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Existence Results
for the Equation −∆u = f(x, u) in Rn

S. A. Marano

Abstract. Strong solutions to the class of semilinear elliptic equations −∆u = f(x, u) on the
entire space and with possibly supercritical growth for f(x, ·) are obtained by mainly using
fixed points arguments. The case of discontinuous non-linearities is then examined.
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0. Introduction

Let n be a positive integer, n ≥ 3, and let p ∈ (1, n
2 ). According to [14], write p∗ = np

n−p

and p∗∗ = np
n−2p , and denote by Ĥ2,p

0 (Rn) the space of all u ∈ Lp∗∗(Rn) such that
uxi ∈ Lp∗(Rn) and uxixj ∈ Lp(Rn) (1 ≤ i, j ≤ n) where, as usual, derivatives are
understood in weak sense.

Given a function f : Rn ×R→ R satisfying the standard Carathéodory conditions,
consider the semilinear elliptic problem

u ∈ Ĥ2,p
0 (Rn), −∆u = f(x, u) in Rn. (P1)

Equations of the above type have been widely investigated in the last decade, for the
most part through variational techniques and often assuming that z 7→ f(x, z) has a
subcritical growth or is of a very special form. Let us mention the recent papers [6,
9] as a general reference on the subject. A different approach, which chiefly employs
fixed point arguments, is taken here. Indeed, exploiting the bijectivity of the operator
−∆ : Ĥ2,p

0 (Rn) → Lp(Rn) (see [14: Chapter III]), we first reduce problem (P1) to the
following

v ∈ Lp(Rn), v = f(x,G(v)) in Rn (P2)

where G = (−∆)−1. Next, we apply a simple result (Lemma 1.1) concerning the
weak convergence of sequences in the space Ĥ2,p

0 (Rn) together with a modified version
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(Lemma 1.3) of the classical Schauder-Tychonoff fixed point theorem to solve problem
(P2). This method yields hypotheses on the non-linearity f that are rather different from
those usually adopted; vide Theorem 2.1 below. As an example, no subcritical growth
condition for f(x, ·) is required, but only that the growth rate turn out less than p∗∗

p .
Such exponent is obviously greater than the critical one (namely, p∗) every time that
n ≤ 5 or n > 5 and p > 1

4 (n + 1 +
√

n2 − 6n + 1). For the sake of completeness we then
examine, in Theorem 2.2 and Remark 2.1, the case when the function (x, z) 7→ f(x, z)
is bounded, but not necessarily continuous, with respect to z. Finally, the existence of
non-negative solutions is also investigated through a representation formula (proved in
Lemma 1.2) for the linear equation corresponding to problem (P1).

1. Preliminaries

Let n be a positive integer, n ≥ 3. Given a number r > 0, the symbol Br indicates
the open ball in Rn of radius r centered at zero. Moreover, ‘measurable’ always means
Lebesgue measurable and |E| stands for the measure of the set E.

Now, let p ∈ (1, n
2 ). Write p∗ = np

n−p and p∗∗ = np
n−2p , and denote by Ĥ2,p

0 (Rn) the
space of all u ∈ Lp∗∗(Rn) such that

∂u

∂xi
∈ Lp∗(Rn) and

∂2u

∂xi∂xj
∈ Lp(Rn) (1 ≤ i, j ≤ n)

where, as usual, derivatives are understood in weak sense. If u ∈ Ĥ2,p
0 (Rn), define

|u|2,p =

(
n∑

i,j=1

∥∥∥ ∂2u

∂xi∂xj

∥∥∥
p

p

) 1
p

.

Owing to [14: Chapter III/Theorem 2.21], the following assertions hold:

(a1) (Ĥ2,p
0 (Rn), | · |2,p) is a reflexive Banach space.

(a2) C∞0 (Rn) turns out dense in (Ĥ2,p
0 (Rn), | · |2,p).

(a3) There exists a > 0 satisfying ‖u‖p∗∗ + ‖∇u‖p∗ ≤ a |u|2,p for all u ∈ Ĥ2,p
0 (Rn).

Remark 1.1. Indicate with cq (1 ≤ q < n) the best value of the constant that
appears in Sobolev’s inequality [3: Theorem IX.9]. It is possible to set a = cp(1 +
cp∗)n

1
p∗ , as a simple computation shows. Thus, since cq is known [15: Theorem], the

same holds regarding a.

Lemma 1.1. If u ∈ Ĥ2,p
0 (Rn), {uh} ⊆ Ĥ2,p

0 (Rn), and limh→∞ uh = u weakly in
Ĥ2,p

0 (Rn), then {uh} has a subsequence which converges almost everywhere in Rn to the
function u.

Proof. From assertion (a3) we easily infer that {uh} is bounded in W 1,p∗(Br) for
any r > 0. Pick r = 1. Using the Rellich-Kondrachov theorem [3: Theorem IX.16]
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yields a subsequence {u(1)
h } of {uh} such that limh→∞ u

(1)
h (x) = u(x) at almost all

points x ∈ B1. We now apply this argument again, with 1 replaced by 2, to obtain
a subsequence {u(2)

h } of {u(1)
h } satisfying limh→∞ u

(2)
h (x) = u(x) almost everywhere in

B2. And so on. The sequence {u(h)
h } clearly complies with the conclusion

By assertion (a2) and the Calderón-Zygmund inequality [5: p. 413/Corollary 2]
there exists b > 0 such that |u|2,p ≤ b ‖∆u‖p for all u ∈ Ĥ2,p

0 (Rn). Since, owing to
[14: Chapter III/Theorem 4.6], the operator −∆ : Ĥ2,p

0 (Rn) → Lp(Rn) is a continuous
bijection, the inverse operator G = (−∆)−1 turns out linear, bijective, and continuous.
Moreover, bearing in mind the preceding inequality, ‖G‖ ≤ b.

Remark 1.2. The constant b can be explicitly estimated. Indeed, it is related to
the norm of M. Riesz’s transformation in Lp(Rn), which has been evaluated in [13: p.
177 – 180].

Lemma 1.2. For every v ∈ Lp(Rn) one has

G(v)(x) =
1

n(n− 2) ωn

∫

Rn

v(y)
|x− y|n−2

dy (x ∈ Rn)

where ωn indicates the volume of the unit ball in Rn.

Proof. From [12: Theorem 71.II] it follows that G(v) ∈ Lp∗∗(Rn). Define, whenever
1 ≤ i ≤ n,

wi(x) = − 1
nωn

∫

Rn

(xi − yi)v(y)
|x− y|n dy (x ∈ Rn).

[12: Theorem 72.I] produces wi ∈ Lp∗(Rn), while [12: Theorem 77.III] leads to ∂wi

∂xj
∈

Lp(Rn) (1 ≤ j ≤ n). Let {vh} ⊆ C∞0 (Rn) satisfy

lim
h→∞

‖vh − v‖p = 0 (1)

and let

uh(x) :=
1

n(n− 2)ωn

∫

Rn

vh(y)
|x− y|n−2

dy (h ∈ N, x ∈ Rn). (2)

Through the above-mentioned results we also get limh→∞ ‖uh − G(v)‖p∗∗ = 0 as well
as limh→∞ ‖∂uh

∂xi
− wi‖p∗ = 0. Now, if φ ∈ C∞0 (Rn), one has

〈∂G(v)
∂xi

, φ
〉

= − lim
h→∞

∫

Rn

uh(x)
∂φ(x)
∂xi

dx = lim
h→∞

∫

Rn

∂uh(x)
∂xi

φ(x) dx = 〈wi, φ〉,

namely ∂G(v)
∂xi

= wi for all i. Consequently, G(v) ∈ Ĥ2,p
0 (Rn).

To achieve the conclusion we note that, by the Calderón-Zygmund inequality and
the completeness of Lp(Rn), for any fixed i, j ∈ {1, 2, . . . , n} the sequence { ∂2uh

∂xi∂xj
}

converges in Lp(Rn) to a function wij , while arguing as before yields ∂2G(v)
∂xi∂xj

= wij .
Therefore, because of (1) and (2), −∆G(v)(x) = v(x) at almost all x ∈ Rn
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Remark 1.3. Owing to the preceding lemma, the conditions u ∈ Ĥ2,p
0 (Rn) and

∆u(x) ≤ 0 almost everywhere in Rn imply u(x) ≥ 0 (x ∈ Rn).

The next useful version [1: Theorem 1] of the classical Schauder-Tychonoff fixed
point theorem will applied.

Lemma 1.3. Let X be a metrizable locally convex topological vector space and let K
be a non-empty, weakly compact, convex subset of X. Suppose T : K → K is a function
with weakly sequentially closed graph. Then there exists x0 ∈ K such that x0 = T (x0).

We shall also employ the following result, which represents a very special case of
[2: Theorem 3.1]. As usual, M(Rn) denotes the family of all (equivalence classes of)
measurable functions w : Rn → R; a multifunction F from Rn into R is called measurable
provided for each open set A ⊆ R the set {x ∈ Rn : F (x) ∩ A 6= ∅} is measurable; we
say that F has a closed graph if the set {(x, y) ∈ Rn×R : y ∈ F (x)} is closed in Rn×R.

Lemma 1.4. Let U be a non-empty set, let Φ : U → M(Rn) and Ψ : U → Lp(Rn)
be two operators, let F be a multifunction from Rn×R into R with non-empty, convex,
closed values. Assume the following:

(i1) Ψ is bijective and, whenever limh→∞ vh = v weakly in Lp(Rn), there exists a
subsequence of {Φ(Ψ−1(vh))} which converges to Φ(Ψ−1(v)) at almost all points
of Rn.

(i2) The set {z ∈ R : F (·, z) is measurable} is dense in R.
(i3) F (x, ·) has a closed graph for almost every x ∈ Rn.
(i4) There exists a function m ∈ Lp(Rn) such that F (x, z) ⊆ [−m(x),m(x)] for

almost all x ∈ Rn and each z ∈ R.

Then the problem u ∈ U,Ψ(u)(x) ∈ F (x, Φ(u)(x)) almost everywhere in Rn possesses at
least one solution.

2. Existence theorems

Keep the notation of Section 1 and set q̂ = np
n−q(n−2p) if q ∈ (0, n

n−2p ). The main result
of the present paper is the following.

Theorem 2.1. Let f be a real-valued function defined on Rn × R. Suppose the
following:

(b1) f(·, z) is measurable for all z ∈ R.
(b2) f(x, ·) is continuous for almost every x ∈ Rn.
(b3) There exist α ∈ Lp(Rn), q ∈ (0, n

n−2p ), and β ∈ Lq̂(Rn) such that

|f(x, z)| ≤ α(x) + β(x) |z|q (3)

for almost all x ∈ Rn and each z ∈ R. Furthermore, when both ‖β‖q̂ > 0 and
q ≥ 1, it results a‖G‖‖β‖q̂ < 1 or

‖α‖p ≤ q − 1
q

( 1
q(a‖G‖)q‖β‖q̂

) 1
q−1

(4)
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according to whether q = 1 or q > 1.

Then the equation −∆u = f(x, u) in Rn has at least one solution u ∈ Ĥ2,p
0 (Rn), which

turns out non-negative provided f is so.

Proof. Define, for every v ∈ Lp(Rn),

T (v)(x) = f(x,G(v)(x)) (x ∈ Rn).

Assumptions (b1) and (b2) guarantee that the function T (v) is measurable; hypethesis
(b3) combined with the Hölder inequality [3: p. 57/Remarque 2] immediately lead to
T (v) ∈ Lp(Rn). Therefore, T : Lp(Rn) → Lp(Rn).

Let us first show that there exists r > 0 fulfilling T (Kr) ⊆ Kr where

Kρ := {v ∈ Lp(Rn) : ‖v‖p ≤ ρ} (ρ > 0).

If v ∈ Kρ, then by (3), the Hölder inequality and assertion (a3) of Section 1 we get

‖T (v)‖p ≤ ‖α‖p + ‖β‖q̂‖G(v)‖q
p∗∗

≤ ‖α‖p + (a|G(v)|2,p)q‖β‖q̂

≤ ‖α‖p + (a‖G‖)q‖β‖q̂ ρq.

(5)

Thus, when q < 1 the conclusion follows at once from

lim
ρ→+∞

(‖α‖p + (a‖G‖)q‖β‖q̂ρ
q − ρ

)
= −∞

whereas for q = 1 it is a simple consequence of the hypothesis a‖G‖ ‖β‖q̂ < 1. Suppose
next q > 1 and ‖β‖q̂ > 0, and set

r =
( 1

q(a‖G‖)q‖β‖q̂

) 1
q−1

. (6)

Using (4)− (6) yields

‖T (v)‖p ≤ q − 1
q

r + (a‖G‖)q‖β‖q̂ rq = r,

namely T (v) ∈ Kr. Since v was arbitrary, T (Kr) ⊆ Kr.
We now claim that the function T |Kr has a weakly sequentially closed graph. To

prove this, pick two sequences {vh}, {wh} ⊆ Kr satisfying the conditions

wh = T (vh) (h ∈ N), lim
h→∞

vh = v, lim
h→∞

wh = w weakly in Lp(Rn). (7)

Evidently, Kr is convex, closed, and bounded. Owing to the reflexivity of Lp(Rn),
it turns out weakly (sequentially) compact. Hence, v, w ∈ Kr. The properties of G

guarantee that limh→∞G(vh) = G(v) weakly in Ĥ2,p
0 (Rn). Because of Lemma 1.1, and

taking a subsequence if necessary, we obtain limh→∞G(vh)(x) = G(v)(x) at almost all
points x ∈ Rn. Therefore, by assumptions (b1) and (b2), the sequence {T (vh)} converges
almost everywhere in Rn to T (v). Since {T (vh)} ⊆ Kr, combining [7: Theorem 13.44]
with (7) produces w = T (v).

We have thus proved that T |Kr satisfies the hypotheses of Lemma 1.3. So, there
exists v ∈ Kr such that v = T (v). The function u := G(v) lies in Ĥ2,p

0 (Rn) and one has
−∆u(x) = f(x, u(x)) for almost all x ∈ Rn. Finally, if f is non-negative, then due to
Lemma 1.2 the same holds regarding the solution u
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The next result treats the case when (x, z) 7→ f(x, z) is bounded, but not necessarily
continuous, with respect to z. Write, for (x, z) ∈ Rn × R,

f(x, z) = lim
δ→0+

inf
|ζ−z|≤δ

f(x, ζ) and f(x, z) = lim
δ→0+

sup
|ζ−z|≤δ

f(x, ζ).

It is a simple matter to check that f(x, ·) and f(x, ·) are, respectively, lower semicon-
tinuous and upper semicontinuous.

Theorem 2.2. Suppose the function f : Rn × R → R satisfies assumption (b3) of
Theorem 2.1 with β = 0 and, moreover,

(b4) the set
{
z ∈ R : f(·, z), f(·, z) are measurable

}
is dense in R.

Then there exists u ∈ Ĥ2,p
0 (Rn) such that

f(x, u(x)) ≤ −∆u(x) ≤ f(x, u(x)) for almost every x ∈ Rn. (8)

Furthermore, the function u turns out non-negative provided f is so.

Proof. Let us verify briefly the hypotheses of Lemma 1.4. To this end, choose
U = Ĥ2,p

0 (Rn), Φ(u) = u and Ψ(u) = −∆u (u ∈ U) as well as F (x, z) =
[
f(x, z), f(x, z)

]
for all (x, z) ∈ Rn × R. We already know that the operator Ψ is bijective while Ψ−1 is
linear and continuous. Hence, by Lemma 1.1, condition (i1) in Lemma 1.4 holds. Using
assumption (b4), [10: Proposition 1.1], and [8: Corollary 4.2] we then easily realize
that the multifunction F complies with (i2). Since a standard argument (vide for
instance [4: Example 1.3]) yields (i3), while (i4) comes immediately from the inequality
|f(x, z)| ≤ α(x) ((x, z) ∈ Rn×R), all the hypotheses of Lemma 1.4 are fulfilled. Thus,
there exists a function u ∈ Ĥ2,p

0 (Rn) such that −∆u(x) ∈ F (x, u(x)) almost everywhere
in Rn, which leads to (8).

Finally, when f is non-negative, so is f and, through Lemma 1.2, we obtain u(x) ≥ 0
for all x ∈ Rn

Remark 2.1. Functions satisfying (8) are usually called ‘solutions in the multi-
valued sense’ to the equation −∆u = f(x, u) (x ∈ Rn). Evidently, each solution turns
out also a solution in the multi-valued sense, whereas the converse is not true in general,
unless further conditions are imposed. One of them is the following.

(b5) There exists Ω0 ⊆ Rn with |Ω0| = 0 such that the set

Df = ∪x∈Rn\Ω0

{
z ∈ R : f(x, ·) is discontinuous at z

}

has measure zero. Moreover, for almost every x ∈ Rn and each z ∈ Df , the
inequality f(x, z) ≤ 0 ≤ f(x, z) implies f(x, z) = 0.

To show this, let us first note that if u ∈ Ĥ2,p
0 (Rn), then u ∈ W 2,p(Br) for any r > 0

and consequently, by [11: Proposition 2.1], ∆u(x) = 0 at almost all points x ∈ u−1(Df ).
Now, suppose u ∈ Ĥ2,p

0 (Rn) complies with (8). Exploiting the same technique employed
in the proof of [11: Theorem 3.1] we easily infer that u also solves the equation −∆u =
f(x, u) in Rn.

Several functions f enjoy properties (b4) and (b5). Here are two typical examples.
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Example 2.1. Let f(x, z) = α(x)g(z) ((x, z) ∈ Rn × R) where α ∈ Lp(Rn) while
g : R → R has a finite variation and a positive infimum on R. If α(x) ≥ 0 for almost
every x ∈ Rn, then the function f fulfils the above-mentioned conditions. Indeed, (b4)
follows immediately from

f(x, z) = α(x) lim
δ→0+

inf
|ζ−z|≤δ

g(ζ), f(x, z) = α(x) lim
δ→0+

sup
|ζ−z|≤δ

g(ζ). (9)

Since Df = {z ∈ R : g is discontinuous at z}, the set Df is countable and so |Df | = 0.
Taking account of the assumption infz∈R g(z) > 0 besides (9), it is a simple matter to
see that for almost all x ∈ Rn and each z ∈ Df the inequality f(x, z) ≤ 0 ≤ f(x, z)
forces α(x) = 0, namely f(x, z) = 0. Therefore, (b5) turns out true too.

Example 2.2. Pick y∗ > 0 and choose a bounded sequence {yh} ⊆ R satisfying

inf
h∈N

yh > 0, y∗ 6∈ [
infh∈N yh, suph∈N yh

]
. (10)

Moreover, denote by C a non-empty closed subset of R such that |C| = 0; as an example,
C could be the Cantor ‘middle thirds’ set, which is uncountable. The set R \C is non-
empty and open. Hence, it has at most countably many connected (open) components
Ah (h ∈ N). We define, for every (x, z) ∈ Rn×R, f(x, z) = α(x)g(z), where α ∈ Lp(Rn),
α(x) ≥ 0 at almost all points of Rn, and

g(z) =
{

yh if z ∈ Ah (h ∈ N)
y∗ if z ∈ C.

The function f complies with assertions (b4) and (b5). In fact, owing to (9), condition
(b4) holds. Elementary arguments, mainly based upon the identity Df = C and (10),
then yield assertion (b5).

Remark 2.2. Let p ∈ (1,+∞) and let Ω be a non-empty, bounded, open subset of
Rn. According to [14: Chapter III], denote by Ĥ2,p(Rn; Ω) the space of all (equivalence
classes of) measurable functions u : Rn → R such that, for 1 ≤ i, j ≤ n,

u,
∂u

∂xi
∈ Lp

loc(R
n),

∫

Ω

u(x) dx =
∫

Ω

∂u(x)
∂xi

dx = 0,
∂2u

∂xi∂xj
∈ Lp(Rn).

Arguing as before, but using in [14: Chapter III] Theorems 2.9 and 4.4 instead of
Theorems 2.21 and 4.6, respectively, it is possible to show that, provided the space
Ĥ2,p

0 (Rn) is replaced by Ĥ2,p(Rn; Ω), both Theorem 2.1, with β = 0, and Theorem 2.2
remain true for any p ∈ (1, +∞). However, whenever p ≥ n

2 , these results do not give
informations about the sign of solutions.
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[3] Brézis, H.: Analyse Fonctionnelle - Théorie et Applications. Paris: Masson 1983.

[4] Deimling, K.: Multivalued Differential Equations (de Gruyter Ser. Nonlin. Anal. Appl.:
Vol. 1). Berlin: de Gruyter 1992.

[5] Dautray, R. and J. L. Lions: Mathematical Analysis and Numerical Methods for Science
and Technology, Vol. 4. Berlin: Springer-Verlag 1990.
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