Existence Results for the Equation $-\Delta u = f(x, u)$ in \mathbb{R}^n

S. A. Marano

Abstract. Strong solutions to the class of semilinear elliptic equations $-\Delta u = f(x, u)$ on the entire space and with possibly supercritical growth for $f(x, \cdot)$ are obtained by mainly using fixed points arguments. The case of discontinuous non-linearities is then examined.

Keywords: Elliptic equations in the whole space, discontinuous non-linearities, strong solutions

AMS subject classification: 35 J 60, 35 R 70

0. Introduction

Let *n* be a positive integer, $n \geq 3$, and let $p \in (1, \frac{n}{2})$. According to [14], write $p^* = \frac{np}{n-p}$ and $p^{**} = \frac{np}{n-2p}$, and denote by $\hat{H}_0^{2,p}(\mathbb{R}^n)$ the space of all $u \in L^{p^{**}}(\mathbb{R}^n)$ such that $u_{x_i} \in L^{p^*}(\mathbb{R}^n)$ and $u_{x_ix_j} \in L^p(\mathbb{R}^n)$ $(1 \leq i, j \leq n)$ where, as usual, derivatives are understood in weak sense.

Given a function $f: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ satisfying the standard Carathéodory conditions, consider the semilinear elliptic problem

$$u \in \hat{H}_0^{2,p}(\mathbb{R}^n), \qquad -\Delta u = f(x,u) \quad \text{in } \mathbb{R}^n.$$
 (P₁)

Equations of the above type have been widely investigated in the last decade, for the most part through variational techniques and often assuming that $z \mapsto f(x, z)$ has a subcritical growth or is of a very special form. Let us mention the recent papers [6, 9] as a general reference on the subject. A different approach, which chiefly employs fixed point arguments, is taken here. Indeed, exploiting the bijectivity of the operator $-\Delta : \hat{H}_0^{2,p}(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ (see [14: Chapter III]), we first reduce problem (P₁) to the following

$$v \in L^p(\mathbb{R}^n), \qquad v = f(x, G(v)) \quad \text{in } \mathbb{R}^n$$
 (P₂)

where $G = (-\Delta)^{-1}$. Next, we apply a simple result (Lemma 1.1) concerning the weak convergence of sequences in the space $\hat{H}_0^{2,p}(\mathbb{R}^n)$ together with a modified version

S. A. Marano: Univ. di Reggio Calabria, Dip. di Patr. Arch. e Urb., Salita Melissari - Feo di Vito, 89100 Reggio Calabria, and Univ. di Catania, Dip. di Mat., v. A. Doria 6, 95125 Catania, Italy; e-mail: marano@dipmat.unict.it

Work performed under the auspices of G.N.A.F.A. of C.N.R. and partially supported by M.U.R.S.T. of Italy, 1999.

(Lemma 1.3) of the classical Schauder-Tychonoff fixed point theorem to solve problem (P₂). This method yields hypotheses on the non-linearity f that are rather different from those usually adopted; vide Theorem 2.1 below. As an example, no subcritical growth condition for $f(x, \cdot)$ is required, but only that the growth rate turn out less than $\frac{p^{**}}{p}$. Such exponent is obviously greater than the critical one (namely, p^*) every time that $n \leq 5$ or n > 5 and $p > \frac{1}{4}(n+1+\sqrt{n^2-6n+1})$. For the sake of completeness we then examine, in Theorem 2.2 and Remark 2.1, the case when the function $(x, z) \mapsto f(x, z)$ is bounded, but not necessarily continuous, with respect to z. Finally, the existence of non-negative solutions is also investigated through a representation formula (proved in Lemma 1.2) for the linear equation corresponding to problem (P₁).

1. Preliminaries

Let n be a positive integer, $n \geq 3$. Given a number r > 0, the symbol B_r indicates the open ball in \mathbb{R}^n of radius r centered at zero. Moreover, 'measurable' always means Lebesgue measurable and |E| stands for the measure of the set E.

Now, let $p \in (1, \frac{n}{2})$. Write $p^* = \frac{np}{n-p}$ and $p^{**} = \frac{np}{n-2p}$, and denote by $\hat{H}_0^{2,p}(\mathbb{R}^n)$ the space of all $u \in L^{p^{**}}(\mathbb{R}^n)$ such that

$$\frac{\partial u}{\partial x_i} \in L^{p^*}(\mathbb{R}^n) \quad \text{and} \quad \frac{\partial^2 u}{\partial x_i \partial x_j} \in L^p(\mathbb{R}^n) \qquad (1 \le i, j \le n)$$

where, as usual, derivatives are understood in weak sense. If $u \in \hat{H}_0^{2,p}(\mathbb{R}^n)$, define

$$|u|_{2,p} = \left(\sum_{i,j=1}^{n} \left\|\frac{\partial^2 u}{\partial x_i \partial x_j}\right\|_p^p\right)^{\frac{1}{p}}.$$

Owing to [14: Chapter III/Theorem 2.21], the following assertions hold:

- (a₁) $(\hat{H}_0^{2,p}(\mathbb{R}^n), |\cdot|_{2,p})$ is a reflexive Banach space.
- (a₂) $C_0^{\infty}(\mathbb{R}^n)$ turns out dense in $(\hat{H}_0^{2,p}(\mathbb{R}^n), |\cdot|_{2,p}).$

(a₃) There exists a > 0 satisfying $||u||_{p^{**}} + ||\nabla u||_{p^*} \le a |u|_{2,p}$ for all $u \in \hat{H}^{2,p}_0(\mathbb{R}^n)$.

Remark 1.1. Indicate with c_q $(1 \le q < n)$ the best value of the constant that appears in Sobolev's inequality [3: Theorem IX.9]. It is possible to set $a = c_p(1 + c_{p^*}) n^{\frac{1}{p^*}}$, as a simple computation shows. Thus, since c_q is known [15: Theorem], the same holds regarding a.

Lemma 1.1. If $u \in \hat{H}^{2,p}_0(\mathbb{R}^n)$, $\{u_h\} \subseteq \hat{H}^{2,p}_0(\mathbb{R}^n)$, and $\lim_{h\to\infty} u_h = u$ weakly in $\hat{H}^{2,p}_0(\mathbb{R}^n)$, then $\{u_h\}$ has a subsequence which converges almost everywhere in \mathbb{R}^n to the function u.

Proof. From assertion (a₃) we easily infer that $\{u_h\}$ is bounded in $W^{1,p^*}(B_r)$ for any r > 0. Pick r = 1. Using the Rellich-Kondrachov theorem [3: Theorem IX.16]

yields a subsequence $\{u_h^{(1)}\}$ of $\{u_h\}$ such that $\lim_{h\to\infty} u_h^{(1)}(x) = u(x)$ at almost all points $x \in B_1$. We now apply this argument again, with 1 replaced by 2, to obtain a subsequence $\{u_h^{(2)}\}$ of $\{u_h^{(1)}\}$ satisfying $\lim_{h\to\infty} u_h^{(2)}(x) = u(x)$ almost everywhere in B_2 . And so on. The sequence $\{u_h^{(h)}\}$ clearly complies with the conclusion \blacksquare

By assertion (a₂) and the Calderón-Zygmund inequality [5: p. 413/Corollary 2] there exists b > 0 such that $|u|_{2,p} \leq b \|\Delta u\|_p$ for all $u \in \hat{H}^{2,p}_0(\mathbb{R}^n)$. Since, owing to [14: Chapter III/Theorem 4.6], the operator $-\Delta : \hat{H}^{2,p}_0(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is a continuous bijection, the inverse operator $G = (-\Delta)^{-1}$ turns out linear, bijective, and continuous. Moreover, bearing in mind the preceding inequality, $\|G\| \leq b$.

Remark 1.2. The constant *b* can be explicitly estimated. Indeed, it is related to the norm of M. Riesz's transformation in $L^p(\mathbb{R}^n)$, which has been evaluated in [13: p. 177 – 180].

Lemma 1.2. For every $v \in L^p(\mathbb{R}^n)$ one has

$$G(v)(x) = \frac{1}{n(n-2)\omega_n} \int_{\mathbb{R}^n} \frac{v(y)}{|x-y|^{n-2}} \, dy \qquad (x \in \mathbb{R}^n)$$

where ω_n indicates the volume of the unit ball in \mathbb{R}^n .

Proof. From [12: Theorem 71.II] it follows that $G(v) \in L^{p^{**}}(\mathbb{R}^n)$. Define, whenever $1 \leq i \leq n$,

$$w_i(x) = -\frac{1}{n\omega_n} \int_{\mathbb{R}^n} \frac{(x_i - y_i)v(y)}{|x - y|^n} \, dy \qquad (x \in \mathbb{R}^n).$$

[12: Theorem 72.I] produces $w_i \in L^{p^*}(\mathbb{R}^n)$, while [12: Theorem 77.III] leads to $\frac{\partial w_i}{\partial x_j} \in L^p(\mathbb{R}^n)$ $(1 \leq j \leq n)$. Let $\{v_h\} \subseteq C_0^{\infty}(\mathbb{R}^n)$ satisfy

$$\lim_{h \to \infty} \|v_h - v\|_p = 0 \tag{1}$$

and let

$$u_h(x) := \frac{1}{n(n-2)\omega_n} \int_{\mathbb{R}^n} \frac{v_h(y)}{|x-y|^{n-2}} \, dy \qquad (h \in \mathbb{N}, x \in \mathbb{R}^n).$$
(2)

Through the above-mentioned results we also get $\lim_{h\to\infty} ||u_h - G(v)||_{p^{**}} = 0$ as well as $\lim_{h\to\infty} ||\frac{\partial u_h}{\partial x_i} - w_i||_{p^*} = 0$. Now, if $\phi \in C_0^{\infty}(\mathbb{R}^n)$, one has

$$\left\langle \frac{\partial G(v)}{\partial x_i}, \phi \right\rangle = -\lim_{h \to \infty} \int_{\mathbb{R}^n} u_h(x) \frac{\partial \phi(x)}{\partial x_i} \, dx = \lim_{h \to \infty} \int_{\mathbb{R}^n} \frac{\partial u_h(x)}{\partial x_i} \phi(x) \, dx = \langle w_i, \phi \rangle,$$

namely $\frac{\partial G(v)}{\partial x_i} = w_i$ for all *i*. Consequently, $G(v) \in \hat{H}^{2,p}_0(\mathbb{R}^n)$.

To achieve the conclusion we note that, by the Calderón-Zygmund inequality and the completeness of $L^p(\mathbb{R}^n)$, for any fixed $i, j \in \{1, 2, ..., n\}$ the sequence $\{\frac{\partial^2 u_h}{\partial x_i \partial x_j}\}$ converges in $L^p(\mathbb{R}^n)$ to a function w_{ij} , while arguing as before yields $\frac{\partial^2 G(v)}{\partial x_i \partial x_j} = w_{ij}$. Therefore, because of (1) and (2), $-\Delta G(v)(x) = v(x)$ at almost all $x \in \mathbb{R}^n$ **Remark 1.3.** Owing to the preceding lemma, the conditions $u \in \hat{H}_0^{2,p}(\mathbb{R}^n)$ and $\Delta u(x) \leq 0$ almost everywhere in \mathbb{R}^n imply $u(x) \geq 0$ $(x \in \mathbb{R}^n)$.

The next useful version [1: Theorem 1] of the classical Schauder-Tychonoff fixed point theorem will applied.

Lemma 1.3. Let X be a metrizable locally convex topological vector space and let K be a non-empty, weakly compact, convex subset of X. Suppose $T : K \to K$ is a function with weakly sequentially closed graph. Then there exists $x_0 \in K$ such that $x_0 = T(x_0)$.

We shall also employ the following result, which represents a very special case of [2: Theorem 3.1]. As usual, $M(\mathbb{R}^n)$ denotes the family of all (equivalence classes of) measurable functions $w : \mathbb{R}^n \to \mathbb{R}$; a multifunction F from \mathbb{R}^n into \mathbb{R} is called *measurable* provided for each open set $A \subseteq \mathbb{R}$ the set $\{x \in \mathbb{R}^n : F(x) \cap A \neq \emptyset\}$ is measurable; we say that F has a closed graph if the set $\{(x, y) \in \mathbb{R}^n \times \mathbb{R} : y \in F(x)\}$ is closed in $\mathbb{R}^n \times \mathbb{R}$.

Lemma 1.4. Let U be a non-empty set, let $\Phi : U \to M(\mathbb{R}^n)$ and $\Psi : U \to L^p(\mathbb{R}^n)$ be two operators, let F be a multifunction from $\mathbb{R}^n \times \mathbb{R}$ into \mathbb{R} with non-empty, convex, closed values. Assume the following:

- (i₁) Ψ is bijective and, whenever $\lim_{h\to\infty} v_h = v$ weakly in $L^p(\mathbb{R}^n)$, there exists a subsequence of $\{\Phi(\Psi^{-1}(v_h))\}$ which converges to $\Phi(\Psi^{-1}(v))$ at almost all points of \mathbb{R}^n .
- (i₂) The set $\{z \in \mathbb{R} : F(\cdot, z) \text{ is measurable}\}$ is dense in \mathbb{R} .
- (i₃) $F(x, \cdot)$ has a closed graph for almost every $x \in \mathbb{R}^n$.
- (i₄) There exists a function $m \in L^p(\mathbb{R}^n)$ such that $F(x,z) \subseteq [-m(x), m(x)]$ for almost all $x \in \mathbb{R}^n$ and each $z \in \mathbb{R}$.

Then the problem $u \in U, \Psi(u)(x) \in F(x, \Phi(u)(x))$ almost everywhere in \mathbb{R}^n possesses at least one solution.

2. Existence theorems

Keep the notation of Section 1 and set $\hat{q} = \frac{np}{n-q(n-2p)}$ if $q \in (0, \frac{n}{n-2p})$. The main result of the present paper is the following.

Theorem 2.1. Let f be a real-valued function defined on $\mathbb{R}^n \times \mathbb{R}$. Suppose the following:

- **(b**₁) $f(\cdot, z)$ is measurable for all $z \in \mathbb{R}$.
- (**b**₂) $f(x, \cdot)$ is continuous for almost every $x \in \mathbb{R}^n$.
- (b₃) There exist $\alpha \in L^p(\mathbb{R}^n)$, $q \in (0, \frac{n}{n-2p})$, and $\beta \in L^{\hat{q}}(\mathbb{R}^n)$ such that

$$|f(x,z)| \le \alpha(x) + \beta(x) |z|^q \tag{3}$$

for almost all $x \in \mathbb{R}^n$ and each $z \in \mathbb{R}$. Furthermore, when both $\|\beta\|_{\hat{q}} > 0$ and $q \ge 1$, it results $a\|G\|\|\beta\|_{\hat{q}} < 1$ or

$$\|\alpha\|_{p} \leq \frac{q-1}{q} \left(\frac{1}{q(a\|G\|)^{q}}\|\beta\|_{\hat{q}}\right)^{\frac{1}{q-1}}$$
(4)

according to whether q = 1 or q > 1.

Then the equation $-\Delta u = f(x, u)$ in \mathbb{R}^n has at least one solution $u \in \hat{H}^{2,p}_0(\mathbb{R}^n)$, which turns out non-negative provided f is so.

Proof. Define, for every $v \in L^p(\mathbb{R}^n)$,

$$T(v)(x) = f(x, G(v)(x)) \qquad (x \in \mathbb{R}^n).$$

Assumptions (b₁) and (b₂) guarantee that the function T(v) is measurable; hypethesis (b₃) combined with the Hölder inequality [3: p. 57/Remarque 2] immediately lead to $T(v) \in L^p(\mathbb{R}^n)$. Therefore, $T: L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$.

Let us first show that there exists r > 0 fulfilling $T(K_r) \subseteq K_r$ where

$$K_{\rho} := \{ v \in L^{p}(\mathbb{R}^{n}) : \|v\|_{p} \le \rho \} \qquad (\rho > 0).$$

If $v \in K_{\rho}$, then by (3), the Hölder inequality and assertion (a₃) of Section 1 we get

$$|T(v)||_{p} \leq ||\alpha||_{p} + ||\beta||_{\hat{q}} ||G(v)||_{p^{**}}^{q}$$

$$\leq ||\alpha||_{p} + (a|G(v)|_{2,p})^{q} ||\beta||_{\hat{q}}$$

$$\leq ||\alpha||_{p} + (a||G||)^{q} ||\beta||_{\hat{q}} \rho^{q}.$$
(5)

Thus, when q < 1 the conclusion follows at once from

$$\lim_{\rho \to +\infty} \left(\|\alpha\|_p + (a\|G\|)^q \|\beta\|_{\hat{q}} \rho^q - \rho \right) = -\infty$$

whereas for q = 1 it is a simple consequence of the hypothesis $a \|G\| \|\beta\|_{\hat{q}} < 1$. Suppose next q > 1 and $\|\beta\|_{\hat{q}} > 0$, and set

$$r = \left(\frac{1}{q(a\|G\|)^q \|\beta\|_{\hat{q}}}\right)^{\frac{1}{q-1}}.$$
(6)

Using (4) - (6) yields

$$||T(v)||_p \le \frac{q-1}{q}r + (a||G||)^q ||\beta||_{\hat{q}} r^q = r,$$

namely $T(v) \in K_r$. Since v was arbitrary, $T(K_r) \subseteq K_r$.

We now claim that the function $T|_{K_r}$ has a weakly sequentially closed graph. To prove this, pick two sequences $\{v_h\}, \{w_h\} \subseteq K_r$ satisfying the conditions

$$w_h = T(v_h) \quad (h \in \mathbb{N}), \qquad \lim_{h \to \infty} v_h = v, \qquad \lim_{h \to \infty} w_h = w \text{ weakly in } L^p(\mathbb{R}^n).$$
 (7)

Evidently, K_r is convex, closed, and bounded. Owing to the reflexivity of $L^p(\mathbb{R}^n)$, it turns out weakly (sequentially) compact. Hence, $v, w \in K_r$. The properties of Gguarantee that $\lim_{h\to\infty} G(v_h) = G(v)$ weakly in $\hat{H}_0^{2,p}(\mathbb{R}^n)$. Because of Lemma 1.1, and taking a subsequence if necessary, we obtain $\lim_{h\to\infty} G(v_h)(x) = G(v)(x)$ at almost all points $x \in \mathbb{R}^n$. Therefore, by assumptions (b₁) and (b₂), the sequence $\{T(v_h)\}$ converges almost everywhere in \mathbb{R}^n to T(v). Since $\{T(v_h)\} \subseteq K_r$, combining [7: Theorem 13.44] with (7) produces w = T(v).

We have thus proved that $T|_{K_r}$ satisfies the hypotheses of Lemma 1.3. So, there exists $v \in K_r$ such that v = T(v). The function u := G(v) lies in $\hat{H}_0^{2,p}(\mathbb{R}^n)$ and one has $-\Delta u(x) = f(x, u(x))$ for almost all $x \in \mathbb{R}^n$. Finally, if f is non-negative, then due to Lemma 1.2 the same holds regarding the solution $u \blacksquare$

The next result treats the case when $(x, z) \mapsto f(x, z)$ is bounded, but not necessarily continuous, with respect to z. Write, for $(x, z) \in \mathbb{R}^n \times \mathbb{R}$,

$$\underline{f}(x,z) = \lim_{\delta \to 0^+} \inf_{|\zeta - z| \le \delta} f(x,\zeta) \quad \text{ and } \quad \overline{f}(x,z) = \lim_{\delta \to 0^+} \sup_{|\zeta - z| \le \delta} f(x,\zeta).$$

It is a simple matter to check that $\underline{f}(x, \cdot)$ and $\overline{f}(x, \cdot)$ are, respectively, lower semicontinuous and upper semicontinuous.

Theorem 2.2. Suppose the function $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ satisfies assumption (b_3) of Theorem 2.1 with $\beta = 0$ and, moreover,

(**b**₄) the set $\{z \in \mathbb{R} : \underline{f}(\cdot, z), \overline{f}(\cdot, z) \text{ are measurable}\}\$ is dense in \mathbb{R} .

Then there exists $u \in \hat{H}^{2,p}_0(\mathbb{R}^n)$ such that

$$\underline{f}(x, u(x)) \le -\Delta u(x) \le \overline{f}(x, u(x)) \qquad \text{for almost every } x \in \mathbb{R}^n.$$
(8)

Furthermore, the function u turns out non-negative provided f is so.

Proof. Let us verify briefly the hypotheses of Lemma 1.4. To this end, choose $U = \hat{H}_0^{2,p}(\mathbb{R}^n), \Phi(u) = u$ and $\Psi(u) = -\Delta u$ $(u \in U)$ as well as $F(x, z) = [\underline{f}(x, z), \overline{f}(x, z)]$ for all $(x, z) \in \mathbb{R}^n \times \mathbb{R}$. We already know that the operator Ψ is bijective while Ψ^{-1} is linear and continuous. Hence, by Lemma 1.1, condition (i₁) in Lemma 1.4 holds. Using assumption (b₄), [10: Proposition 1.1], and [8: Corollary 4.2] we then easily realize that the multifunction F complies with (i₂). Since a standard argument (vide for instance [4: Example 1.3]) yields (i₃), while (i₄) comes immediately from the inequality $|f(x,z)| \leq \alpha(x) \quad ((x,z) \in \mathbb{R}^n \times \mathbb{R})$, all the hypotheses of Lemma 1.4 are fulfilled. Thus, there exists a function $u \in \hat{H}_0^{2,p}(\mathbb{R}^n)$ such that $-\Delta u(x) \in F(x, u(x))$ almost everywhere in \mathbb{R}^n , which leads to (8).

Finally, when f is non-negative, so is \underline{f} and, through Lemma 1.2, we obtain $u(x) \ge 0$ for all $x \in \mathbb{R}^n \blacksquare$

Remark 2.1. Functions satisfying (8) are usually called 'solutions in the multivalued sense' to the equation $-\Delta u = f(x, u)$ ($x \in \mathbb{R}^n$). Evidently, each solution turns out also a solution in the multi-valued sense, whereas the converse is not true in general, unless further conditions are imposed. One of them is the following.

(b₅) There exists $\Omega_0 \subseteq \mathbb{R}^n$ with $|\Omega_0| = 0$ such that the set

$$D_f = \bigcup_{x \in \mathbb{R}^n \setminus \Omega_0} \left\{ z \in \mathbb{R} : f(x, \cdot) \text{ is discontinuous at } z \right\}$$

has measure zero. Moreover, for almost every $x \in \mathbb{R}^n$ and each $z \in D_f$, the inequality $f(x,z) \leq 0 \leq \overline{f}(x,z)$ implies f(x,z) = 0.

To show this, let us first note that if $u \in \hat{H}_0^{2,p}(\mathbb{R}^n)$, then $u \in W^{2,p}(B_r)$ for any r > 0and consequently, by [11: Proposition 2.1], $\Delta u(x) = 0$ at almost all points $x \in u^{-1}(D_f)$. Now, suppose $u \in \hat{H}_0^{2,p}(\mathbb{R}^n)$ complies with (8). Exploiting the same technique employed in the proof of [11: Theorem 3.1] we easily infer that u also solves the equation $-\Delta u = f(x, u)$ in \mathbb{R}^n .

Several functions f enjoy properties (b₄) and (b₅). Here are two typical examples.

Example 2.1. Let $f(x, z) = \alpha(x)g(z)$ $((x, z) \in \mathbb{R}^n \times \mathbb{R})$ where $\alpha \in L^p(\mathbb{R}^n)$ while $g : \mathbb{R} \to \mathbb{R}$ has a finite variation and a positive infimum on \mathbb{R} . If $\alpha(x) \ge 0$ for almost every $x \in \mathbb{R}^n$, then the function f fulfils the above-mentioned conditions. Indeed, (b₄) follows immediately from

$$\underline{f}(x,z) = \alpha(x) \lim_{\delta \to 0^+} \inf_{|\zeta - z| \le \delta} g(\zeta), \qquad \overline{f}(x,z) = \alpha(x) \lim_{\delta \to 0^+} \sup_{|\zeta - z| \le \delta} g(\zeta). \tag{9}$$

Since $D_f = \{z \in \mathbb{R} : g \text{ is discontinuous at } z\}$, the set D_f is countable and so $|D_f| = 0$. Taking account of the assumption $\inf_{z \in \mathbb{R}} g(z) > 0$ besides (9), it is a simple matter to see that for almost all $x \in \mathbb{R}^n$ and each $z \in D_f$ the inequality $\underline{f}(x, z) \leq 0 \leq \overline{f}(x, z)$ forces $\alpha(x) = 0$, namely f(x, z) = 0. Therefore, (b₅) turns out true too.

Example 2.2. Pick $y^* > 0$ and choose a bounded sequence $\{y_h\} \subseteq \mathbb{R}$ satisfying

$$\inf_{h\in\mathbb{N}} y_h > 0, \qquad y^* \notin \left[\inf_{h\in\mathbb{N}} y_h, \sup_{h\in\mathbb{N}} y_h\right].$$
(10)

Moreover, denote by C a non-empty closed subset of \mathbb{R} such that |C| = 0; as an example, C could be the Cantor 'middle thirds' set, which is uncountable. The set $\mathbb{R} \setminus C$ is non-empty and open. Hence, it has at most countably many connected (open) components A_h $(h \in \mathbb{N})$. We define, for every $(x, z) \in \mathbb{R}^n \times \mathbb{R}$, $f(x, z) = \alpha(x)g(z)$, where $\alpha \in L^p(\mathbb{R}^n)$, $\alpha(x) \geq 0$ at almost all points of \mathbb{R}^n , and

$$g(z) = \begin{cases} y_h & \text{if } z \in A_h \ (h \in \mathbb{N}) \\ y^* & \text{if } z \in C. \end{cases}$$

The function f complies with assertions (b₄) and (b₅). In fact, owing to (9), condition (b₄) holds. Elementary arguments, mainly based upon the identity $D_f = C$ and (10), then yield assertion (b₅).

Remark 2.2. Let $p \in (1, +\infty)$ and let Ω be a non-empty, bounded, open subset of \mathbb{R}^n . According to [14: Chapter III], denote by $\hat{H}^{2,p}(\mathbb{R}^n;\Omega)$ the space of all (equivalence classes of) measurable functions $u : \mathbb{R}^n \to \mathbb{R}$ such that, for $1 \leq i, j \leq n$,

$$u, \frac{\partial u}{\partial x_i} \in L^p_{loc}(\mathbb{R}^n), \qquad \int_{\Omega} u(x) \, dx = \int_{\Omega} \frac{\partial u(x)}{\partial x_i} \, dx = 0, \qquad \frac{\partial^2 u}{\partial x_i \partial x_j} \in L^p(\mathbb{R}^n).$$

Arguing as before, but using in [14: Chapter III] Theorems 2.9 and 4.4 instead of Theorems 2.21 and 4.6, respectively, it is possible to show that, provided the space $\hat{H}_0^{2,p}(\mathbb{R}^n)$ is replaced by $\hat{H}^{2,p}(\mathbb{R}^n;\Omega)$, both Theorem 2.1, with $\beta = 0$, and Theorem 2.2 remain true for any $p \in (1, +\infty)$. However, whenever $p \geq \frac{n}{2}$, these results do not give informations about the sign of solutions.

Acknowledgments. The author wishes to thank the anonymous referees for many stimulating comments.

References

- Arino, O., Gautier, S. and J. P. Penot: A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations. Funkcial. Ekvac. 27 (1984), 273 - 279.
- [2] Averna, D. and S. A. Marano: Existence theorems for inclusions of the type $\Psi(u)(t) \in F(t, \Phi(u)(t))$. Appl. Anal. 72 (1999), 449 458.
- [3] Brézis, H.: Analyse Fonctionnelle Théorie et Applications. Paris: Masson 1983.
- [4] Deimling, K.: Multivalued Differential Equations (de Gruyter Ser. Nonlin. Anal. Appl.: Vol. 1). Berlin: de Gruyter 1992.
- [5] Dautray, R. and J. L. Lions: Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4. Berlin: Springer-Verlag 1990.
- [6] Drábek, P. and C. G. Simader: Nonlinear eigenvalue problems for quasilinear equations in unbounded domains. Math. Nachr. 203 (1999), 5 – 30.
- [7] Hewitt, E. and K. Stromberg: Real and Abstract Analysis. Berlin: Springer-Verlag 1969.
- [8] Himmelberg, C. J.: Measurable relations. Fund. Math. 87 (1975), 53 72.
- [9] Huang, Y.: On multiple solutions of quasilinear equations involving the critical Sobolev exponent. J. Math. Anal. Appl. 231 (1999), 142–160.
- [10] Marano, S. A.: Existence theorems for a semilinear elliptic boundary value problems. Ann. Polon. Math. 60 (1994), 57 – 67.
- [11] Marano, S. A.: Elliptic boundary-value problems with discontinuous nonlinearities. Set-Valued Anal. 3 (1995), 167 – 180.
- [12] Miranda, C.: Istituzioni di Analisi Funzionale Lineare, Vol. I. Unione Matematica Italiana 1978.
- [13] Pichorides, S. K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math. 44 (1972), 165 – 179.
- [14] Simader, C. G. and H. Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains (Pitman Res. Notes Math. Ser.: Vol. 360). Harlow: Longman 1996.
- [15] Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110 (1976), 353 - 372.

Received 15.07.1999; in revised form 16.11.1999