t + δ, x(t + δ; t, x))− V (t, x)
δ

. (4)

In the further considerations we also use the functions classes

PC(R,Rn) =





x : R→ Rn

∣∣∣∣∣∣∣

x is piecewise continuous with points

of discontinuity of the first kind τk

(k ∈ Z) and x(τk − 0) = x(τk)





and

P =
{

a ∈ C(R+,R+) : a is monotone increasing in R+ and a(0) = 0
}

.

Definition 2 (see [8: Theorem 6.3]). The function f ∈ C(R×D,Rn) is said to be
almost periodic in t uniformly with respect to x ∈ D if for every sequence of real numbers
{s′m} there exists a subsequence {sn}, sn = s′mn

such that the sequence {f(t + sn, x)}
converges uniformly with respect to t ∈ R and x ∈ D.

Definition 3 (see [1]). The sequence {Ik(x)}k∈Z, Ik ∈ C(D,Rn) is said to be
almost periodic uniformly with respect to x ∈ D if for every sequence of integer num-
bers {m′} there exists a subsequence {mn} such that the sequence Ik+mn(x) converges
uniformly for n →∞.

Let H ⊂ R. Introduce the sets

θε(H) = {t + ε : t ∈ H and ε ∈ R} and Fε(H) = ∩ε>0θε(H)

and let, for T, P ∈ B, s(T ∪ P ) : B → B be a map such that the set s(T ∪ P )
form a strictly increasing sequence. By φ = (ϕ(t), T ) we denote the elements from
the space PC × B, and for every sequence of real number {sn}n≥1 denote θsnφ =
{ϕ(t + sn), T + sn} ⊂ PC ×B, where T + sn = {τk + sn : k ∈ Z and n ∈ N}.

Definition 4 (see [1]). The set of sequences {τ j
k}, τ j

k = τk+j − τk (k, j ∈ Z) is said
to be uniformly almost periodic if for any ε > 0 there exists a relatively dense set in R
of ε-almost periods common for all the sequences {τ j

k}.
Lemma 1 (see [1]). The set of sequences {τ j

k} is uniformly almost periodic if and
only if from each infinite sequence of shifts {τk + αm} (k ∈ Z, m ∈ N, αm ∈ R) we can
choose a subsequence, which is convergent in B.

Definition 5. The sequence {φn}, φn = (ϕn(t), Tn) ∈ PC ×B is convergent to φ,
φ = (ϕ(t), T ) ∈ PC × B if for any ε > 0 there exists an n0 > 0 such that, for n ≥ n0,
ρ(T, Tn) < ε and |ϕn(t)− ϕ(t)| < ε uniformly for t ∈ R \ Fε(s(T ∪ Tn)).
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Definition 6. ϕ ∈ PC(R, D) is said to be an almost periodic piecewise continuous
function with points of discontinuity of the first kind from the set T if for every sequence
of real numbers {s′m} there exists a subsequence {sn}, sn = s′mn

such that θsn
(φ) is

compact in PC ×B.

We introduce the following assumptions:

(H6) The function f(t, x) is almost periodic in t uniformly with respect to x ∈ D.

(H7) The sequence {Ik(x)} is almost periodic uniformly with respect to x ∈ D.

(H8) The sequences {τ j
k}k,j⊂Z, τ j

k = τk+j − τk are uniformly almost periodic.

Remark 1. From [1] it follows that condition (H8) is satisfied if and only if τk =
kp + ck where {ck} is an almost periodic sequence of real numbers and p 6= 0. Then
limq→∞

i(a,a+q)
q = 1

p where i(a, a + q) is the number of points τk lying in the interval
(a, a + q).

Let assumptons (H1) - (H8) be fulfilled and let {sm
′} be an arbitrary sequence of

real numbers. Then there exists a subsequence {sn}, sn = smn
′ such that the sequence

{f(t + sn, x)} converges uniformly for x ∈ D to a function fs(t, x) and the set of
sequences {τk − sn} (k ∈ Z) is convergent to the sequence τs

k uniformly with respect to
k ∈ Z as n →∞.

By {kni} we denote a sequence of integer numbers such that the subsequence {tkni
}

converges to τs
k , uniformly with respect to k, as i →∞. From condition (H8) it follows

that there exists a subsequence of the sequence {kni} such that the sequence {Ikni
(x)}

converges uniformly to the limit denoted by Is
k(x). Then for every sequence {s′m} system

(1) moves to a system Es in the form

ẋ(t) = fs(t, x) (t 6= τs
k)

∆x(τs
k) = Ik(x(τs

k)) (k ∈ Z)

x(t0 + 0) = x0 (t0 ∈ R).





(5)

Definition 7. The set of all systems in the form (5) is said to be module of system
(1) and we denote this set by mod (f, Ik, τk).

Definition 8 (see [7: Definition 12.3]). The zero solution x(t) ≡ 0 of system (1) is
said to be:

8.1 stable, if

(∀ε > 0)(∀t0 ∈ R)(∃δ > 0)(∀x0 ∈ Bδ)(∀t ∈ R, t > t0) :

‖x(t; t0, x0)‖ < ε;

8.2 uniformly stable, if

(∀ε > 0)(∃δ > 0)(∀t0 ∈ R)(∀x0 ∈ Bδ)(∀t ∈ R, t > t0) :

‖x(t; t0, x0)‖ < ε;
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8.3 asymptotically stable, if it is stable and

(∀t0 ∈ R)(∃λ = λ(t0) > 0)(∀x0 ∈ Bδ : (t0, x0) ∈ Sλ) :

lim
t→∞

x(t; t0, x0) = 0.

8.4 asymptotically stable in the large, if it is stable and every solutions of system
(1) tends to zero as t →∞.

8.5 quasi-equi-asymptotically stable in the large, if

(∀α > 0)(∀ε > 0)(∀t0 ∈ R)(∃T > 0)(∀x0 ∈ Bα)(∀t ≥ t0 + T (t0, ε, α)) :

‖x(t; t0, x0)‖ < ε.

Definition 9. The solution x(t; t0, x0) of system (1) is called equi-bounded if

(∀α > 0)(∀t0 ∈ R)(∃β > 0)(∀x0 ∈ Bα)(∀t ∈ R, t ≥ t0) :

‖x(t; t0, x0)‖ < β.

Definition 10. The solution x(t; t0, x0) of system (1) is said to be perfectly uniform-
asymptotically stable in the large if δ in Definition 8.1, T in Definition 8.5 and β in
Definition 9 are independent on t0 for all t0 ∈ R.

In the further considerations we also use the following lemmas.

Lemma 2 (see [6: Lemma 1]). Given any real function A(r, ε) of real variables,
defined, continuous and positive in Q = {(r, ε) : r ∈ R+ and ε > 0}, there are two
continuous functions h = h(r), h(r) > 0 and g = g(ε), g(ε) > 0, g(0) = 0 such that
h(r)g(ε) ≤ A(r, ε) in Q.

Lemma 3 (see [3: Lemma 4.2]). Let the inequality

u(t) ≤ c +
∫ t

t0

u(s)v(s) ds +
∑

t0<τk<t

βku(τk)

hold where c > 0 and βk ≥ 0 (k ∈ Z), u is a piecewise continuous function with points
of discontinuity of the first kind τk (k ∈ Z) and v(t) ≥ 0 is a locally integrable function.
Then

u(t) ≤ c
∏

t0<τk<t

(1 + βk) exp
( ∫ t

t0

v(s) ds

)

for t ≥ t0.
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3. Main results

We shall prove a convers theorem of the type of Massera’s theorem.

Theorem 1. Let assumptions (H1) − (H8) be fulfilled and suppose that the zero
solution of system (1) is perfectly uniform-asymptotically stable in the large. Then there
exists a Lyapunov function V ∈ V which is almost periodic in t uniformly with respect
to x ∈ D, D a compact subset in Rn, and such that

a(‖x‖) ≤ V (t, x) ≤ b(‖x‖) (6)

for a, b ∈ P where a(r), b(r) →∞ as r →∞ and

D+V (t, x) ≤ −cV (t, x) (7)

for (t, x) ∈ Γ and c = const > 0.

Proof. Let Ω(σ, α) = {(t, x) : t ∈ (−σ, σ) and x ∈ Bα}. By equi-asympotic stabil-
ity in the large, the solutions of system (1) are equi-bounded, i.e. there exists a constant
β = β(α) > 0 such that, for (t0, x0) ∈ Ω(σ, α), ‖x(t; t0, x0)‖ < β(α) for t ≥ t0. Moreover,
there exists a T (α, ε) > 0 such that from (t0, x0) ∈ Ω(σ, α) we obtain ‖x(t; t0, x0)‖ < ε
for t ≥ t0 + T (α, ε). If ε > 1 we set T (α, ε) = T (α, 1).

From conditions (H2) and (H4), there exist L1(α, ε) > 0 and L2(α, ε) > 0 such that
if 0 ≤ t ≤ σ + T (α, ε), x ∈ Bβ(α) and x ∈ Bβ(α), we get

‖f(t, x)− f(t, x)‖ ≤ L1(α, ε)‖x− x‖
‖Ik(x)− Ik(x)‖ ≤ L2(α, ε)‖x− x‖ (k ∈ Z \ {0}).

Let
f∗ = 1 + max ‖f(t, x)‖ (

0 ≤ t ≤ T (α, ε), x ∈ Bβ(α)

)

I∗ = max ‖Ik(x)‖ (
x ∈ Bβ(α), k ∈ Z

)

and let c = const > 0. We set

A(α, ε) = ecT (α,ε)

×
{(

2
(
f∗ + I∗

1
p

)
+

(1
p

+ 1
)
T (α, ε)

)
eL1(α,ε)+ 1

p ln(1+L2(α,ε)) + β(α)
}

.
(8)

From Lemma 2 it follows that there exist two functions h(α) > 0 and g(ε) > 0 for
ε > 0, g(0) = 0 such that

g(ε)A(α, ε) ≤ h(α). (9)

For i ∈ N we define Vi(t, x) by

Vi(t, x) = g
(1

i

)
sup
τ≥0

Gi

(‖x(t + τ, t, x)‖)ecτ (t 6= τk)

Vi(τk, x) = V (τk − 0, x)
(10)
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where

Gi(z) =
{

z − 1
i if z ≥ 1

i

0 if 0 ≤ z ≤ 1
i .

Clearly, Gi(z) →∞ as z →∞, for each i, and

|G(z1)−Gi(z2)| ≤ |z1 − z2| (11)

where z1, z2 ≥ 0. From the definition of Vi(t, x) it is clear that

g
(1

i

)
Gi(‖x‖) ≤ Vi(t, x) and Vi(t, 0) ≡ 0 (12)

as (t, x) ∈ Ω(σ, α).
On the other hand, from (8) and (9),

Vi(t, x) ≤ g
(1

i

)
Gi(β(α))ecT (α, 1

i ) ≤ g
(1

i

)
β(α)ecT (α, 1

i ) ≤ h(α) (13)

follows. Then from (12) and (13) for Vi(t, x) (i ∈ N) at t 6= τk it follows that (6) holds.
For (t′, x′), (t, x) ∈ Ω(σ, α) and t < t′ we get∣∣Vi(t′, x′)− Vi(t, x)

∣∣

≤ g
(1

i

)
sup
τ≥0

∣∣∣Gi(‖x(t′ + τ ; t′, x′)‖)−Gi(‖x(t + τ ; t, x)‖)
∣∣∣ecτ

≤ g
(1

i

)
sup

0<τ<T (α, 1
i )

ecτ
∥∥x(t′ + τ ; t′, x′)− x(t + τ ; t, x)

∥∥∥

≤ g
(1

i

)
sup
τ≥0

ecτ
{∥∥x(t′ + τ ; t′, x′)− x(t′ + τ ; t, x)

∥∥

+
∥∥x(t′ + τ ; t, x)− x(t + τ ; t, x)

∥∥
}

.

(14)

On the other hand,∥∥x(t′ + τ ; t, x)− x(t + τ ; t, x)
∥∥

≤
∫ t′+τ

t+τ

‖f(s, x(s))‖ ds +
∑

t+τ<τk<t′+τ

‖Ik(x(τk))‖

≤ max
s∈[t+τ,t′+τ]

x∈Bβ(α)

‖f(s, x(s))‖+ max
τk∈[t+τ,t′+τ ]

‖Ik(x(τk))‖ i(t + τ, t′ + τ)

≤
(
f∗ + I∗

1
p

)
(t′ − t).

(15)

Let X = x(t′; t, x). From Lemma 3 we obtain∥∥x(t′ + τ ; t, x)− x(t′ + τ ; t′, x′)
∥∥

≤ ‖X − x′‖ exp
{

L1

(
α,

1
i

)
+

1
p

ln
(
1 + L2

(
α,

1
i

))
T

(
α,

1
i

)}

≤ (‖X − x‖+ ‖x− x′‖) exp
{

L1

(
α,

1
i

)
+

1
p

ln
(
1 + L2

(
α,

1
i

))
T

(
α,

1
i

)}

≤
((

f∗ + I∗
1
p

)
(t′ − t) + ‖x− x′‖

)

× exp
{

L1

(
α,

1
i

)
+

1
p

ln
(
1 + L2

(
α,

1
i

))
T

(
α,

1
i

)}
.

(16)
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Then from (15), (16) and (8) for (14) we get
∣∣Vi(t, x)− Vi(t′, x′)

∣∣

≤ g
(1

i

)
sup

0≤τ≤T (α, 1
i )

ecτ
((

f∗ + I∗
1
p

)
+

(
f∗ + I∗

1
p

)
(t′ − t) + ‖x− x′‖

)

× exp
{

L1

(
α,

1
i

)
+

1
p

ln
(
1 + L2

(
α,

1
i

))
T

(
α,

1
i

)}

≤ g
(1

i

)
2
(
f∗ + I∗

1
p

)
exp

{
L1

(
α,

1
i

)
+

1
p

ln
(
1 + L2

(
α,

1
i

))
T

(
α,

1
i

)}

× (|t′ − t|+ ‖x− x′‖)

≤ h(α)
(|t′ − t|+ ‖x− x′‖).

(17)

As x ∈ Bβ(α) and t = τk, from here it follows that Vi(t, x) is continuous and for t = t′

we obtain (2), i.e. the function Vi(t, x) is locally Lipschiz continuous.
Let τk ∈ R and x ∈ Bβ(α) be fixed, and let t′, t′′ ∈ (τk, τk+1], x′, x′′ ∈ Bβ(α) and

u′ = x(t′; τk, x, ), u′′ = x(t′′; τk, x, ). Then
∣∣Vi(t′, x′)− Vi(t′′, x′′)

∣∣
≤

∣∣Vi(t′, x′)− Vi(t′, u′)
∣∣ +

∣∣Vi(t′′, x′′)− Vi(t′′, u′′)
∣∣ +

∣∣Vi(t′, u′)− Vi(t′′, u′′)
∣∣. (18)

By the fact that the functions Vi(t, x) and f(t, x) are Lipschiz continuous we obtain the
estimates

|Vi(t′, x′)− Vi(t′, u′)| ≤ h(α)‖x′ − u′‖

‖x′ − u′‖ ≤ ‖x′ − x‖+ ‖u′ − x‖

‖u′ − x‖ ≤
∫ t′

τk

L1 exp
{ ∫ s

τk

L1dτ

}
ds‖x‖ ≡ N(t′)‖x‖.

Then ∣∣Vi(t′, x′)− Vi(t′, u′)
∣∣ ≤ h(α)‖x′ − x‖+ h(α)N(t′)‖x‖. (19)

By analogy,
∣∣Vi(t′′, x′′)− Vi(t′′, u′′)

∣∣ ≤ h(α)‖x′′ − x‖+ h(α)N(t′′)‖x‖. (20)

Since ai(δ) = supτ>δ Gi(‖x(τk + τ, tk, x)‖)ecτ is non-increasing and limδ→0+ ai(δ) =
ai(0), it follows that

∣∣Vi(t′, u′)− Vi(t′′, u′′)
∣∣

= g
(1

i

)∣∣∣∣ sup
s>0

G
(‖x(t′ + s; t′, u′)‖)ecs − sup

s>0
G

(‖x(t′′ + s; t′′, u′′)‖)ecs

∣∣∣∣

= g
(1

i

)∣∣∣a(t′ − tauk)e−c(t′−τk) − a(t′′ − τk)e−c(t′′−τk)
∣∣∣

→ 0
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as t′ → τk + 0 and t′′ → τk + 0. From (18) - (20) we obtain that there exists the limit
Vi(τk + 0, x). The proof of the existence of the limit Vi(τk − 0, x) follows by analogy.

Let η(t; t0, x0) be the solution of the initial value problem

η̇ = f(t, η)

η(t0) = x0.

}

Since τk−1 < λ < τk < µ < τk+1 and s > µ it follows that

x
(
s;µ, η(µ; τk, x + Ik(x))

)
= x

(
s; λ, η(λ, τk, x)

)
.

Then
Vi

(
µ, η(µ; τk, x + Ik(x))

) ≤ Vi

(
λ, η(λ; τk, x)

)

and passing to the limits as µ → τk + 0 and λ → τk − 0 we obtain

Vi

(
τk + 0, x + Ik(x)

) ≤ Vi(τk − 0, x) = Vi(τk, x). (21)

From here we obtain inequality (3) for the functions Vi(t, x).
Let x ∈ Bβ(α), t ∈ R with t 6= τk, h > 0 and x′ = x(t + h; t, x). Then

Vi(t + h, x′) = g
(1

i

)
sup
s≥0

Gi

(‖x(t + h + s, t + h, x′)‖)ecs

= g
(1

i

)
sup
τ>h

Gi

(‖x(t + τ, t + h, x′)‖)ecτe−ch

≤ Vi(t, x)e−ch

or
1
h

(
Vi(t + h, x′)− Vi(t, x)

) ≤ 1
h

(e−ch − 1)Vi(t, x).

Consequently D+Vi(t, x) ≤ −cVi(t, x). From this inequality we obtain (7) for the func-
tion Vi(t, x).

Now we define the desired function V (t, x) by setting

V (t, x) =
∞∑

i=1

1
2i

Vi(t, x) (t 6= τk)

V (τk, x) = V (τk − 0, x).





(22)

Since (14) implies the uniform convergence of the series of (22) in Ω(σ, α) where σ, α
are arbitrary, V (t, x) is defined on R×Rn, piecewise continuous along t, with points of
discontinuity at the moments τk (k ∈ Z) and it is continuous along x. From (12) clearly
V (t, 0) ≡ 0. For x such that ‖x‖ ≥ 1 from (12) and (22) we obtain

V (t, x) >
1
2
V1(t, x) ≥ 1

2
g(1)G1(‖x‖) ≥ 1

2
(‖x‖ − 1) (23)
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and for x such that 1
i ≤ ‖x‖ ≤ 1

i−1 we obtain

V (t, x) ≥ 1
2i+1

Vi+1(t, x)

≥ 1
2i+1

g
( 1

i + 1

)
Gi+1(‖x‖)

≥ 1
2i+1

g
( 1

i + 1

)(
‖x‖ − 1

i + 1

)

≥ 1
2i+1

g
( 1

i + 1

) 1
i(i + 1)

.

(24)

From (23) and (24) we can find a ∈ P such that a(r) → ∞ as r → ∞ and a(‖x‖) ≤
V (t, x). Let (t, x), (t′, x′) ∈ Ω(σ, α) with t < t′. Then

∣∣V (t, x)− V (t′, x′)
∣∣ ≤

∞∑

i=1

1
2i

∣∣Vi(t, x)− Vi(t′, x′)
∣∣

≤
∞∑

i=1

1
2i

h(α)
(|t− t′|+ ‖x− x′‖)

≤ h(α)
(|t− t′|+ ‖x− x′‖).

(25)

From here it follows that for x ∈ Bβ(α) and t 6= τk the function V (t, x) is continuous
and for t = t′ we obtain (2).

Let τk ∈ R, x ∈ Bβ(α) be fixed and θj ∈ (τk, τk+1], xj ∈ Bβ(α) where uj =
x(θj ; τk, xj) (j = 1, 2). Then

∣∣V (θj , xj)− V (θj , uj)
∣∣

=
∞∑

i=1

1
2i

∣∣Vi(θj , xj)− Vi(θj , uj)
∣∣

≤
∞∑

i=1

1
2i

g
( 1

2i

)∣∣∣a(θ1 − τk)e−c(θ1−τk) − a(θ2 − τk)e−c(θ2−τk)
∣∣∣

→ 0

for θj → τk + 0 (j = 1, 2), i.e. there exists the limit V (τk + 0, x). The proof of the
existence of the limit V (τk − 0, x) follows by analogy.

Let η(t; t0, x0) be the solution of the initial value problem

η̇ = f(t, η)

η(t0) = x0.

}
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For τk−1 < λ < τk < µ < τk+1 and s > µ from (21) we get

V
(
τk + 0, x + Ik(x)

)
=

∞∑

i=1

1
2i

Vi

(
τk + 0, x + Ik(x)

)

≤
∞∑

i=1

V (τk − 0, x)

≤
∞∑

i=1

1
2i

Vi(τk, x)

= V (τk, x).

(26)

Let x ∈ Bβ(α), t 6= τk and h > 0. Then from (22) we obtain

D+V (t, x) = lim sup
h→0+

Vi(t + h, x(t + h; t, x))− Vi(t, x)
h

and ∞∑

i=1

1
2i

(−cVi(t, x)) ≤ −cV (t, x).

Then
D+V (t, x) ≤ −cV (t, x). (27)

Consequently, from last inequality it follows that there exists V (t, x) from V such that
(6) and (7) are fulfilled. Here we shall show that V (t, x) is almost periodic in t uniformly
with respect to x ∈ Bβ(α). From condition 2 of Theorem 1 it follows that if x ∈ Bβ(α),
then there exists β(α) > 0 such that ‖x(τ ; t, x)‖ ≤ β(α) for any t ≥ τ . From assumptions
(H6) - (H8) we get that for an arbitrary sequence {sm

′} there exist a subsequence
{sn}, sn = smn

′ moving (1) in mod (f, Ik, τk). Then as x ∈ Bβ(α) we obtain
∣∣Vi(t + sn, x)− Vi(t + sp)

∣∣

≤ sup
τ≥0

g
(1

i

)
ecτ

∣∣∣Gi

(∥∥x(t + sn + τ)
∥∥)−Gi

(∥∥x(t + sp + τ ; t + sp, x)
∥∥)∣∣∣

≤ g
(1

i

)
sup

0≤τ≤T (α, 1
i )

ecτ
∥∥∥x

(
t + sn + τ ; t + sn, x

)− x
(
t + sp + τ ; t + sn, x

)∥∥∥.

(28)

On the other hand,

x
(
t + sn + τ ; t + sn, x

)
= x +

∫ t+τ

t

f
(
σ + sn, x(σ + sn; t + sn, x)

)
dσ

+
∑

t<σi(sn)<t+τ

Ii+i(sn)

(
x
(
σi(sn) + sn; t + sn, x

)) (29)

and

x
(
t + sp + τ ; t + sp, x

)
= x +

∫ t+τ

t

f
(
σ + sp, x(σ + sp; t + sp, x)

)
dσ

+
∑

t<σi(sp)<t+τ

Ii+i(sp)

(
x
(
σi(sp) + sp; t + sp, x

)) (30)
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where σi(sj) = τk − sj (j = n, p) and the numbers i(sn) and i(sp) are such that
i + i(sj) = k. From (29) and (30) it follows that∥∥∥x(t + sn + τ ; t + sn, x)− x(t + sp + τ, t + sp, x)

∥∥∥

≤
∫ t+τ

t

∥∥∥f
(
σ + sn, x(σ + sn; t + sn, x)

)− f
(
σ + sp, x(σ + sn; t + sn, x)

)∥∥∥dσ

+
∫ t+τ

t

∥∥∥f
(
σ + sp, x(σ + sn; t + sn, x)

)− f
(
σ + sp, x(σ + sp; t + sp, x)

)∥∥∥dσ

+
∑

t<σi<t+τ

∥∥∥Ii+i(sn)

(
x(σi(sn) + sn; t + sn, x) Ii+i(sp)

(
x(σi(sn) + sn; t + sn, x)

)∥∥∥

+
∑

t<σi<t+τ

∥∥∥Ii+i(sp)

(
x(σi(sn) + sn; t + sn, x)

)− Ii+i(sp)

(
x(σi(sp) + sp; t + sp, x)

)∥∥∥.

From x(σ + sn; t + sn, x) ∈ Bβ(α) it follows that for any ε > 0 there exists a number
N(ε) > 0 such that as n, p ≥ N(ε) we obtain∥∥∥f

(
σ + sn, x(σ + sn; t + sn, x)

)− f
(
σ + sp, x(σ + sn; t + sn, x)

)∥∥∥ < ε (31)
∥∥∥Ii+i(sn)

(
x(σi(sn) + sn; t + sn, x)

)− Ii+i(sp)

(
x(σi(sn) + sn; t + sn, x)

)∥∥∥ < ε. (32)

Then from (31) - (32) and assumptions (H2) and (H4) we obtain∥∥∥x(t + sn + τ ; t + sn, x)− x(t + sp + τ, t + sp, x)
∥∥∥

≤ ετ
(
1 +

1
p

)
+

∫ t+τ

t

L1(α)
∥∥∥x(σ + sn; t + σn, x)− x(σ + sp, t + sp, x)

∥∥∥dσ

+
∑

t<σi<t+τ

L2(α)
∥∥∥x(σi(sn) + sn; t + sn, x)− x(σi(sp) + sp; t + sp, x)

∥∥∥.

(33)

On the other hand, from Lemma 3 and (33) we obtain∥∥∥x(t + sn + τ ; t + sn, x)− x(t + sp + τ, t + sp, x)
∥∥∥

≤ ετ
(
1 +

1
p

)
e(L1(α, 1

i )+ 1
p ln(1+L2(α, 1

i )))τ .
(34)

From (34) and (28) we get that∣∣Vi(t + sn, x)− Vi(t + sp, x)
∣∣

≤ g
(1

i

)(
1 +

1
p

)
T

(
α,

1
i

)
e(c+L1(α, 1

i )+ 1
p ln(1+L2(α, 1

i ))T (α, 1
i ))ε

≤ h(α)ε.

(35)

From here it follows that Vi(t+sn, x) is uniformly convergent with respect to t ∈ R and
x ∈ Bβ(α). Then Vi(t, x) is almost periodic on t uniformly with respect to x ∈ Bβ(α).
Inequality (22) implies that for n, p ∈ N(ε) and x ∈ Bβ(α) we obtain

∣∣V (t + sn, x)− V (t + sp, x)
∣∣ ≤ h(α)ε,

i.e. V (t, x) is almost periodic in t with respect to x ∈ Bβ(α), and the proof of Theorem
1 is complete
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