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On Representations of Partial ∗-Algebras
Based on B-Weights

K.-D. Kürsten and E. Wagner

Abstract. A generalization of the GNS-representation is investigated that represents partial
∗-algebras as systems of operators acting on a partial inner product space (i.e., PIP -space). It
is based on possibly indefinite B-weights which are closely related to the positive B-weights
introduced by J.-P. Antoine, Y. Soulet and C. Trapani. Some additional assumptions had to
be made in order to guarantee the GNS-construction. Different partial products of operators
on a PIP -space are considered which allow the GNS-construction under suitable conditions.
Several examples illustrate the argumentation and indicate inherent problems.
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1. Introduction

The development of the theory of partial ∗-algebras has been motivated by the appear-
ance of such structures in models of local quantum field theory and quantum statistical
mechanics (see, e.g., [6, 13]). Lately, several standard results of the theory of ∗-algebras
of operators were extended to a certain degree to partial ∗-algebras, for instance rep-
resentation theory, modular theory of Tomita-Takesaki, and automorphism groups and
∗-derivations. For details and further references, we refer to the review [2] by J.-P.
Antoine, A. Inoue and C. Trapani.

As the GNS-construction is one of the basic tools of the theory of ∗-algebras, there
arises a particular interest in extending it to partial ∗-algebras. A promising approach to
this problem has been made by J.-P. Antoine, A. Inoue and C. Trapani [3], starting with
a positive sesquilinear form on a partial ∗-algebra, using a subspace of the space of all
right multipliers to set up the representation, and taking into account the possible lack
of (semi-)associativity. The result is a representation of the partial ∗-algebra into the
partial O∗-algebra L†(D, H). Nevertheless, this approach might be not general enough.
Yet for ∗-algebras there exists a GNS-construction based on weights, that is, positive
functionals defined on the positive cone of the ∗-algebra that do not necessarily take
finite values. In order to give a GNS-construction for partial ∗-algebras that generalizes
also the theory of weights, J.-P. Antoine, Y. Soulet and C. Trapani [5] introduced the
notion of a (positive) B-weight. The GNS-construction based on a B-weight will lead
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to a representation of the given partial ∗-algebra as a system of operators acting on some
partial inner product space (PIP -space); the basic ideas of PIP -spaces were developed
by J.-P. Antoine and A. Grossmann in earlier papers [1].

Our treatment of the subject follows closely the program presented in [5], except that
we do not require the B-weight to be positive. However, there will be included several
examples which show that our results are also relevant to the case of positive B-weights.
In Section 2 we give a sufficient and necessary condition that a B-weight determines the
structure of a non-degenerate PIP -space. Sections 3 and 4 are devoted to the study of
a generalized GNS-representation of a partial ∗-algebra as systems of operators acting
on a non-degenerate PIP -space V . To do this, the linear space of all continuous linear
operators on V (denoted by Op(V )) must be equipped with a multiplicative structure.
In Section 3 the underlying multiplicative structure is based on a definition due to J.-P.
Antoine and A. Grossmann [1]. It turns out that additional assumptions must be made
in order to guarantee the GNS-representation. Under certain conditions some of the
additional assumptions can be removed by introducing more general partial products
on Op(V ). This is the central theme of Section 4. For the convenience of the reader,
the necessary definitions concerning PIP -spaces, partial ∗-algebras and B-weights are
included in Sections 2 and 3. For a more detailed study we refer to the references [1 -
5, 10].

2. Construction of non-degenerate PIP -spaces

In this section we investigate the problem whether, given a (possibly indefinite) B-
weight Ω on a partial ∗-algebra, there exists a non-degenerate PIP -space associated
with Ω in a natural way. It turns out that the existence of such a PIP -space may
be characterized by additional conditions on the B-weight. Examples show that these
conditions do not follow from the axioms of B-weights.

Let us summarize some notations and definitions concerning PIP -spaces, partial
∗-algebras and B-weights. These definitions are essentially equivalent to the original
definitions in [1, 5], except that our forms are linear in the first argument and that the
form Ω is not required to be positive semi-definite here. A weak linear compatibility on
a C-vector space V is a symmetric binary relation # on V such that all non-empty sets
of the type

M# :=
{
ϕ ∈ V : ϕ# ψ for all ψ ∈ M

}
(M ⊂ V )

(called assaying subspaces) are linear subspaces of V . A linear compatibility on V is
a weak linear compatibility such that all sets of the type M# are non-empty. Suppose
now that # is a linear compatibility on the C-vector space V and let Γ(#) denote the
graph of #. A partial inner product on (V, #) is a mapping

Γ(#) 3 (ϕ,ψ) → 〈ϕ,ψ〉 ∈ C

which is linear in ϕ and satisfies 〈ϕ,ψ〉 = 〈ψ, ϕ〉 whenever ϕ# ψ. A triple (V, #, 〈·, ·〉),
where 〈·, ·〉 is a partial inner product on (V,#), is called a PIP -space. It is said to be
non-degenerate if 〈ϕ,ψ〉 = 0 for all ψ ∈ V # implies that ϕ = 0.
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A partial ∗-algebra is a ∗-vector space A together with a subset Γ ⊂ A × A and a
mapping Γ 3 (x, y) → x · y = xy ∈ A such that (x, y), (x, z) ∈ Γ and λ, µ ∈ C imply
that (x, λy + µz) ∈ Γ, (y∗, x∗) ∈ Γ, and that

x · (λy + µz) = λ(x · y) + µ(x · z)

(x · y)∗ = y∗ · x∗ .

}

The set of right multipliers of a subset N ⊂ A is the set

R(N) :=
{
x ∈ A : (y, x) ∈ Γ for all y ∈ N

}
.

GNS-constructions map abstract partial ∗-algebras into certain spaces of linear
operators acting on linear spaces, for instance on unitary spaces or on PIP -spaces. Such
spaces of linear operators represent also basic examples of spaces with partially defined
products. Examples in [9 - 11] show that these spaces are not necessarily associative.
For this reason, associativity is not included in the axioms of partial ∗-algebras.

Now (possibly indefinite) B-weights are defined as follows.

Definition 2.1. Suppose A is a partial ∗-algebra, B is a linear subspace of R(A),
and ] is a weak linear compatibility on A with graph Γ(]). A mapping

Ω : Γ(]) 3 (x, y) → Ω(x, y) ∈ C

which is linear in x and satisfies

Ω(x, y) = Ω(y, x)

whenever (x, y) ∈ Γ(]) is said to be a B-weight if the following conditions are satisfied:

(i) B×B ∪ AB×B ⊂ Γ(]) (where AB := {ab : a ∈ A and b ∈ B}).
(ii) Ω(xb1, b2) = Ω(b1, x

∗b2) for all x ∈ A and b1, b2 ∈ B.

(iii) If x1, x2 ∈ A and x1 ∈ R({x2}), then (x1b1, x
∗
2b2) ∈ Γ(]) for all b1, b2 ∈ B and

Ω(x1b1, x
∗
2b2) = Ω((x2x1)b1, b2).

(iv) If x ∈ B and Ω(y, x) = 0 for all y ∈ B, then Ω(y, x) = 0 for all y ∈ B].

If A is a ∗-algebra and ω a linear functional on A satisfying ω(x∗x) ∈ R for all
x ∈ A, then one obtains a sesquilinear form Ω on A by setting Ω(x, y) = ω(y∗x). It
arises the question if we can start with a linear functional on a partial ∗-algebra A and
construct a B-weight in a similar way. Naturally, additional assumption must be made.
In view of Definition 2.1/(ii) and (iii), we impose on A semi-associativity: A is called
semi-associative if x ∈ R({y}) implies xb ∈ R({y}) for all b ∈ R(A) and y(xb) = (yx)b.

The following proposition describes a situation where a linear functional determines
the structure of a B-weight.
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Proposition 2.2. Suppose A is a semi-associative partial ∗-algebra, B is a linear
subspace of R(A), D is a linear subspace of A, and ω : D → C is a linear functional
such that the following conditions are satisfied:

(i) D = D∗ (:= {x∗ : x ∈ D}) and ω(x∗) = ω(x) for all x ∈ D.
(ii) B∗B ⊂ D and B∗AB (= B∗(AB)) ⊂ D.
(iii) If x ∈ B and B∗x ⊂ ker (ω), then B′∗x ⊂ ker (ω) where B′ := {y ∈ A : B∗y ⊂

D}.
Define x ] y if x ∈ R({y∗}) and y∗x ∈ D. Then ] is a linear compatibility on A, and
Ω, defined by Ω(x, y) = ω(y∗x) whenever x ] y, is a B-weight on A in the sense of
Definition 2.1.

Proof. Since (y∗, x) ∈ Γ and y∗x ∈ D imply that (x∗, y) ∈ Γ and x∗y ∈ D, ] is
symmetric. Since the partial product on A is distributive and D is a linear subspace, ]
defines a linear compatibility. Using the hypothesis, one proves easily that Ω satisfies
the conditions of Definition 2.1. For instance, if x1 ∈ R({x2}), then repeated application
of semi-associativity gives for all b1, b2 ∈ B

D 3 b∗2((x1x2)b1) = b∗2(x1(x2b1)) = (b∗2x1)(x2b1) ,

which implies Definition 2.1/(iii). To verify Definition 2.1/(iv), observe that B] = B′

and apply condition (iii)

The following proposition is the main result of this section. It characterizes B-
weights to which there is associated a non-degenerate PIP -space in a natural way.
PIP -spaces obtained in this manner will serve in the following sections as representation
spaces for a generalized GNS-construction.

Proposition 2.3. Let subspaces of B] be defined by

N1 =
{
x ∈ B]] : Ω(x, y) = 0 for all y ∈ B]

}

N2 =
{
x ∈ B] : Ω(x, y) = 0 for all y ∈ B]]

}
.

Then for a linear subspace N ⊂ B] the following conditions are equivalent:

(i) On V := B]/N there exists a non-degenerate PIP -space structure such that

(x + N) # (y + N) ⇔ x ] y and x ] y ⇒ 〈x + N, y + N〉 = Ω(x, y).

(ii) N = N1 = N2.

Proof. (ii) ⇒ (i): Let x1, x2 ∈ B] and n1, n2 ∈ N. If (x1, x2) ∈ Γ(]), then we
observe that (x1 + n1, x2) ∈ Γ(]); using firstly n1 ∈ B]] since N = N1 and secondly
the linearity of ]. Continuing in this way gives (x1 + n1, x2 + n2) ∈ Γ(]). Hence
(x1 + n1, x2 + n2) ∈ Γ(]) for all n1, n2 ∈ N if and only if (x1, x2) ∈ Γ(]); thus # is well
defined. By the properties of Γ(]), it follows that # defines a linear compatibility on
V . The above arguments allow us to write

Ω(x1 + n1, x2 + n2) = Ω(x1, x2) + Ω(x1, n2) + Ω(n1, x2) + Ω(n1, n2)
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whenever (x1, x2) ∈ Γ(]). Since N = N1, we get Ω(x1 +n1, x2 +n2) = Ω(x1, x2). Hence
〈·, ·〉 is well defined. That 〈·, ·〉 defines a partial inner product follows from the assumed
properties of Ω. By N = N2, V is non-degenerate.

(i) ⇒ (ii): Clearly, N ⊂ B]] is necessary, otherwise # would not be well defined.
Suppose n ∈ N, y ∈ B] and Ω(n, y) 6= 0. Then for any x ∈ B]] we get Ω(x + n, y) 6=
Ω(x, y), so 〈·, ·〉 is not well defined; therefore N ⊂ N1. Note that V # = {x + N : x ∈
B]]}. As V is non-degenerate, we have N2 ⊂ N. Finally, N1 ⊂ N2 since B]] ⊂ B].
Thus we have proved N1 ⊂ N2 ⊂ N ⊂ N1 which yields (ii)

The following two examples illustrate that for arbitrary B-weights the assertions of
Proposition 2.3 are not necessarily satisfied. The first example shows that the assertion
N1 = N2 depends strongly on the weak linear compatibility ]. The second example
is especially designed to show that there is no natural generalization of the Schwarz
inequality for positive B-weights.

Example 2.4. There exist a partial ∗-algebra A, a linear subspace B ⊂ A, and a
B-weight Ω on A such that N1 6= N2.

Indeed, consider the ∗-algebra A := L∞([0, 2]) of all measurable, bounded, complex
functions on the interval [0, 2]. Set B = χ[0,1]A, where χ[0,1] denotes the characteristic
function of the interval [0, 1]. Define ] by setting Γ(]) = (A×B) ∪ (B× A) and define
Ω(f, g) =

∫ 2

0
fḡdt whenever (f, g) ∈ Γ(]). Using AB ⊂ B, one easily verifies that

Ω is a B-weight in the sense of Definition 2.1. Now B] = A, B]] = B, and thus
N1 = {0} 6= χ[1,2]A = N2. Notice that if we had defined Γ(]) = A× A, N1 = N2 would
hold.

Incidentally, Example 2.4 yields an example of Proposition 2.2, too; just set D = B

and define ω(f) =
∫ 2

0
fdt for all f ∈ D.

We call a B-weight Ω positive if Ω(x, x) ≥ 0 whenever (x, x) ∈ Γ(]). One might
try to obtain a better result as Proposition 2.3 by employing the Schwarz inequality.
If, for instance, Ω is a positive semi-definite sesquilinear form on A, then it is sufficient
to consider the set N = {x ∈ B] ; Ω(x, x) = 0} since the Schwarz inequality implies
Ω(y, n) = 0 for all y ∈ B] and n ∈ N. Unfortunately, this approach is useless for
PIP -spaces with positive B-weights. It can, namely, happen that Ω(y, n) 6= 0 although
n ∈ B]] and Ω(n, n) = 0. We shall present an explicit example.

Example 2.5. There exist a partial ∗-algebra A, a linear subspace B ⊂ A, and a
positive B-weight Ω on A such that the following statements hold: There are b ∈ B]]

and y ∈ B] such that Ω(b, b) = 0 but Ω(y, b) 6= 0, N1, N2 ⊂ B]] and N1 6= N2.

Indeed, let B be the vector space ϕ of all complex sequences (xn) = (xn)n∈N with
a finite number of non-zero entries. Consider the complex vector space

A := C(n) + C( 1
n ) + ϕ ,

where (n) and ( 1
n ) denote the sequences (n)n∈N and ( 1

n )n∈N, respectively. A becomes
a partial ∗-algebra by restricting the pointwise multiplication of sequences to Γ :=
(A×B)∪ (B×A) and defining an involution by complex conjugation. We introduce a
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linear compatibility ] and a positive B-weight Ω on A by setting

Γ(]) = (A× (C( 1
n ) + B)) ∪ ((C( 1

n ) + B)× A)

Ω((xn), (yn)) = lim
k→∞

xkyk whenever ((xn), (yn)) ∈ Γ(]).

Notice that Ω((xn), (vn)) = 0 for all (xn) ∈ A, (vn) ∈ B and that the product of any
pair ((xn), (yn)) ∈ Γ lies in B. Combining these two facts, one proves easily that Ω is
indeed a B-weight. Moreover, B] = A and B]] = C( 1

n ) + B.
Given (vn), (wn) ∈ B and α, β1, β2 ∈ C, we calculate

Ω
(
β1( 1

n ) + (vn), α(n) + β2( 1
n ) + (wn)

)
= β1α.

As an example, the choice b = ( 1
n ) ∈ B]], y = (n) ∈ B] gives Ω(b, b) = 0 and Ω(y, b) =

1 6= 0. Furthermore, it follows N1 = B and N2 = B]], hence N1 6= N2 as asserted.
Note that N1,N2 ⊂ B]] is satisfied.

3. Representations of partial ∗-algebras using factorization
products

We turn now to the problem of constructing a representation of partial ∗-algebras as
systems of operators acting on a non-degenerate PIP -space. The non-degenerate PIP -
space in question will be, of course, the one constructed in the preceding section. For
non-degenerate PIP -spaces we can adopt the concepts of dual pairings; if (V, #, 〈·, ·〉)
is a non-degenerate PIP -space and X ⊂ V an assaying subspace, then the restriction
of 〈·, ·〉 to X × X#, where X# denotes the associated conjugate linear space of X#,
is a dual pairing. From now on, each assaying subspace X will be equipped with the
Mackey topology τ(X, X#), unless it is otherwise stated. The set of all continuous
linear operators from X into another assaying subspace Y will be denoted by L(X, Y ).

J.-P. Antoine and A. Grossmann [1] introduced the operator spaces Op(V ) (and
more generally, Op(V,W )) of operators acting on PIP -spaces. They also defined prod-
ucts for certain n-tuples of those operators. In their paper J.-P. Antoine and A. Gross-
mann showed that, given a non-degenerate PIP -space (V, #, 〈·, ·〉), the space Op(V )
is linearly isomorphic in a natural way to the space L(V #, V ) of all continuous lin-
ear operators mapping V # into V . Using this isomorphism, we identify here Op(V )
with L(V #, V ). Then the following definition of products on Op(V ) is equivalent to
the special case of the definition in [1], where all operators to be multiplied belong to
Op(V ) = Op(V, V ) for a fixed PIP -space (V, #, 〈·, ·〉).

Definition 3.1. Let (V, #, 〈·, ·〉) be a non-degenerate PIP -space. The factorization
product Tn ◦ . . . ◦ T1 of elements of Op(V ) (= L(V #, V )) is said to be defined if there
are assaying subspaces E0, . . . , En of V and continuous extensions Sj ∈ L(Ej−1, Ej) of
Tj . In this case

Tn ◦ . . . ◦ T1ϕ = Sn(. . . (S1ϕ) . . .).

On Op(V ) there is defined an involution A 7→ A∗ such that 〈A ϕ,ψ〉 = 〈ϕ,A∗ ψ〉
for all ϕ, ψ ∈ V #, i.e., A∗ is the dual A′ ∈ L(V #, V ) of A, considered as an element of
L(V #, V ).
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Our aim is to construct a linear mapping π : A → Op(V ) that respects adjoints and
products, i.e., π(x∗) = π(x)∗ for all x ∈ A and π(xy) = π(x)◦π(y) whenever y ∈ R({x}).
As in [5], the basic idea is to define the operator π(x) on the set {b+N : b ∈ B} ⊂ V (see
Proposition 2.3 for notations) by setting π(x)(b + N) = xb + N. Unfortunately, we are
facing two difficulties: In general, π(x) is not yet defined on V # since {b + N : b ∈ B}
is not necessarily equal to V #, and for y ∈ R({x}) we must find an assaying subspace
X ⊂ V such that π(y) ∈ L(V #, X) and that π(x) has an extension belonging to L(X, V ).
Under these circumstances it seems natural that we need further assumptions. For this
purpose we state the following definition.

Definition 3.2. Suppose A is a partial ∗-algebra, B is a linear subspace of R(A),
and Ω is B-weight on A. If X and Y are linear subspaces of B] and X ⊂ Y ], then
Σ(X, Y ) denotes the topology on X that is generated by the family of semi-norms
{py}y∈Y , where py(x) := |Ω(x, y)|. We say the partial product of A is Ω-hypocontinuous
with respect to B, if the linear functionals

B 3 b 7−→ Ω(xb, w) ∈ C

are continuous for all x ∈ A and w ∈ (xB)] with respect to the topology Σ(B, B]), and
if for each x ∈ A there exists a family M of Σ(B]],B])-bounded subsets of B such that
B]] = ∪M∈MM , where M denotes the closure of M with respect to Σ(B]], B]), and
the closed, convex, circled hull of xM is quasi-compact with respect to Σ((xB)]], (xB)])
for each M ∈M.

Remarks.

1. In general, the topology Σ(X, Y ) does not separate the points of X. That is
why we require the closed, convex, circled hull of xM to be quasi-compact; the term
“compact” we reserve for compact Hausdorff spaces.

2. The terminology “hypocontinuous” alludes to the concept of S-hypocontinuous
bilinear forms as defined by Bourbaki [7: Chapter III, §5, 3.]. How Ω-hypocontinuous
partial products are related to S-hypocontinuous sesquilinear forms will become clear
in the proof of the next proposition.

Now we are in a position to prove the following version of a generalized GNS-
representation.

Proposition 3.3. Let Ω be a B-weight on a partial ∗-algebra A. Suppose that
N := {x ∈ B] : Ω(x, y) = 0 for all y ∈ B} satisfies the assertions of Proposition
2.3. Let (V, #, 〈·, ·〉) denote the non-degenerate PIP -space defined in Proposition 2.3.
Assume that the partial product of A is Ω-hypocontinuous with respect to B. Then
there exists a unique linear mapping π : A → Op(V ) such that π(x)(b + N) = xb + N
for all b ∈ B and x ∈ A. Furthermore, π satisfies π(x∗) = π(x)∗ for all x ∈ A and
π(xy) = π(x) ◦ π(y) whenever y ∈ R({x}).

It is useful to introduce some temporary notations. Let ι : B] → B]/N denote the
canonical mapping. For an element ι(a) ∈ B]/N (= V ) we write synonymously a + N

and â; similarly we write M̂ in place of ι(M), where M ⊂ B]. The proof of Proposition
3.3 requires four steps: We shall
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– define a linear mapping π̃(x) : B̂ → V

– give a unique extension π(x) ∈ L(V #, V ) of π̃(x)
– prove that π(x∗) = π(x)∗, and finally
– show that π(xy) = π(x) ◦ π(y) whenever y ∈ R({x}).
Proof of Proposition 3.3. First step: As mentioned above, for each x ∈ A we

define a linear mapping π̃(x) : B̂ → V by setting

π̃(x)(b + N) = xb + N.

We have to show that this mapping is well defined. By Definition 2.1/(i), xb ∈ B] for
all x ∈ A and b ∈ B. Given b1, b2 ∈ B such that b1 − b2 ∈ N, it follows from Definition
2.1/(ii) and N = N1 that

Ω(xb1 − xb2, b) = Ω(b1 − b2, x
∗b) = 0 for all b ∈ B .

This implies xb1−xb2 ∈ N, hence π̃(x) does not depend on the choice of representatives.

Second step: Our next goal is to show that π̃(x) admits a unique continuous ex-
tension π(x) : V # → (x̂B)##. Let S(V #, (x̂B)#) denote the set of all separately
continuous sesquilinear forms β : V # × (x̂B)# → C. The proof hinges on the (real
linear) isomorphisms

S(V #, (x̂B)#) ∼= L(V #, (x̂B)##) ∼= L((x̂B)#, V ) ,

where L(V #, (x̂B)##) ∼= L((x̂B)#, V ) consists in taking adjoints, that is, given a
β ∈ S(V #, (x̂B)#), there exist unique B ∈ L(V #, (x̂B)##) and C ∈ L((x̂B)#, V )
such that

β(v̂, ŵ) = 〈B v̂, ŵ〉 = 〈v̂,C ŵ〉 for all v̂ ∈ V # and ŵ ∈ (x̂B)#.

The isomorphisms can be obtained by identifying the sesquilinear forms on V #×(x̂B)#

with the bilinear forms on V #×(x̂B)# and applying the appropriate results for bilinear
forms (see Köthe [8: §40, 1.]).

It is also known that a linear mapping is continuous with respect to the correspond-
ing Mackey topologies if and only if it is continuous with respect to the corresponding
weak topologies. If we refer to the latter case, we shall say “weakly continuous”.

With the notations established in Definition 3.2, we observe that the weak topology
σ(X̂, X̂#) is the quotient topology of Σ(X, X#), where X is an assaying subspace of
B]. To see this, note that

N =
{
x ∈ B]] : Ω(x, y) = 0 for all y ∈ B]

}

⊂ {
x ∈ X : Ω(x, y) = 0 for all y ∈ X]

}

⊂ {
x ∈ B] : Ω(x, y) = 0 for all y ∈ B]]

}

= N,
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hence
N =

{
x ∈ X : Ω(x, y) = 0 for all y ∈ X]

}
=

⋂

y∈X]

p−1
y (0).

As a consequence, ι : (X, Σ(X, X])) → (X̂, σ(X̂, X̂#)) is a continuous, open mapping.
In addition, (B̂, σ(B̂, V )) is a topological subspace of (V #, σ(V #, V )).

Next, for x ∈ A define

β̃x : B̂× (x̂B)# 3 (b̂, ŵ) 7−→ 〈π̃(x) b̂, ŵ〉 ∈ C.

Since π̃(x) b̂ ∈ (x̂B)##, β̃x is weakly continuous in the second argument. To prove
continuity in the first argument, consider the linear functionals

Φx,w : B 3 b 7−→ Ω(xb, w) ∈ C
φx,w : B̂ 3 b̂ 7−→ 〈π̃(x) b̂, ŵ〉 ∈ C

}
(
x ∈ A, w ∈ (xB)]

)
.

Since 〈π̃(x) b̂, ŵ〉 = Ω(xb, w), we have Φx,w = φx,w ◦ ι and φ−1
x,w(A) = ι(Φ−1

x,w(A)), where
A ⊂ C. But Φx,w is continuous by the Ω-hypocontinuity of the partial product, and
ι is open, hence φ−1

x,w(U) is open for every open set U ⊂ C. This implies the weak
continuity of φx,w and, moreover, the weak continuity of β̃x in the first argument.
Let M be a family of subsets of B satisfying the assumptions of Definition 3.2. Set
M̂ = {M̂ : M ∈ M}. As σ(V #, V ) is the quotient topology of Σ(B]], B]), we have

V # = ∪
M̂∈M̂ M̂ , where the closure M̂ of M̂ is taken with respect to σ(V #, V ), and

all M̂ ∈ M̂ are bounded. Applying the facts that the closed, convex, circled hull of
xM is quasi-compact with respect to Σ((xB)]], (xB)]) (see Definition 3.2) and that ι is
continuous, one verifies readily that the closed, convex, circled hull of (x̂M) is compact

with respect to σ((x̂B)##, (x̂B)#); hence the polar

(x̂M)◦ =
{
ŷ ∈ (x̂B)# : |β̃x(m̂, ŷ)| ≤ 1 for all m̂ ∈ M̂

}

is a 0-neighbourhood in (x̂B)#. Now, collecting the properties of β̃x and M̂, we observe
that β̃x is M̂-hypocontinuous as defined by Bourbaki [7]. This is the crucial observation.
It follows by a theorem concerning hypocontinuous bilinear mappings (see [7: Chapter
III, §5, 4.]) that β̃x has a unique separately continuous extension

βx : V # × (x̂B)# −→ C.

By the above mentioned isomorphisms, this implies that there exist unique linear oper-
ators

X ∈ L(V #, (x̂B)##) and Y ∈ L((x̂B)#, V )

such that

βx(v̂, ŵ) = 〈X v̂, ŵ〉 = 〈v̂, Y ŵ〉 for all v̂ ∈ V #, ŵ ∈ (x̂B)#. (1)
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In particular,

〈π̃(x) b̂, ŵ〉 = 〈X b̂, ŵ〉 for all b̂ ∈ B̂, ŵ ∈ (x̂B)# ,

which gives XdB̂= π̃(x) since (x̂B)# separates the points of (x̂B)##. Furthermore,

N =
{
x ∈ B] : Ω(x, y) = 0 for all y ∈ B

}

implies that the polar of B̂ taken in V is {0}, and this is equivalent to the density of B̂ in
V #. Thus the continuous extension of π̃(x) is unique. As the embedding (x̂B)## ↪→ V
is continuous, X can also be considered as an element of L(V #, V ). Setting π(x) v̂ = X v̂
for all v̂ ∈ V #, we obtain the desired continuous extension π(x) : V # → V of π̃(x).

Third step: We observe that

〈π(x)∗ b̂1, b̂2〉 = 〈b̂1, π(x) b̂2〉 = 〈π(x∗) b̂1, b̂2〉 for all b̂1, b̂2 ∈ B̂, x ∈ A.

The first equality follows from the definition of the involution on Op(V ); the second
equality follows by using π(x)(b + N) = xb + N for all b ∈ B, the definition of 〈·, ·〉 and
Definition 2.1/(ii). Since B̂ separates the points of V and is dense in V #, the above
equation implies π(x)∗ = π(x∗).

Fourth step: Suppose x, y ∈ A and y ∈ R({x}). An application of Definition
2.1/(iii) shows that (ŷB) ⊂ (x̂∗B)# which gives (ŷB)## ⊂ (x̂∗B)#. Furthermore,
the embedding (ŷB)## ↪→ (x̂∗B)# is continuous. Replacing x by y in equation (1)
and using the continuity of the embedding (ŷB)## ↪→ (x̂∗B)#, we find an operator
S1 ∈ L(V #, (x̂∗B)#) such that S1 v̂ = π(y) v̂ for all v̂ ∈ V # (see the final part of the
second step). Replacing x by x∗ in Equation (1), we find an operator S2 ∈ L((x̂∗B)#, V )
such that

〈π(x∗) v̂, ŵ〉 = 〈v̂, S2 ŵ〉 for all v̂ ∈ V #, ŵ ∈ (x̂∗B)#. (2)

Moreover, equation (2) implies π(x∗)∗ = S2dV # which gives, by the third step, π(x) v̂ =
S2 v̂ for all v̂ ∈ V #. Hence the factorization product π(x) ◦ π(y) is defined and satisfies
π(x) ◦ π(y) v̂ = S2(S1 v̂) for all v̂ ∈ V #.

Now, for all b̂1, b̂2 ∈ B̂ we have

〈π(xy) b̂1, b̂2〉 = 〈π(y) b̂1, π(x∗) b̂2〉 = 〈S2(S1 b̂1), b̂2〉 = 〈π(x) ◦ π(y) b̂1, b̂2〉 ;

the first identity is obtained by using Definition 2.1/(iii), and the second identity follows
from equation (2). Since B̂ separates the points of V and is dense in V #, this implies
π(xy) = π(x) ◦ π(y), and the proof is complete

Remarks.
1. Let E and F be locally convex spaces. A theorem by Bourbaki [7: Chapter

III, §5, 3.] asserts that if F is barrelled, then every separately continuous bilinear form
from E × F into C is S-hypocontinuous for any family S of bounded subsets of E.
An examination of the proof of Proposition 3.3 shows that if the spaces (x̂B)# are
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barrelled for all x ∈ A, then we can replace the hypothesis that the partial product on
A is Ω-hypocontinuous with respect to B by the statement that all linear functionals
B 3 b 7−→ Ω(xb, w) ∈ C are continuous for all x ∈ A and w ∈ (xB)] with respect to
Σ(B, B]).

2. Let N satisfy the assertions of Proposition 2.3. If B]] = B+N, and if the linear
functionals B 3 b 7−→ Ω(xb, w) ∈ C are continuous for all x ∈ A and w ∈ (xB)] with
respect to Σ(B, B]), then the partial product on A is at once Ω-hypocontinuous with
respect to B. To see this, set M = {b}b∈B and note that {b} = {b + n : n ∈ N}.

Using the preceding remarks, we can restate Proposition 3.3 in the following way.

Proposition 3.4. Let Ω be a B-weight on a partial ∗-algebra A and suppose that
N := {x ∈ B] : Ω(x, y) = 0 for all y ∈ B} satisfies the assertions of Proposition
2.3. Let (V, #, 〈·, ·〉) denote the non-degenerate PIP -space defined in Proposition 2.3.
Assume that the linear functionals B 3 b 7−→ Ω(xb, w) ∈ C are continuous for all
x ∈ A and w ∈ (xB)] with respect to Σ(B,B]). Suppose that one of the following
conditions is satisfied:

(i) B]] = B + N.

(ii) (x̂B)# is barrelled for all x ∈ A.

Then there exists a unique linear mapping π from A into Op(V ) such that π(x)(b+N) =
xb + N for all b ∈ B and x ∈ A. Furthermore, π satisfies π(x∗) = π(x)∗ for all x ∈ A
and π(xy) = π(x) ◦ π(y) whenever y ∈ R({x}).

Example 4.4 below will show that we cannot dispense with a hypothesis that ensures
in the preceding propositions the existence of the products π(x)◦π(y). Here we required
the partial product of A to be Ω-hypocontinuous with respect to B. It should be pointed
out that this assumption is sufficient but we did not prove that it is necessary; it seems
to be rather difficult to give a necessary condition. Observe that the factorization of
the product π(x) ◦ π(y) was achieved by proving that π(y) ∈ L(V #, (ŷB)##) and that
π(x) admits an extension belonging to L((x̂∗B)#, V ), but any assaying subspace X

such that (ŷB)## ⊂ X ⊂ (x̂∗B)#, that π(y) ∈ L(V #, X), and that π(x) possesses an
extension in L(X, V ) factorizes the product π(x) ◦ π(y). A necessary condition would
have to control all those assaying subspaces X.

4. Representations based on extended products

In this section, there will be considerd a second approach to GNS-representations of
partial ∗-algebras which uses a more general partial product T1 ∗ T2 of operators on
PIP -spaces. This product is similar to the weak product defined in [4] for certain
operators on Hilbert spaces. In contrary to the product considered in Section 3, it is
defined only for certain pairs of operators, but not for n-tuples. However, it allows to
construct a representation of a partial ∗-algebra A based on a B-weight Ω, whenever
besides the necessary conditions given in Section 2 also the quite general additional
condition B]] = B + N is satisfied. An example shows that it is impossible to define
operators π(x) (x ∈ A) as elements of Op(V ) in a natural way without any additional
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condition. There will also be considered a further partial product •, introduced in [14],
which plays an intermediate role between the partial products ◦ and ∗. Several examples
demonstrate properties of these products.

The products • and ∗ are defined as follows.

Definition 4.1. Let (V, #, 〈·, ·〉) be a non-degenerate PIP -space. The product
T2 ∗ T1 of two elements of Op(V ) is defined if and only if the following two equivalent
conditions are satisfied:

(i) There exists a C ∈ Op(V ) such that

〈T1ϕ, T ∗2 ψ〉 = 〈Cϕ, ψ〉 (for all ϕ,ψ ∈ V #).

(ii) There exist linear mappings C, D : V # → V such that

〈T1ϕ, T ∗2 ψ〉 = 〈Cϕ, ψ〉 = 〈ϕ,Dψ〉 (for all ϕ,ψ ∈ V #).

In this case
T2 ∗ T1 := C .

Definition 4.2. Let (V, #, 〈·, ·〉) be a non-degenerate PIP -space. The product
T2 • T1 of two elements of Op(V ) is defined if and only if there exist assaying subspaces
X, Y of V such that the following four conditions are satisfied:

(i) T1(V #) ⊂ X.
(ii) T ∗2 (V #) ⊂ Y .
(iii) T2 has a continuous extension S : X → V .
(iv) T ∗1 has a continuous extension R : Y → V .

In this case
T2 • T1ϕ := S(T1ϕ) for ϕ ∈ V #.

Note that T2 • T1 belongs to Op(V ) since its adjoint is given by

(T2 • T1)∗ϕ = R(T ∗2 ϕ) for ϕ ∈ V #.

Note also that the existence of T2 ◦ T1 implies T2 • T1 = T2 ◦ T1, and that the existence
of T2 • T1 implies T2 ∗ T1 = T2 • T1. Actually, the domains of definition of the three
partial products are different. This may be seen by using Example 4.6 below and [12:
Examples 3.5 and 4.4].

Now it is not difficult to construct a representation by using the partial product
∗ (cf. [12]). The construction of the representation and some of its properties are
described in the following proposition.

Proposition 4.3. Let Ω be a B-weight on a partial ∗-algebra A. Suppose that N
is a linear subspace of B] such that the assertions of Proposition 2.3 are satisfied and
that B]] = B + N. Let (V, #, 〈·, ·〉) denote the non-degenerate PIP -space defined in
Proposition 2.3. Then the formula

π(x)(b + N) = xb + N (b ∈ B)



On Representations of Partial ∗-Algebras 635

defines a linear mapping π : A → Op(V ) such that π(x∗) = π(x)∗ for all x ∈ A.
Moreover,

π(x2x1) = π(x2) ∗ π(x1)

for all x1, x2 ∈ A with x1 ∈ R({x2}).
Note that, provided assertion (ii) in Proposition 2.3 is satisfied, condition (iv) in

Definition 2.1 means that {b+N : b ∈ B} is a dense linear subspace of B]]/N = V #. By
the following two examples, this does not imply that there exist operators π(a) ∈ Op(V )
satisfying π(a)(b + N) = ab + N for all a ∈ A and b ∈ B.

Example 4.4. There exist a partial ∗-algebra A, a linear subspace B ⊂ A, and a
B-weight Ω on A, such that the spaces N1 and N2 defined in Proposition 2.3 are equal
to {0} and such that for some a ∈ A the mapping

B 3 x → a x ∈ B] (= V )

does not extend to an element of Op(V ).

Indeed, let A be the ∗-algebra ω of all complex valued sequences (with pointwise
algebraic operations), let B be the ∗-subalgebra ϕ of all sequences of finite support, and
let Ω be the usual scalar product of l2 ⊂ ω. Then, in particular, Γ(]) = l2 × l2 and it is
easy to see that Ω is a B-weight. Moreover, using the notations of Proposition 2.3, we
have N1 = N2 = {0} and V (= B]) = V # = l2. Consequently, Op(V ) coincides with
the space of all bounded linear operators on l2 and the example is completed by taking
a = (aj)j∈N to be an unbounded sequence.

Example 4.5. There exist a partial ∗-algebra A, a linear subspace B ⊂ A, and a
B-weight Ω on A, such that the equivalent conditions of Proposition 2.3 are satisfied
and that for some a ∈ A the space N1 = N2 defined in Proposition 2.3 is not invariant
for the mapping

B 3 x → a x ∈ B].

This example will be constructed in the space

A := C5 =
{
(x1, x2, x3, x4, x5) : xj ∈ C

}

endowed with its usual structure of a ∗-vector space and with the (commutative but
non-associative) partial product defined as follows:

C :=
{
(xj)5j=1 ∈ A : x5 = 0

}

Γ := (C× A) ∪ (A× C)

(xj)5j=1 · (yj)5j=1 := (x1y1, x2y2, x3y3, x4y4, 0)

+ (x5y3, 0, x5y1, 0, 0)

+ (x3y5, 0, x1y5, 0, 0)





for
(
(xj)5j=1, (yj)5j=1

) ∈ Γ.
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Furthermore, we define a B-weight by setting

B =
{
(xj)5j=1 ∈ A : x3 = x4 = x5 = 0

}

Γ(]) = C× C

Ω((xj)5j=1, (yj)5j=1) =
4∑

j=2

xj yj for
(
(xj)5j=1, (yj)5j=1

) ∈ Γ(]).

Easy computations show that all properties of Definition 2.1 are satisfied. E.g., it follows
for x = (xj)5j=1 ∈ A, y = (yj)5j=1 ∈ C, and b = (bj)5j=1, c = (cj)5j=1 ∈ B that yc ∈ B
and that

Ω(xb, yc) = x2 b2 y2 c2 = Ω(b, (x∗y)c).

By commutativity, this implies Definition 2.1/(iii).
Clearly, B] = B]] = C and N1 = N2 = C · (1, 0, 0, 0, 0). Setting a = (0, 0, 0, 0, 1),

we have a · (1, 0, 0, 0, 0) 6∈ N1, which completes the example.

Our final example shows that the representation described in Proposition 4.3 cannot
be constructed by using the product on Op(V ) defined in Definition 3.1, in general.

Example 4.6. There exist a partial ∗-algebra A, a linear subspace B ⊂ A, and a
B-weight Ω on A, such that all assumptions of Proposition 4.3 are satisfied and that
for some a ∈ A with a ∈ R({a}) the product π(a) ◦ π(a) does not exist in the sense of
Definition 3.1.

Let again ω denote the ∗-algebra of all complex valued sequences (xj) = (xj)j∈N
(with pointwise operations). Let ϕ be the ∗-subalgebra of all sequences of finite support.
Consider elements a = (an) and a2 = ((an)2) of ω, where (an)n∈N is a fixed unbounded
sequence of positive real numbers. Define now

A = ϕ + Ca + Ca2

Γ = (ϕ + Ca)× (ϕ + Ca) ∪ A× ϕ ∪ ϕ× A.

}

Endowed with the linear operations and the involution induced from ω and with the
partial product obtained as the restriction of the product of ω to Γ, A is a partial
∗-algebra. Setting B = ϕ and defining ] and Ω by

Γ(]) = A× ϕ ∪ ϕ× A

Ω((xj), (yj)) =
∞∑

j=1

xjyj
((xj), (yj) ∈ Γ(])) ,

we get a B-weight Ω on A. It is easy to see that the assertions of Proposition 2.3 are
satisfied for N = {0} and that B]] = B. Consequently, the PIP -space (V, #, 〈·, ·〉)
constructed in Proposition 2.3 coincides here with (A, ], Ω(·, ·)), and all assumptions of
Proposition 4.3 are satisfied. Given (xj) ∈ A, the operator π((xj)) acts on V # = B as
multiplication operator with the sequence (xj).
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We show that π(a) : V # → V # is not continuous. Otherwise it would have a
continuous adjoint A : V → V such that

〈π(a)b1, b2〉 = 〈b1, A b2〉 (for all b1 ∈ V #, b2 ∈ V ).

This would imply that A a2 = ((aj)3), which is impossible.
It can be seen in the same way that π(a) does not have a continuous extension to

an operator A : V → V . Since the only assaying subspaces are V and V #, this implies
that the product π(a) ◦ π(a) does not exist in the sense of Definition 3.1. Clearly,
π(a) ∗ π(a) = π(a2) by Proposition 4.3.

Remarks.
1. Since in the previous example all operators π(x) (x ∈ A) satisfy π(x)V # ⊂ V #,

it can be seen easily that in this example the equation

π(x2x1) = π(x2) • π(x1)

is satisfied for all x1, x2 ∈ A with x1 ∈ R({x2}). However, such a property is not
satisfied in the general case, as it can be shown by using [12: Example 4.4].

2. In particular it follows from Example 4.6 that there exist operators T1 and T2 on
some PIP -space such that T2 •T1 exists, but T2 ◦T1 is not defined. Similarly, it can be
shown by using [12: Examples 3.5 or 4.4] that there exist operators T1 and T2 on some
PIP -space such that T2 ∗ T1 exists, whereas T2 • T1 is not defined.
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