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Existence Results
for the Equation —Au = f(x,u) in R"

S. A. Marano

Abstract. Strong solutions to the class of semilinear elliptic equations —Au = f(z,u) on the
entire space and with possibly supercritical growth for f(z,-) are obtained by mainly using
fixed points arguments. The case of discontinuous non-linearities is then examined.
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0. Introduction

Let n be a positive integer, n > 3, and let p € (1, §). According to [14], write p* = n”—_pp
and p™* = 25, and denote by HP(R™) the space of all u € LP""(R™) such that

Uz, € LP" (R") and ug,,, € LP(R") (1 < i,j < n) where, as usual, derivatives are
understood in weak sense.

Given a function f : R"™ x R — R satisfying the standard Carathéodory conditions,
consider the semilinear elliptic problem

we HYP(R™),  —Au= f(z,u) inR" (P1)

Equations of the above type have been widely investigated in the last decade, for the
most part through variational techniques and often assuming that z — f(z,z) has a
subcritical growth or is of a very special form. Let us mention the recent papers [6,
9] as a general reference on the subject. A different approach, which chiefly employs
fixed point arguments, is taken here. Indeed, exploiting the bijectivity of the operator
—A: HP(R™) — LP(R™) (see [14: Chapter III]), we first reduce problem (P;) to the
following

v e LP(R"), v=f(z,G(v)) inR" (Ps)

where G = (—A)~!. Next, we apply a simple result (Lemma 1.1) concerning the
weak convergence of sequences in the space Hg P(R™) together with a modified version
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(Lemma 1.3) of the classical Schauder-Tychonoff fixed point theorem to solve problem
(P3). This method yields hypotheses on the non-linearity f that are rather different from
those usually adopted; vide Theorem 2.1 below. As an example, no subcritical growth
condition for f(x,-) is required, but only that the growth rate turn out less than p%.
Such exponent is obviously greater than the critical one (namely, p*) every time that
n<5orn>5andp>1(n+1+4+vn?—6n+1). For the sake of completeness we then
examine, in Theorem 2.2 and Remark 2.1, the case when the function (z,z) — f(z, 2)
is bounded, but not necessarily continuous, with respect to z. Finally, the existence of
non-negative solutions is also investigated through a representation formula (proved in
Lemma 1.2) for the linear equation corresponding to problem (P1).

1. Preliminaries

Let n be a positive integer, n > 3. Given a number r > 0, the symbol B, indicates
the open ball in R™ of radius r centered at zero. Moreover, ‘measurable’ always means

Lebesgue measurable and |F| stands for the measure of the set E.
Now, let p € (1,%). Write p* = n"—_’;) and p** = T_LPQP, and denote by H7?(R") the

space of all u € LP" (R") such that

ou « 0%u
LP (R"
xX; < ( ) and ox i ox j

€ LP(R") (1<i,j<n)

L. : 2
where, as usual, derivatives are understood in weak sense. If u € Hy?(R"™), define

[ulo.p = ( ]Z_ Haxzaxj )

Owing to [14: Chapter III/Theorem 2.21], the following assertions hold:

(a1) (HJP(R™),|-|2,) is a reflexive Banach space.
(az) C3°(R™) turns out dense in (HZP(R™), | |2.p)-

pee £ |Vl < alula, for allu e HEP(R™).

(ag) There exists a > 0 satisfying ||u

Remark 1.1. Indicate with ¢, (1 < ¢ < n) the best value of the constant that
appears in Sobolev’s inequality [3: Theorem IX.9]. It is possible to set a = ¢,(1 +
Cp+) nz%*, as a simple computation shows. Thus, since ¢, is known [15: Theorem)], the
same holds regarding a.

Lemma 1.1. Ifu € HYP(R"), {uy} € HYP(R"), and limy, oo up, = u weakly in
Hg’p(R”), then {up} has a subsequence which converges almost everywhere in R™ to the
function u.

Proof. From assertion (as) we easily infer that {u} is bounded in W™ (B,) for
any 7 > 0. Pick r = 1. Using the Rellich-Kondrachov theorem [3: Theorem IX.16]



Existence Results for the Equation —Au = f(z,u) in R" 577

yields a subsequence {ug)} of {up} such that limy_, ug)(x) = u(z) at almost all
points x € By. We now apply this argument again, with 1 replaced by 2, to obtain
a subsequence {uglz)} of {u%l)} satisfying limyp,_ oo uf)(x) = u(x) almost everywhere in

Bsy. And so on. The sequence {uglh)} clearly complies with the conclusion il

By assertion (ag) and the Calderén-Zygmund inequality [5: p. 413/Corollary 2]
there exists b > 0 such that |u|o, < b|Aul|, for all u € HZP(R™). Since, owing to
[14: Chapter ITI/Theorem 4.6], the operator —A : H>P(R") — LP(R") is a continuous
bijection, the inverse operator G = (—A)~! turns out linear, bijective, and continuous.
Moreover, bearing in mind the preceding inequality, |G| < b.

Remark 1.2. The constant b can be explicitly estimated. Indeed, it is related to
the norm of M. Riesz’s transformation in LP(R"™), which has been evaluated in [13: p.
177 - 180].

Lemma 1.2. For every v € LP(R™) one has

Glo)(x) = —— / YW (@wer?)

nn—2)wy, Jre |z —y|["2

where w, indicates the volume of the unit ball in R™.

Proof. From [12: Theorem 71.11] it follows that G(v) € LP" (R™). Define, whenever

1 <1 <n,
1 i —Yi
wi(z) = — / (i —y )1;(9) dy (x € R™).
nwy Jrgn | =yl

[12: Theorem 72.I] produces w; € LP (R"), while [12: Theorem 77.II1] leads to % €
LP(R™) (1 <j<mn). Let {vp} C C3°(R"™) satisty

Tim [, — ], = 0 1)
and let . )
Vr (Y

= d heN R™). 2

w@) = e [ Py (heNaeR) @)

Through the above-mentioned results we also get limp_, o [|up, — G(v)
» =0. Now, if ¢ € Cg°(R"™), one has

p= = 0 as well

as limy,_ o H%ﬁ —w;
0G(v) N _ ) I C Oup () o
< O ,¢> = — hh_)ngo . up () o, dr = hh_)n;@/n oz, o(x) dx = (w;, @),

namely 8(%’},? — w; for all i. Consequently, G(v) € HZP(R™).

To achieve the conclusion we note that, by the Calderéon-Zygmund inequality and

the completeness of LP(R™), for any fixed i,5 € {1,2,...,n} the sequence {8221_5;]_
2
converges in LP(R™) to a function w;;, while arguing as before yields gx%(;? = wj;.

Therefore, because of (1) and (2), —AG(v)(x) = v(z) at almost all z € R™ I
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Remark 1.3. Owing to the preceding lemma, the conditions u € ﬁg P(R™) and
Au(z) <0 almost everywhere in R imply u(xz) >0 (z € R™).

The next useful version [1: Theorem 1] of the classical Schauder-Tychonoff fixed
point theorem will applied.

Lemma 1.3. Let X be a metrizable locally convex topological vector space and let K
be a non-empty, weakly compact, conver subset of X. Suppose T : K — K 1is a function
with weakly sequentially closed graph. Then there exists xo € K such that xo = T (z0).

We shall also employ the following result, which represents a very special case of
[2: Theorem 3.1]. As usual, M (R™) denotes the family of all (equivalence classes of)
measurable functions w : R — R; a multifunction F' from R” into R is called measurable
provided for each open set A C R the set {x € R" : F(z) N A # 0} is measurable; we
say that F' has a closed graph if the set {(z,y) € R" xR :y € F(z)} is closed in R x R.

Lemma 1.4. Let U be a non-empty set, let & : U — M(R") and ¥ : U — LP(R")
be two operators, let F' be a multifunction from R™ x R into R with non-empty, conver,
closed values. Assume the following:

(i1) W is bijective and, whenever limy_, o, vy = v weakly in LP(R™), there exists a
subsequence of {®(¥~1(vy))} which converges to ®(¥~1(v)) at almost all points
of R™.

(i2) The set {z € R: F(-,2) is measurable} is dense in R.

(i3) F(z,-) has a closed graph for almost every x € R™.

(1) There exists a function m € LP(R™) such that F(z,z) C [-m(z),m(z)] for
almost all x € R™ and each z € R.

Then the problem u € U, ¥(u)(x) € F(z,®(u)(x)) almost everywhere in R™ possesses at
least one solution.

2. Existence theorems

Keep the notation of Section 1 and set ¢ = if ¢ € (0, —2-). The main result

np
n—g(n—2p) > n—2p

of the present paper is the following.
Theorem 2.1. Let f be a real-valued function defined on R™ x R. Suppose the
following:
(b1) f(-,2) is measurable for all z € R.
(b2) f(z,-) is continuous for almost every x € R™.
(bs) There exist « € LP(R™), q € (0 ), and B € L1(R™) such that

’n—n2p
(2, 2)| < o) + () |2|* (3)
for almost all x € R™ and each z € R. Furthermore, when both ||3|; > 0 and
q > 1, it results a||G||||Bllg < 1 or
qg—1 1 =
(4)
q <CI(GHGH)"WH@>

vl <
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according to whether ¢q =1 or q > 1.

Then the equation —Au = f(x,u) in R™ has at least one solution u € HY?(R™), which
turns out non-negative provided f is so.

Proof. Define, for every v € LP(R"™),
T()(z) = f(x,Gv)(x))  (zeR").
Assumptions (b;) and (bs) guarantee that the function 7'(v) is measurable; hypethesis
(bs) combined with the Holder inequality [3: p. 57/Remarque 2| immediately lead to
T(v) € LP(R™). Therefore, T : LP(R") — LP(R™).
Let us first show that there exists r > 0 fulfilling T'(K,) C K, where
Kp:={ve LP(R") :[jvll, <p}  (p>0).
If v € K,, then by (3), the Holder inequality and assertion (ag) of Section 1 we get
IT@)llp < llally +18ls1G(v)
< [ledlp + (alG(v)]2,5) 1154 (5)
< [ledlp + (@G Bl g o7

Thus, when ¢ < 1 the conclusion follows at once from

Jim (ladly + @G 18l14p" = p) = =00

q
p**

whereas for ¢ = 1 it is a simple consequence of the hypothesis a||G|| || ]| < 1. Suppose
next ¢ > 1 and ||5||; > 0, and set

1 e
= (e ®)

Using (4) — (6) yields

qg—1
1T ()l < el (allGIN)|Blgr? =,

namely T'(v) € K,. Since v was arbitrary, T'(K,) C K,.

We now claim that the function T'|g, has a weakly sequentially closed graph. To
prove this, pick two sequences {v }, {wp} C K, satisfying the conditions

wp, = T(vy) (heN), hlim vp = v, lim wp, =w weakly in LP(R™).  (7)

h—o0

Evidently, K, is convex, closed, and bounded. Owing to the reflexivity of LP(R™),
it turns out weakly (sequentially) compact. Hence, v,w € K,. The properties of G
guarantee that lim,_,, G(v,) = G(v) weakly in HoP(R"). Because of Lemma 1.1, and
taking a subsequence if necessary, we obtain lim,_.. G(vy)(x) = G(v)(z) at almost all
points x € R". Therefore, by assumptions (b;) and (b2), the sequence {T'(vp,)} converges
almost everywhere in R" to T'(v). Since {T'(vy)} C K., combining [7: Theorem 13.44]
with (7) produces w = T'(v).

We have thus proved that Tk satisfies the hypotheses of Lemma 1.3. So, there
exists v € K, such that v = T'(v). The function u := G(v) lies in Hy?(R") and one has
—Au(z) = f(x,u(x)) for almost all x € R™. Finally, if f is non-negative, then due to
Lemma 1.2 the same holds regarding the solution u il
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The next result treats the case when (x, z) — f(x, z) is bounded, but not necessarily
continuous, with respect to z. Write, for (z,z) € R" x R,

flz,2) = lim K_irzl'fgf(w,o and T(w,z)=5li%1+ Kﬁ‘jfgéf(x’@'

It is a simple matter to check that f(z,-) and f(x,-) are, respectively, lower semicon-
tinuous and upper semicontinuous.

Theorem 2.2. Suppose the function f : R™ x R — R satisfies assumption (b3) of
Theorem 2.1 with 3 = 0 and, moreover,

(by) the set {z € R: f(-,2), f(-,z) are measurable} is dense in R.

Then there exists u € Hy?(R™) such that

flzu(z)) < —Au(z) < flo,u(z)) for almost every x € R". (8)

Furthermore, the function u turns out non-negative provided f is so.

Proof. Let us verify briefly the hypotheses of Lemma 1.4. To this end, choose
U=HY"R"), ®(u) =uwand ¥(u) = —Au (u € U) as well as F(z, z) = [f(z,2), f(z,2)]
for all (z,z) € R® x R. We already know that the operator ¥ is bijective while U1 is
linear and continuous. Hence, by Lemma 1.1, condition (i;) in Lemma 1.4 holds. Using
assumption (bs), [10: Proposition 1.1], and [8: Corollary 4.2] we then easily realize
that the multifunction F' complies with (iz). Since a standard argument (vide for
instance [4: Example 1.3]) yields (i), while (i4) comes immediately from the inequality
|f(z,2)| < a(x) ((x,2) € R" xR), all the hypotheses of Lemma 1.4 are fulfilled. Thus,
there exists a function u € Hg?(R™) such that —Au(z) € F(z,u(x)) almost everywhere
in R™, which leads to (8).

Finally, when f is non-negative, so is f and, through Lemma 1.2, we obtain u(z) > 0
for all z € R™ I B

Remark 2.1. Functions satisfying (8) are usually called ‘solutions in the multi-
valued sense’ to the equation —Au = f(z,u) (z € R™). Evidently, each solution turns
out also a solution in the multi-valued sense, whereas the converse is not true in general,
unless further conditions are imposed. One of them is the following.

(bs) There exists Qo C R™ with || = 0 such that the set
Dy = UmeRn\Qo{z eR: f(x,-) is discontinuous at z}

has measure zero. Moreover, for almost every x € R™ and each z € Dy, the
inequality f(z,z) <0< f(z,z) implies f(x,2) = 0.

To show this, let us first note that if u € HyP(R™), then u € W>P(B,) for any r > 0
and consequently, by [11: Proposition 2.1], Au(z) = 0 at almost all points z € u=!(Dy).
Now, suppose u € flg P(R™) complies with (8). Exploiting the same technique employed
in the proof of [11: Theorem 3.1] we easily infer that u also solves the equation —Au =
f(z,u) in R™.

Several functions f enjoy properties (bs) and (bs). Here are two typical examples.
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Example 2.1. Let f(x,2) = a(z)g(z) ((z,2z) € R® x R) where a € LP(R™) while
g : R — R has a finite variation and a positive infimum on R. If a(z) > 0 for almost
every € R™, then the function f fulfils the above-mentioned conditions. Indeed, (by)
follows immediately from

flo.2)=a(x) im  inf g(Q),  f(z.2) =a() lim, Kil'pgg(é)- (9)

Since Dy = {z € R : g is discontinuous at z}, the set Dy is countable and so |Ds| = 0.
Taking account of the assumption inf,cg g(z) > 0 besides (9), it is a simple matter to
see that for almost all x € R™ and each z € D; the inequality f(z,2) < 0 < f(z,2)
forces a(z) = 0, namely f(z,z) = 0. Therefore, (bs) turns out true too.

Example 2.2. Pick y* > 0 and choose a bounded sequence {y,} C R satisfying
élelfN yn > 0, y* & [infhen yn, suppey yn)- (10)

Moreover, denote by C' a non-empty closed subset of R such that |C| = 0; as an example,
C' could be the Cantor ‘middle thirds’ set, which is uncountable. The set R\ C is non-
empty and open. Hence, it has at most countably many connected (open) components
Ay, (h € N). We define, for every (z, z) € R" xR, f(z,z) = a(z)g(z), where a € LP(R™),
a(z) > 0 at almost all points of R™, and

) yn ifZEAh(hEN)
g(z)—{y* if z € C.

The function f complies with assertions (by) and (bs). In fact, owing to (9), condition
(bs) holds. Elementary arguments, mainly based upon the identity D; = C and (10),
then yield assertion (bs).

Remark 2.2. Let p € (1,+00) and let 2 be a non-empty, bounded, open subset of

R”. According to [14: Chapter IIT], denote by H?P(R™; () the space of all (equivalence
classes of ) measurable functions u : R™ — R such that, for 1 <i,j < n,

ou ou(x) 0u
LP (R" = = LP(R™).
oo € L (RY), /Q waydr= [ ZpBar =0, G e (R

u,

Arguing as before, but using in [14: Chapter III] Theorems 2.9 and 4.4 instead of
Theorems 2.21 and 4.6, respectively, it is possible to show that, provided the space
I:Ig’p(R”) is replaced by H*P(R";Q), both Theorem 2.1, with 8 = 0, and Theorem 2.2
remain true for any p € (1,+00). However, whenever p > %, these results do not give
informations about the sign of solutions.
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