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A Non-Differentiability Result
for the Inversion Operator between
Sobolev Spaces

G. Farkas and B. M. Garay

Abstract. The order of differentiability of the inversion operator J between certain spaces
or manifolds of distributionally differentiable functions is shown to be sharp in the following
sense. Up to a certain order k guaranted by inverse function arguments, the operator J is
everywhere differentiable and J (%) is continuous. On the other hand, J is nowhere k+ 1 times
differentiable.
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1. Introduction

Let M = M7 and M5 be compact C* manifolds without boundary and let n; be the
dimension of M; (i =1,2); n=mn;. For § < s € N define

H* (M, Ms3) =
for any x € My,po Fop t € H*(p(U),R™)
F: My — My | for any chart (U, ¢) containing x

and any chart (V,1) at F(z) in My

and note that H*(Mi, My) C C(M;, Ms). Following Marsden [7] we briefly recall

the manifold structure of H*(My, Ms). Denote the tangent bundle of M; and M3 by

TM; and T Mas, respectively. For each F € H*(M7, Ms) define

T]:Hs(./\/ll,./\/lg) = {X S HS(Ml,TMQ) P TMy,OX = JT"}

and
expr : T]:HS(M1,M2) — HS(Ml,MQ), m}—(.)f) = expox
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where maq, @ T Mo — My is the canonical projection and exp : TMy — My is
an exponential map. The properties of the exponential map we need in the sequel
are that, for any y € Ma, exp, = exp|r,m, is a € diffeomorphism of T, My
onto a neighborhood of y in My, and exp,(0) = y, (exp,)'(0) = idr,am,. It can
be shown that {€XPr}recms(Mm,,Mmy) gives rise to a C° atlas on H*(My, Msy). For
any F € H%(Mi, My) fixed, exp is a C*° diffeomorphism of (the Banachable space)
TrH?®*(M;1, M) onto a neighborhood of F in H*(Mj, Ms), and expx(0) = F, (eXpp)’
(0) = idyy s (Mmy M) -
Define

D (M) = {f e H*(M, M)

JF is one-to-one, orientation
preserving and F~1 € HS(M, M) |

From now on we assume that s > % + 1, which guarantees that D*(M) is open in
H?*(M, M) and henceforth D*(M) is a manifold. Given F € D*(M) arbitrarily, con-
sider the mapping

A]—' : Tist(./\/l,M) — TfHS(M,M), .AF(U) =volF.

For brevity, we write X*(M) = TigH*(M, M), the (Banachable) space of H® vector
fields on M. The norm on X*(M) will be denoted by | - |s. This norm comes from the
standard Sobolev norm || - ||gzs = | - |s on coordinate charts. Anticipating Lemma 1/(ii)
we see that Az is a C* diffeomorphism of X*(M) onto TrH*(M, M). Hence D*(M)
is a C*° manifold over X*(M) and {&pr o Ar}reps(m) gives rise to a C atlas on
D5 (M).

In the following lemma we collect some basic results on D*(M) (for similar results
in the category of continuously differentiable functions we refer to Franks [3] and Irwin
[4: Appendix]).

Lemma 1.

(i) D® is a group under composition.
(ii) If F € D*(M), then the map

N(,F): D’(M) = D*(M), N(G,F)=GoF

is of class C*° (a-lemma).

(iii) If F € D3(M), then the map
N(F,): D*(M) = D*(M), N(F,G)=FoG

is continuous (w-lemma global).

(iv) More generally, the composition or Nemytskii operator
N(,) 2 DTEM) x D*(M) — D*I(M), N(F,G)=Fog

is of class C**4, for any k € N and ¢ € [0, s — 5 — 1NN,
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(v) D*(M) is a topological group. In particular, the inversion operator
J: D’ M) - HS (M, M), J(F)=F""!

18 continuous.

(vi) More generally, the map
J: DSTFM) — HS (M, M), TJ(F)=F"!

is of class C* for any k € N.

Proof. Proofs for statements (i) - (iii), the case ¢ = 0 of statement (iv), and
statement (v) can be found in Marsden [7]. The case ¢ # 0 of statement (iv) can be
proved similarily. A simple proof (in the case k > 0) of statement (vi) is presented here
for convenience. Set

R: X5 (M) x X% (M) — X5 (M)
R(v, w) = (6 © Aia) N (5P x 0 Ar(0),85Pr-1 © A1 (w) ).

By a direct calculation, R(0,0) = 0 and

/
(R3,(0.0)]w) (@) = ((exp7" (XPr(en, . wir-2) 0)) (@)
= idp, p - F(F~H@)) - idr, o ac w(F ()
=F(F (x)) - w(F(2))
which shows that R/, (0,0) is an invertible element of L(X*(M), X*(M)). Differen-

tiability properties of N/ (given in the ¢ = 0 case of statement (iv)) and the implicit
function theorem yield a C* coordinate representation of 7 at F B

The aim of this paper is to show that statement (vi) of Lemma 1 is optimal in the
sense that

J: DR(M) - HS (M, M), J(F)=F1

is nowhere k£ + 1 times differentiable. The corresponding result on manifolds of continu-
ously differentiable functions was proved in our earlier paper [2]. Though the main line
of argumentation remains the same, several technical modifications are needed through-
out and, reflecting the difference between L? and maximum norms, the construction in
the later Lemma 8 for proving the result is new.

Theorem 1. Let s,k € N and assume that s > 5 + 2. Then the operator
J: DSTFM) — HS (M, M), J(F)=F"!

1s nowhere k + 1 times differentiable.

The proof is postponed to Section 3 below. Its core is a reductio ad absurdum
argument. Assuming J is k + 1 times differentiable at some F, € Ds+*(M), a formula
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for (coordinate representations of) J*+1)(Fy) is derived. We do this by exploiting the
assumption s > 2 4 2 to point out that the formula for 7 (%), = k (obtained in
Section 2 by standard methods of combinatorial enumeration) remains then valid for
j =k +1, too. The last step is to demonstrate that the formula for 7 ®*+1)(F,) leads
to a contradiction.

We do not know whether the assumption s > 5 + 2 can be weakened to s > 3 + 1.
Topological properties alone do not seem to make inequality s > 5 + 2 necessary.

Our basic references for composition, inversion and differentiation are [1, 7, 8,
10]. It is a challenging question to characterize those pairs /scales of Banach/Fréchet
spaces/manifolds in which Theorem 1 holds true. It is worth mentioning here that Lem-
mata 1 - 7 remain valid for Sobolev spaces of fractional order. Thus the extension of
Theorem 1 for s ¢ N requires only a construction in proving Lemma 8 that works for any
real s satisfying s > & +2. (On the other hand, extensions for fractional differentiation
seem to be much harder. The k ¢ N version of Lemma 1 seems to be unknown, too.)

Of course, differentiation and differentiability are understood in the sense of Fréchet
throughout.

2. Local formulae for the derivatives of J

Let U # () be a bounded open subset of R™. Define
Dy, = {f € H°(U,R"™) : f is invertible with a H® inverse}

and consider an fy € Dy, arbitrarily choosen. Assuming OU smooth enough, our stand-
ing assumption s > 2 + 1 implies that fo € C*(U,R™) with fo(U) open and cl(fo(U))
compact in R™. Finally, let V' and W be open subsets of R” satisfying

0£W C (W) C fo(U) Ca(fo(U)) C V.

Then there is an € > 0 with the properties as follows. For any f € Dj, with || f— follg: <
¢ and g € Dy, the composition function g o f is defined and belongs to Df;. We write
go f = N(g,f) (the local version of Lemma 1/(iv)). Moreover, for any f € D, with
|f — follms < &, there exists a unique h € H*(W,R™) such that foh = idy . We write
h = J(f) (the local version of Lemma 1/(vi)).

This section is devoted to local properties where domains of the underlying H*
functions play no rule and are omitted. For brevity, we write D* and H?® instead of Dy,
and H*(U,R™).

Formulae for higher order derivatives of J contain an exponentially growing number
of summation terms. In order to write them in a compact form we follow Rybakowski’s
version [9] of the method of equating coefficients in Taylor expansions for implicitly de-
fined maps and use graphs as summation indices. This approach has been worked out in
[2] for the operator J between spaces of continuously differentiable functions. Formulae
obtained in [2: Section 2] remain valid in the Sobolev space setting as well. Lemmata
2 - 5 below contain formulae for the higher order derivatives of the operator J between
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Sobolev spaces. From the view-point of combinatorial enumeration, Lemmata 2 - 5 are
restatements of some results of [2: Section 2] established within the framework of con-
tinuously differentiable functions. Fortunately, the original proofs when combined with
Theorem 2.1/(ii) (closedness with respect to pointwise multiplication) and Theorem
2.6/(iii) (chain rule formula) of [6] can be repeated in the Sobolev setting. The extra
considerations are needed to ensure that the individual summation terms in Lemmata
2 and 3 below make sense and belong to H®. The final reason for this is the fact that,
with pointwise addition and multiplication, H*(U, R) is a Banach algebra (of continuous
functions) for s > . This makes density arguments for products possible.

Throughout this paper, graphs are understood as finite “vertex” sets carrying ab-
stract structures like “labelling” and “system of directed edges”. Thus different geo-
metric realizations of the same graph are identified. We present the detailed definition
of Cayley trees but otherwise use basic terminology of graph theory without any fur-
ther notice. A Cayley tree of type C; is simply a labelled rooted tree on j vertices
(j € N). In other words, a Cayley tree of type C; is a triplet 7 = (V, A\, E) consisting
of an abstract vertex set V = {vy,...,v;}, a labelling A : V — N and the set of di-
rected edges £ = {e1,...,ej_1} C V x V. The defining requirements on A\ and E are
as follows. By definition, A is injective. For a fixed r € V it is required that, given a
vertex v € V\{r} arbitrarily, r is the starting point of a directed path that terminates
at v. It is easily seen that vertex r, the root of 7, is uniquely determined. Two Cayley
trees 7 = (V,\, E) and 7 = (V, A, E) of type C; are isomorphic if there are bijections
B:V — Vandb: {\vu)Y_, — {\#)}_, such that \(B(v)) = b(A(v)) for each
v € V as well as (v,w) € E if and only if (B(v), B(w)) € E. From now on, letter C;
stands for a maximal collection of pairwise non-equivalent Cayley trees on j vertices
(7 € N). The labelling set is chosen for {1,2,...,;j}. Consider also

R, = {7‘ € C;41: oot 7 labelled by j + 1},

the set of Cayley trees on 1 + j vertices with a fixed (labelling of the) root.

Consider a Cayley tree 7 = (V,\, E) € C; with j < k and let hy,...,h; € (D**F)J.
Labelling A\ gives rise to a differential assignment according to the rules as follow:

(C-DA1) If the root r is of degree d, then the differential monomial hf\@) is assigned

to r.

(C-DAZ2) If the vertex v € V\{v} is of degree d, then the differential monomial hf\cg)l)
is assigned to v.

In particular, vertices of degree one are associated with h; for some [ € {1,2,...,5} as

above. This gives the possibility of assigning differential expressions to subtrees via the
inductive bracket rules.

(C-DA3) If a subtree 7" with root v # r is chosen in such a way that the components
T1,...,Td—1 of the forest 7/\{v plus adjoint edges} are already associated with the
differential expressions Fj1, ..., E4_1, then the differential expression

b\ N(E, - Eaoy)
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is assigned to 7.

(C-DAA4) If components 71, ...,7q of a forest 7\{r plus adjacent edges} are already as-
sociated with the differential expressions E1, ..., E4, then the differential expression

(@91 (B, 1g) = [5G, )(Bn, ., Ea)

is assigned to the tree 7 itself.

Now we have

Lemma 2. Consider the operator J : D5k — HS J(f) = f~1. Then

DG (ha, .. hy) = (1) > [dE(T5id)](ha, -, hy)

TECj

whenever (hi,...,h;) € (D**F) (j=0,1,...,k).

Similarly, consider a rooted tree 7 = (V, A\, E) € Rh—j with j < k and let f € Dtk
and (h1,...,h;) € (D*T*)J. For brevity, we write H; = h;of~! (i=1,...,j). Labelling
A gives rise to a differential assignment according to the rules as follow:

(R-DA1) If a root r is of degree d, then the differential monomial (f~1)(%) is assigned
to r.

(R-DAZ2) If a vertex v € V\{r} is of degree d, then the differential monomial H /(\Cfg)l) is
assigned to v.

(R-DAZ3) If a subtree 7/ with root v # r is chosen in such a way that the components
T1,...,Ta—1 of forest 7/\{v plus adjoint edges} are already associated with the dif-
ferential expressions E1, ..., E4_1, then the differential expression

d—1
(Hy 1B, Baa)

is assigned to 7.

(R-DAA4) If components 71, ..., 74 of a forest 7\{r plus adjoint edges} are already asso-
ciated with the differential expressions E1, ..., E4, then the differential expression

(AR (T (s hy) = (D) DNE, -, Ea)
is assigned to the tree 7 itself.
Lemma 3. Let f € DTk, Then

[J(j)(f)](hl,”',hj) _ (_1)3' Z [df(J; DIk, ... k) (1)

1
TERL;

whenever (hi,...,h;) € (DR (j=0,1,...,k).

The case of real functions has the peculiarity that both J)(id) and JU)(f) can be
written in a more compact form.
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Lemma 4. Letn=1. Then
[P ()] (..., hy) = (=1) (hy -+ hy)0 ™Y

forj=1,2,... k.

Lemma 5. Letn=1. Then

TD (e, hy) = (=17 ((f71) - hyo f=t o hyo f7HU=H,

forj=1,2,... k.

3. Proof of Theorem 1

We prove Theorem 1 by means of a series of lemmas.

Lemma 6. Assume that J is k + 1 times differentiable at some Foy € D¥TF(M).
Then Fo € DSTETH(M).

Proof. Let zy € M be chosen arbitrarily. We will show that F; ! is of class H*T++1
near .

By the Whitney embedding theorem we may assume that M C R2"*!. Moreover,
by choosing a suitable embedding we may assume that there is an open neighborhood
V of zy in M such that V ¢ R® ¢ R?**! and F;1(V) ¢ R* € R?"*!, and that our
atlas on M contains the special charts (idy,U) and (id]_-o_l(U),]-"O_l(U)) where U is an

open subset of V with zo € U C cl(U) C V. The exponential map is choosen in such a
way that

exp, w =w + Yy whenever y,w +y € U

engjl w=w-—1y whenever y, w € Fy 1 (U).
Consider the coordinate representation of J at Fy

T+ M) = X5(M), T (v) = (@D 0 Apo1) 1T @@Pr, 0 A, (v).

By the indirect hypothesis 7 is k + 1 times differentiable at 0.

Next consider
Xgﬁgk(./\/l) = {U € XTR(M) : v(z) =0if z € M\B, |v]spr < 6}

and the natural chart representation of j

XM where B is a fixed compact ball in

U centered at xy and J is a small positive number we specify below. Writing out the
details, set

G(v) = expg, () v(Fo(-)) for each v € X*TF(M).
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Note that G(0) = Fy and G(v) € D¥F(M) for |v|s1x small enough. Using continuity
we see there is a positive ¢ for which v € X E%k (M) implies

(J())(z) = exp, H(G(v)) " H(Fo(z)) whenever z € M

(G(v)(x) = Fo(x) } .
5 whenever z € M\F; " (B)
(J(0))(z) =0
Fo(z) +v(Fo(x)) €U } .
whenever z € F " (B).
(G(v)) ™ (Fo(x)) € Fo (V)

Since

} whenever z € Fy H(U)\F; H(B)

we conclude that

(G(W)(x) = Fo(z) + v(Fo(z))
(G(v) (Folz)) —=

—
\z
—~
e
N—
S—
—~~
s
SN—
I

or, equivalently,
(T ()(z) = Fy L (id +v) L Fo(z) — for all x € F5 1 (U).

Now we pass from ngk(M) to (the open d-ball of C(B,R") D) HiT*(B,R"), a Sobolev
space with vanishing trace on the boundary. By letting

(K(v))(z) = .7-"0_1(id +0) P F(z) — if v € .7:()_1(3),

a C* mapping
K: Hi*"(B,R") — H§(F; '(B),R")

is defined (for |v|s4x small enough). The mapping K decomposes as
K=LsoKoLg

where
K : Hy™(Fy N (B),R") — H§(B,R")
(Kw)(z) = (Fo +w) ' (z) — .7-"0_1(33) ifreB

and
(L;(v))(x) = v(Fo(z)) whenever z € Fy ' (B), ve H}(B,R") and j = 5,5 + k.

Note that Ls and Lg4p are linear isomorphisms. In view of K = L;l oK o Ls_ik’ the
mapping K is of class C* and the indirect hypothesis implies that K is k + 1 times

differentiable at 0.
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Recall that s > % +2. As a simple corollary of the case ¢ = 1 of Lemma 1/(iv), the
operator

~ inclusion

K = (H§(B,R") ""="" Hi"'(B,R")) o K
is k + 1 times differentiable. In particular,

inclusion

RO (0) = (H(B,R") "5 g3~ (B,R™) 0 K1) (0), )
Consequently, Lemma 3 applies to K ¥+ (0) and
[K*ETD(0)] (w1, ..., wigr) € HS(B,R™)
or, equivalently, by passing to the leading term in (1),
[(FoH)E D) (wy 0 Fyly .. jwpyr 0 Fy b)) € Hy(B,R™)

whenever wy, ..., wyy1 € Hi ™ (F5 1 (B),R"). In fact, all other summation terms in (1)
correspond to Cayley graphs for which d(r), the degree of the root, is less than k& + 1.
Correspondingly, the order of each differentiation in those remaining summation terms
is not greater than k. Since H{(B,R) is closed under pointwise multiplication, the
smoothness properties Fy € D*tF(M) and wy o Fy ', ..., wps1 0 Fy b € HETF(B,R?)
imply coordinatewise that all the remaining summation terms belong to H§(B,R"™).

Next we apply a simplified version of the inverse method of Lanza [5, 6] and conclude
that (F, 1)*+1) is of class H® at interior points of B. The (k+1)-linear symmetric oper-
ator [(F51)**Y)] can be reconstructed from a carefully chosen finite collection of points
on its graph. The (k+1)-th order mixed partial derivatives of the coordinate functions of
Fy ! satisfy a system of linear algebraic equations with coefficients in HS ™ (F; *(B),R)
and inhomogenities in Hg(F, *(B),R). Locally, at each interior point of B, a density
argument implies that all entries of the coefficient matrix can be made C*° smooth and
the determinant can be made non-zero. Cramer’s rule implies that (F; ')*+1) is of
class H® and, a fortiori, ;' is of class H*T*+1 near x.

This holds true for any xo € M implying Fo € D¥TF+1 (M) I

Lemma 7. We may assume that Fo = id .

Proof. This is an easy combination of Lemmata 1 and 6. In fact, consider the
identity
J(F) = N(Fo, TN (F,Fo)))  for each F € D¥TF(M). (3)

The inner composition operator A is understood as a mapping of D***(M) x {Fy} to
D3T*(M) and is of class C* in F. On both sides, the operator J is understood as a
mapping of D*T*(M) to D¥(M) and is of class C*. However, the outer composition
operator A is understood as a mapping of {Fo} x D*t*(M) to D*(M) and is of class
CHF+L. Since J is k+1 times differentiable at Fy, it follows that each side of (3) is k+1
times differentiable at F = id I
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Lemma 8. The operator
J : D¥TR(M) — H* (M, M)

1s not k + 1 times differentiable at id .

Proof. It is enough to show that K, with the special choice Fy = id 4, is not £+ 1
times differentiable at 0. By (2), formula (1) applies to K(**1(0) just as to all preceding
derivatives K@) (w). We distinguish two cases according k = 0 or k # 0. There is no
loss of generality in assuming that zo =0 and B = {z € R" : |z| < 4n}.

The Case k = 0: Thus K'(0)w = —w for w € H§(B,R™) and, by definition of the
derivative as that of a multilinear mapping,

[(id + w) ™" —id + w|s = o(|wls) (4)

where (equivalently to the standard norm calculated on the basis of mixed partial deriva-
tives)

=

jwl|s = (Z/B Hw(“(ﬂf)HL«Rn)i,Rn)dﬂ?)
1=0

Using (2) again, we have
|(id + w) ™' —id + w|s_1 = o(|w]s).

We arrive thus at a contradiction to (4) if we construct a sequence {W;} C H§(B,R")
for which |W;|s = O(a;) and

(G + W)=t —id + W)™ ey (5)

(B.L(®R)* Rn)) =

where {q;} is some positive zero sequence and ¢; is a positive constant. The construction
of W; can be reduced to the case n = 1. In fact, it is enough to construct a sequence
{w;} € H§([—4,4],R) satisfying

[wils = Olar) (6)

and, with some positive constant co,

. — . (s)
(G +wi) ™" =id - we) " g e ) = €20 @ (7)
Having done this, we can simply take w; = 0 outside [—4, 4] and set

Wi(z) = u(x) - (wl(:z:l),wl(:vz), . ,wl(xn))

for v = (z1,...,2,) € R” where p: R™ — [0,1] is a C° function with

(2) = 1 ifzxeiB
P =0 itz g 3B,
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For | € N and = € [—4, 4], we define

Ozl(x):{l ifz e (4,8) (i=—1+26,t=0,1,...,0—1)
0 otherwise

o [ [ [

() = via) i) (v: (4,4~ [o,uofooo—type,um:{é A

By construction, v; € H§([—4,4],R). The s-th derivative of ; cannot be defined in the

classical but only in the distributional sense. Nevertheless, the Lo-representation of fy( s)
can be computed via the pointwise Leibniz rule of differentiation (valid for products of
C§° and H*® functions) and we are justified in writing

s—1
O (@ Z( > =D () (x) + v(@)u(z) (€ [~4,4])

Jj=0

and in particular, with a positive constant cs,
W(@) <es  (we[-4,4;j=01,...,s). (8)

In what follows c4,...,c11 stay for positive constants that are independent of [ and x=
(but may depend on s). Observe that |y;|s < ¢4 and ¢5 < y;(x) < ¢g whenever |z| < %

Now we are in a position to define w;. For 1 <1 € N and x € [—4,4], set

For [ sufficiently large, say [ > Iy, the case j = 1 of (8) implies |w](z)| < 1 for each z €
[—4, 4] and thus id +w; is an increasing H* self-diffeomorphism of [—4, 4]. Furthermore,

1 3
4+ 2 < (id 4+ w)(x) <z + - whenever |z| < —.
C6l l 2
By taking the inverse functions, we obtain the crucial inequality
1 . -1 Cs
z—7 < (id+w) (x) <zx— =] whenever |z| < 1. (9)
Ceé

Choose a; = % and observe that property (6) is satisfied.
For [ > [y, define

Sl:U{<§,§+§§l>‘i——l+2tW1tht 0,1 ...,l—l}.



650 G. Farkas and B. M. Garay

Since c¢5 < ¢g, S; is a collection of disjoint intervals in [—1,1] and thus its measure is
equal to £>. Consequently, the proof of inequality (7) reduces to checking
Cr

mm+mrhqmﬂm@@ﬂzl

whenever x € 5. (10)
We begin by observing that
)mmﬁm*—m+wyﬂw‘

(s—1)

— ([1+w2(id+wl)—1}*1—1+w§> (iﬂ)‘

= |([1 = wilid +w) ™" + (wilid +w) ™) =] =1+ w?)(s_l)“‘)’

. _ s—1 = . — s—1
> | (= wilid+ w) ™+ w]) V@) = 3 [((wild+ w) )T @)
k=2
for each = € [—4,4] and | > ly. Since
1 . . . .
o ((Gd )™ (wlid + ) 712)

for 2 < k € N, the polynomial version of the Leibniz rule plus a repeated use of
inequalities (8) and |wj(z)| < % show that

S . 1k (D) s~ KT
;‘((wf(ldJr’wl) )T (@) SZ—QZW-

k=2

o (s—1)
((wiid +w) ™)) 7Y =

Furthermore, by standard manipulations with geometric series,

(G + )™ = id 4 w) (@)

> |(—wy(id +w) "'+ wf)(s_l)(m)‘ - ?—3
= <_ wi'(id +w;) ™" - [1+wy(id + wl)_l}_l + w2’>(82)(x) _ %’
> | (—w/(id+w) "' + w{’)(s_z)(x)‘ - % - %’
(inductively)
> | - 0l (6 + ) ) + 0l )] -

for each x € [—4,4] and | > ly. In particular, property (9) and the identification

l(s) = oy lead to the inequality

‘mwmm*—m+wwﬁw‘

S . _ s C
2‘—wl()((1d+wl) 1(x))+wl()(x) —%
C11

— %cl . ’ — oy ((id 4+ wy) " H(z)) + al(aj)‘ -

_ 1 e
CGZ l2
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whenever x € ;. For [ large enough, inequality (10) follows.
definition,

The case k > 0: As in the proof of the case k = 0 we can assume that n = 1. By

[[K®) (1) = K(0) = KED(O0)w] (wn, ..., wy)
sup

s
|w1|s+k T |wk‘|s+k

= o(|wlstr) (11)
where the supremum is taken over all 0 # w; € HS™"([—4,4],R). As in the case k =0
above, (11) reduces to

ol

([K(k)(w) — K(k)(()) _ K(k—i—l)(o)w] (w1, wy )(S)

’wl‘s—&—k t ’wkz|s—|—k

Lol=44] _ o

|wlstr)-
To arrive at a contradiction, it is enough to construct a sequence {2} C Hg *([—4,4], R)

and to find non-zero elements v1,...,vs_1,q € H§+k([—4, 4], R) such that

|Zl|s—|—lc — 0
but

as [ — oo.

(12)
H <[K(k)(zl) — K®(0) = K*(0)z] (ve, . .., vk—1, @ >(S)

Lo[—4,4]

#40
|21]sk - la]sn
In what follows d, ..

x (but may depend on k and s).

(13)

., ds stay for positive constants that are independent of [ and
For 1 <1 € N and |z| < 4, we set z(z)

v(z) - £ and observe that, for
sufficiently large, say [ > ly, (id + z;) 7! is a C*° self-diffeomorphism of [—4, 4],
1
-7 d
(d+2) " (@) = —L if o] < 1 <zl < 2.
1+1
Thus (12) is satisfied. Similarly, set

2w
vi(z) =

v(z) whenever |z| <4andi=1,...,k—1
The definition of g; requires a little more care.

d
and 71

Consider a 3-periodic C'*° function
Q : R — R with the property that Q(y) = y****! for each y € [~1,1] and set
q(x) = v(x) - 17F°Q(lx)

whenever |z| < 4 and [ > .
It is readily checked that ||ql(j) |£o[—4,4) — 0asl —ooforj=0,...,k+s—1 and, using
the 3-periodicity of @,

. 3 5
n%W%4Az/J@Wqu:/J@Ww%y
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for j = k + s. Together with an easy upper estimate, we conclude that
d3 < |qi|s+x < da. (15)

In view of (14) and (15) we see that (13) is implied by the property

(s)

l- H ([K(k)(zl) — K(k)(O) — K(k+1)(0)zl} (v, .. .,Uk—bQZ)) Lalot) +0 (16)
as | — oo.

For each x € [—1,1], the particularly simple form of z; and of vy,...,v;_1 implies
via Lemmata 4 and 5 that

(k) (s)
(I <zz>]<v1,...,vk_1,qz>) (x)
(E—1+s)
k(( (id + #) 1 ql((id—l—zl)_l)) (z)

_ 0P ey T
(1+%)’f @ (1+z)
o (=D)F sy [l =1
= w1 @G
and
(KOOl v @) @) = (D) = (1)1 QU1
and

(E* DOl o) (@)
. (-1>k+1<zl ) *+ @)

14+ (pas k45 (kts—1
= ’f“( o @)+ T @)
1)k+1 L+ QU+9)(1 k+s J(kts—1)
( (1x) + =5~ Q (m)).
It follows immediately that (16) is a direct consequence of the slightly stronger property

1

/ ’<1+1%> ar 1)(1+1> QU (1) + (1 +2)QP (iz)

2
dz > ds (17)

where p =k +s >3 and [ > [, = 10P.

We fix parameters v = v(p) € [+5,1) and I' = I'(p) € (0, 4] in such a way that the
inequality
v - (1- +3F+3>2—4<1— +3r+§)>i (18)
2 i I, 7 1) = 2r
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holds true. With [[']] denoting the integer part of T'l, we define
3 3i-13 1-v 3i—~
n-U{( |
=G Tt e

Observe that T; is a collection of disjoint intervals in [0, 1] and that the measure of T;
is at least ([I'l] + 1)1—;Y > I'(1 — 7). It is crucial that x € T} is equivalent to

z':1,2,...,[1“l]+1} (1> 1).

-1
T <3i—7 for some ¢ € {1,2,...,[T] + 1}.

3i_1< @
1+ 7

Consequently, for each = € T} (I > 1) we have

’(1+%) ol 1)<1+ > QP (1z) + (1+x)Q(p)(l:c))
> ey (?T_%N - Q@ 12)| - 21QW (i)
> 2%(})—;—!1)!72_ (p_;l)!<‘1—’y+3([N1+1)‘2—4‘1—7+3([Fl]l+1)‘)
2@(; (1—7+3P+Z) —4(1—7+3F+%>>.

As a direct consequence of (18), inequality (17) and, a fortiori, (16) and (13) follow i

Acknowledgement. We are indebted to the referee for his/her remarks and sug-
gestions.
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