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A New Method for
Obtaining Solutions of the Dirac Equation

V. V. Kravchenko

Abstract. The Dirac operator with pseudoscalar, scalar or electric potential and the Schrödin-
ger operator are considered. For any potential depending on an arbitrary function ξ satisfying
the equation

∆ξ − γ(ξ) · dγ(ξ)

dξ
= 0 (∗)

where γ(ξ) = |grad ξ| there are constructed special solutions of the Dirac and the Schrödinger
equations, and in some cases the fundamental solutions are obtained also. The class of solu-
tions of equation (∗) is sufficiently ample. For example, if 1) ξ is harmonic and 2) the gradient
squared of ξ is constant, then ξ satisfies (*). That is, in particular, any complex linear com-
bination of three variables ξ = ax1 + bx2 + cx3 + d satisfies equation (∗), and the solutions
may be obtained for any potential depending on such ξ. All results are obtained using some
special biquaternionic projection operators constructed after having solved an eikonal equation
corresponding to ξ.
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1. Introduction

In this work we consider the following Dirac equations:

a) with pseudoscalar potential

[
γ0∂t −

3∑

k=1

γk∂k + im + γ0γ5g(x)

]
Φ(t, x) = 0 (1)

b) with scalar potential

[
γ0∂t −

3∑

k=1

γk∂k + im + g(x)

]
Φ(t, x) = 0 (2)
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c) with electric potential

[
γ0∂t −

3∑

k=1

γk∂k + im + iγ0g(x)

]
Φ(t, x) = 0 (3)

where the Dirac matrices have the standard (see, e.g., [6, 20]) form

γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 , γ1 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0




γ2 =




0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0


 , γ3 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




γ5 = iγ0γ1γ2γ3 =




0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0




∂t =
∂

∂t
and ∂k =

∂

∂xk
(m ∈ R)

g is a complex-valued function

Φ is a C4 − valued function.

For some class of potentials g we will construct the exact time-harmonic solutions of
these equations, that is solutions of the form

Φ(t, x) = q(x)eiωt

where ω ∈ R and q is a C4-valued function depending on x = (x1, x2, x3). For example,
in the case of pseudoscalar potential (equation (1)) we have the equation for q

Dps
ω,mq(x) :=

[
iωγ0 −

3∑

k=1

γk∂k + im + γ0γ5g(x)

]
q(x) = 0. (4)

Moreover, the obtained solutions will be used for constructing exact solutions of the
Schrödinger equation

∆u(x) + v(x)u(x) = 0. (5)

Finally, some fundamental solutions for the Dirac operators will be constructed also.
There exist dozens of works on exact solutions of relativistic wave equations. The

reader is referred to the encyclopaedic monograph [2] for a bibliography and review of
known exact solutions up to the late 1980s. Let us notice that the method of separation
of variables was always the main tool for obtaining exact solutions of relativistic wave
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equations and here it is substituted by an essentially different technique which takes
into account other characteristics of the potential. That is why the class of potentials
considered in this work is so different from the potentials for which there were known
exact solutions.

Of course, the main question is for which potentials g from (1) - (3) and v from (5)
we are able to realize the program described above. The definition of such a class of
potentials will be introduced with all necessary details in Section 4. Here we describe
it not rigorously.

Let us consider formally the equation

∆ξ − γ(ξ) · γ′(ξ) = 0 (6)

where γ(ξ) = |grad ξ|. Equation (6) has an ample class of solutions. For instance, if

1) ∆ξ = 0

2) (grad ξ)2 = C2 (C ∈ C constant),

then ξ satisfies equation (6). In particular, any linear combination of three variables
ξ = ax1 + bx2 + cx3 + d, where a, b, c, d ∈ C are arbitrary constants, satisfies conditions
1) and 2), and consequently (6) also. Moreover, we can say the same about any function
ξ(x) = ζ(z) + c x3, where ζ(z) is an arbitrary analytic function of the complex variable
z = x1 + ix2. In Section 4 we prove also a quite curious proposition which gives an idea
about the largeness of the Ξ-class.

All the technique described in the present article works perfectly for potentials g
and v being arbitrary functions of ξ which in its turn satisfies equation (6), that is, for
g = g(ξ(x)) and v = v(ξ(x)) we will obtain solutions of equations (1) - (3) and (5).

It should be emphasized that even for ξ = x1, that is, for potentials depending only
on x1, the results of this work are not trivial and can not be obtained by other known
methods.

The main tool of this work are some specially constructed biquaternionic projec-
tion operators which in some sense allow us to reduce the problem to a simpler one.
To develop all this technique we need to rewrite the Dirac equations (1) - (3) in the
corresponding biquaternionic form. This is done in Section 2 with the help of a quite
simple matrix transformation introduced in [11] (see also [14] and [15: Section 12]).
The obtained iquaternionic “images” of equations (1) - (3) have some differences re-
lated with the different positions of potentials in (1) - (3). So we show in Section 3 how
with the aid of some additional tricks they can be reduced to the same biquaternionic
equation. Then we introduce the projection operators corresponding to this biquater-
nionic equation. The construction of projection operators is based on the solution of
an eikonal equation. In Section 4 we define the above mentioned class of combinations
ξ of independent variables which we call Ξ-class, and in all following sections we work
with potentials depending on ξ ∈ Ξ. In Section 5 we obtain solutions of the Dirac equa-
tion in quaternionic form which then are used in Section 6 to obtain solutions of the
Schrödinger equation. The solution of the multi-dimensional Schrödinger equation is re-
duced, in the sense which will become clear later, to the solution of the ordinary Riccati
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equation. In Section 7 we discuss the possibility of factorization of the Schrödinger op-
erator. We show that this problem is equivalent to the finding of one particular solution
of the Schrödinger equation and therefore for the class of potentials under consideration.
Using the results of Section 6, it is a solved problem when it is possible to solve the
corresponding Riccati equation. In Section 8 we consider the possibility of application
of the technique described in the preceding sections to the problem of construction of
fundamental solutions. Here only the case of linear combination of independent vari-
ables ξ = ax1 + bx2 + cx3 + d is discussed. In Section 9 we show how the solutions
of the quaternionic images of Dirac equations can be transformed into solutions of the
Dirac equations in traditional form (1) - (3). We consider in detail only the case of
pseudoscalar potential – for the scalar and electric potentials the procedure is similar
to that for the pseudoscalar potential.

This work is a continuation of the article [12], where the technique of biquaternionic
projection operators based on the solution of eikonal equation was proposed for the first
time, as well as of the paper [13], where it was applied to the Dirac equations (1) - (3)
with harmonic potentials g the gradients squared of which are constant. In the present
article we considerably enlarge the class of potentials which can be treated using the new
technique and obtain also solutions of the Schrödinger equation. Nevertheless, the work
[13] is recommended as a more detailed description of the procedure of transformation
of the solutions of the Dirac equation in quaternionic form into solutions of equations
(1) - (3). It also contains the explanation why the tool of complex quaternions was
chosen for the analysis of the Dirac equation.

2. Preliminaries

We denote by H(C) the algebra of complex quaternions (= biquaternions). The elements
of H(C) are represented in the form ρ =

∑3
k=0 ρkik, where ρk ∈ C, i0 is the unit and

i1, i2, i3 are standard quaternionic imaginary units: i21 = i22 = i23 = −1 and i1i2 =
−i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2. We denote the imaginary unit in
C by i as usual. By definition, i commutes with ik (k = 0, . . . , 3). We will use also
the vector representation of ρ ∈ H(C): ρ = Sc(ρ) + Vec(ρ), where Sc(ρ) = ρ0 and
Vec(ρ) = ~ρ =

∑3
k=1 ρkik. The complex quaternions of the form ρ = ~ρ are called purely

vectorial and identified with vectors from C3. The quaternion ρ = ρ0 − ~ρ is called
conjugate to ρ.

Let us denote by S the set of zero divisors from H(C). Note that

ρ ∈ S ⇐⇒ ρρ = 0 ⇐⇒ ρ2 = 2ρ0ρ ⇐⇒ ρ2
0 = (~ρ )2 (7)

(see [15: p. 28]). As usual, zero is not included to S.
We will consider H(C)-valued functions given in a domain Ω ⊂ R3. On the set

C1(Ω;H(C)) the well-known Moisil-Theodoresco operator D is defined by the expression
D =

∑3
k=1 ik∂k. It was introduced in [16, 17] (see also, e.g., [5, 7 - 9]). The equation

Df = 0 is equivalent to the system

div ~f = 0

grad f0 + rot ~f = 0

}
.
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The following Leibniz rule holds (see, e.g., [9: p. 24] and [15: p. 63]): Let {f, g} ⊂
C1(Ω;H(C)). Then

D[f · g] = D[f ] · g + f̄ ·D[g] + 2(Sc(fD))[g] (8)

where (Sc(fD))[g] = −∑3
k=1 fk∂kg. Note that if f ≡ f0 (Vec (f) ≡ 0), then D[f0 ·g] =

grad f0 · g + f0 ·D[g] where grad f0 = i1∂1f0 + i2∂2f0 + i3∂3f0.
Let us introduce the integral operator

(Tf)(x) =
∫

Ω

K(x− y)f(y) dΩy (x ∈ R3)

which is the analog corresponding to D of the complex T -operator. HereK(x) = − ~x
4π|x|3 .

For any f ∈ C1(Ω) ∩ C(Ω) we have DTf = f in Ω (see, e.g., [9: Chapter 2]).

Denote q̃(x) = q(x1, x2,−x3). The domain Ω̃ is assumed to be obtained from the
domain Ω ⊂ R3 by the reflection x3 → −x3. In [11] (see also [14] and [15: Section 12])
a map A was introduced which transforms a function q : Ω̃ ⊂ R3 → C4 into a function
ρ : Ω ⊂ R3 → H(C) by the rule

ρ = A[q] :=
1
2

[
− (q̃1 − q̃2)i0 + i(q̃0 − q̃3)i1 − (q̃0 + q̃3)i2 + i(q̃1 + q̃2)i3

]
.

Note that A is a C-linear transformation. The corresponding inverse transformation is
defined by the equality

A−1[ρ] =
(
− iρ̃1 − ρ̃2,−ρ̃0 − iρ̃3, ρ̃0 − iρ̃3, iρ̃1 − ρ̃2

)
.

The transformations A and A−1 may be represented in matrix form by

ρ = A[q] =
1
2




0 −1 1 0
i 0 0 −i
−1 0 0 −1
0 i i 0







q̃0

q̃1

q̃2

q̃3




and

q = A−1[ρ] =




0 −i −1 0
−1 0 0 −i
1 0 0 −i
0 i −1 0







ρ̃0

ρ̃1

ρ̃2

ρ̃3


 .

We will need some algebraic properties of this pair of transforms shown in [14]:

1. Aγ1γ2γ3γ1A−1[ρ] = i1ρ

2. Aγ1γ2γ3γ2A−1[ρ] = i2ρ

3. Aγ1γ2γ3γ3A−1[ρ] = −i3ρ

4. Aγ1γ2γ3γ0A−1[ρ] = ρi1

5. Aγ1γ2γ3A−1[ρ] = −iρi2.
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Let us consider the biquaternionic operator

Rps
α = D − ig̃(x)I + Mα

where I is the identity operator, Mα is the operator of multiplication by the complex
quaternion α from the right-hand side: Mαf = fα and α = −(iωi1 + mi2). The
operator Rps

α is equivalent to the operator Dps
ω,m due to the equality

Rps
α = −Aγ1γ2γ3Dps

ω,mA−1. (9)

The proof of this equality is a direct corollary of the algebraic properties 1 - 5 of the
transformation A. In other words, a function q belongs to kerDps

ω,m(Ω) if and only if
u := A[q] ∈ kerRps

α (Ω̃).
Similar equalities we obtain for the operators

Dsc
ω,m = iωγ0 −

3∑

k=1

γk∂k + im + g(x)

Del
ω,m = iωγ0 −

3∑

k=1

γk∂k + im + iγ0g(x).

Namely,

Rsc
α = −Aγ1γ2γ3Dsc

ω,mA−1 where (Rsc
α = D + M ig̃(x)i2 + Mα) (10)

Rel
α = −Aγ1γ2γ3Del

ω,mA−1 where (Rel
α = D + M−ig̃(x)i1 + Mα). (11)

3. Projection operators

In the first part of this section we will show how the operators Rps
α , Rsc

α , Rel
α can be

reduced to the operator D − f0I where f0 is a scalar function. Then for the operator
D − f0I we will construct a corresponding pair of projection operators Q+ and Q−

which will be used in the following sections.
First, let us consider the Dirac operator with pseudoscalar potential in quaternionic

form Rps
α with the additional condition ω2 6= m2. In order to “remove” the term Mα

from Rps
α we will apply the following scheme. We will associate with the vector α a

scalar γ the square of which is equal to α2. This scalar γ will “substitute” the vector
α in the differential equation. The “missing information” on the vector α will be saved
in some special projection operators P± which will establish the necessary relationship
between the original equation containing the vector α and the new one in which α is
substituted by the scalar γ.

Thus, we denote by γ any complex square root from α2: γ2 = α2. Let us consider
the pair of mutually complementary projection operators

P± =
1
2γ

M (γ±α) (12)
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acting on the set of H(C)-valued functions. The operators P+ and P− obviously com-
mute with the operator Rps

α but the most important fact is that

P±Mα =
1
2γ

M (γα±α2) =
1
2γ

M (γα±γ2) = ±γP±.

That is, the projection operators P± transform the vector α into the scalars ±γ and
vice versa. Then the operator Rps

α can be rewritten in the form

Rps
α = P+

(
D + (−ig̃(x) + γ)I

)
+ P−

(
D + (−ig̃(x)− γ)I

)
. (13)

Consequently, u ∈ kerRps
α if and only if u = P+u+ + P−u− where u+ and u− satisfy

the equations
(
D + (−ig̃(x) + γ)

)
u+(x) = 0 (14)(

D + (−ig̃(x)− γ)
)
u−(x) = 0. (15)

Each of these equations is of the form

(D − f0(x))u(x) = 0. (16)

Thus, the equation
Rps

α u = 0 (17)

is reduced to equation (16). The same scheme using some special projection operators
converting vectors into scalars and vice versa we will use many times in this article.

Now let us consider the case ω2 = m2. This equality is equivalent to the inclusion
α ∈ S for α = −(iωi1 + mi2). Note that if v ∈ ker (D − ig̃I), then the function u = vα
belongs to kerRps

α . Thus, in this case also for obtaining exact solutions of equation (17)
we can consider an equation of form (16). Of course, not any solution u of equation (17)
can be represented in the form u = vα where v ∈ ker (D− ig̃I). It can be seen that the
general solution of equation (17) when ω2 = m2 has the form u = v − θα where v is an
arbitrary function from ker (D−ig̃I) and θ is any solution of the equation (D−ig̃)θ = v.

Now let us consider the operator Rsc
α . Denote

S± =
1

2η(x)
M (η(x)±(ig̃(x)i2+α))

where
η(x) =

√
(ig̃(x)i2 + α)2 =

√
ω2 − (ig̃(x)−m)2.

Then we obtain

Rsc
α = S+(D + η(x)I) + S−(D − η(x)I) = (D + η(x))S+ + (D − η(x))S−.

Here, in contrast to the previous case of the operator Rps
α , the projection operators

S+ and S− do not commute with the operators in parentheses. Thus, in general, it is
not true that u ∈ kerRsc

α if and only if u = S+u+ + S−u− where u+ ∈ ker (D + ηI)
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and u− ∈ ker (D − ηI), but in the case when ω = 0 the operators S± take the form
S± = 1

2M (1±ii2) and, consequently, commute with the operators D±ηI. Thus, if ω = 0,
then u ∈ kerRsc

α if and only if u = S+u+ + S−u− where u+ ∈ ker (D + (g̃ + im)I) and
u− ∈ ker (D − (g̃ + im)I). Thus the problem is reduced to equation (16) also.

In the same way we obtain the equality

Rel
α = Z+(D + ν(x)I) + Z−(D − ν(x)I) = (D + ν(x))Z+ + (D − ν(x))Z−

where
ν(x) =

√
(−ig̃(x)i1 + α)2 =

√
(g̃(x) + ω)2 −m2

and
Z± =

1
2ν(x)

M (ν(x)±(−ig̃(x)i1+α)).

For m = 0 we have Z± = 1
2M (1∓ii1), and in this case u ∈ kerRel

α if and only if
u = Z+u+ + Z−u− where u+ ∈ ker (D + (g̃ + ω)I) and u− ∈ ker (D − (g̃ + ω)I).

Thus, we obtained that the Dirac equation with pseudoscalar potential (4) is reduced
to an equation of form (16). The Dirac equation with scalar potential Dsc

0,mq(x) = 0 is
reduced to (16) also and we can say the same about the Dirac equation with electric
potential Del

ω,0q(x) = 0. So now we will concentrate on solutions of equation (16), but
first let us consider the equation

(D − gradφ)u = 0 (18)

where φ is some scalar complex-valued differentiable function and u ∈ C1(Ω;H(C). Note
that this equation may be rewritten in the form

pDp−1u = 0 (19)

where p = eφ (which was noticed in [19]) and hence the function u
p is simply a null-

solution of the Moisil-Theodoresco operator D. This fact, which is an echo of the gauge
transformations, signifies that equation (18) does not represent any independent interest
(it is quite interesting that the equation (D−Mgrad φ)u = 0 is much more difficult and
has no such clear relation with the Moisil-Theodoresco equation).

Now the following simple idea seems to be attractive. On the one hand we have
equation (16) with scalar potential and we do not know how to solve it. On the other
hand we have equation (18) with vector potential which does not represent any interest
because it is already solved. Besides, we can always construct some projection operators
based on the corresponding biquaternionic zero divisors which are able to transform a
scalar into a vector and vice versa if (scalar)2 = (vector)2. Let us consider the equation

(grad µ)2 = f2
0 (20)

which is called eikonal (for its solution see, e.g., [1: Section 2.3] and [18: Section 3.1]),
and let us introduce the operators of multiplication

Q± =
1

2f0
(f0 ± gradµ)I
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defined on the set of H(C)-valued functions. Here we assume that f0(x) 6= 0 for all
x ∈ Ω. Q+ and Q− are mutually complementary and orthogonal projection operators.
We have the equalities

D − f0I = Q+(D − grad µI) + Q−(D + gradµI)

= (D − gradµ)Q+ + (D + grad µ)Q−.

In other words, equation (16) is equivalent to the pair of equations

Q+(D − gradµ)u = 0 (21)
Q−(D + gradµ)u = 0. (22)

The general solution of each of these equations can be constructed quite easily (see [12]).
The main problem is to find the intersection

kerQ+(D − gradµI) ∩ kerQ−(D + grad µI)

which is a difficult task because the projection operators Q± do not commute with the
operators in parentheses. Nevertheless, in [12] it was already shown that in some special
cases the application of the operators Q± allows us to obtain some particular solutions.
Here we considerably enlarge the class of potentials f0 for which it can be done slightly
modifying the projection operators Q± but not changing the principal idea described
above.

4. Ξ-class

Let us introduce the notation γ(ξ(x)) = |grad ξ(x)| and define the following function
class which will be called Ξ-class. We say that a scalar function ξ belongs to the Ξ-class
in some domain Ω ⊆ R3 and write ξ ∈ Ξ(Ω) if the following conditions are fulfilled:

1. ξ ∈ C2(Ω).
2. γ and ∆ξ can be written as functions of ξ.
3. The equation

∆ξ − γ(ξ) · γ′(ξ) = 0 (23)

is satisfied. Note that this equation can be rewritten also as

∆ξ − 1
2

∂

∂ξ
(γ2(ξ)) = 0. (24)

Let us consider some examples of functions from Ξ-class.

Example 1. Let ξ = ax1+bx2+cx3+d where a, b, c, d ∈ C are arbitrary constants.
In this case, obviously, ∆ξ = 0 and γ(ξ) =

√
a2 + b2 + c2 =: C. Thus equation (23) is

satisfied and ξ ∈ Ξ(Ω).

Example 2. Let ξ = ζ(z)+cx3 where ζ is an arbitrary analytic function depending
on the complex variable z = x1 + ix2 and c is a constant. We have that ∆ξ = 0 and
grad ξ = dζ

dz i1 + idζ
dz i2 + ci3. Thus γ(ξ) = c and such ξ also belongs to the Ξ-class.

Note that if ∆ξ = 0 and γ(ξ) = const, then equation (23) is satisfied. Moreover,
both considered examples represent this special case. Of course, equation (23) admits
more solutions.

The following proposition gives an idea about the largeness of the Ξ-class.
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Proposition 1. Let ξ be a real- or complex-valued function belonging to Ξ(Ω) and
s = s(ξ) a function such that there exist a continuous derivative s′(ξ) and an inverse
differentiable function ξ = r(s). Then s ∈ Ξ(Ω).

Proof. Under the formulated assumptions we obtain that s fulfills conditions 1 - 3,
thus we have to show only that s satisfies the equation ∆s− 1

2
∂
∂s (γ2(s)) = 0. We have

grad s = s′(ξ) grad ξ. Consequently, γ2(s) = (s′(ξ))2γ2(ξ) and

∆s = div grad s = 〈grad s′(ξ), grad ξ〉+ s′(ξ)∆ξ = s′′(ξ)γ2(ξ) + s′(ξ)∆ξ.

Finally,

∂

∂s
(γ2(s)) = 2

(
s′(ξ) · ∂

∂s
(s′(ξ)) · γ2(ξ) + (s′(ξ))2 · γ(ξ) · ∂

∂s
(γ(ξ))

)

=
2

s′(ξ)

(
s′(ξ) · s′′(ξ) · γ2(ξ) + (s′(ξ))2 · γ(ξ) · γ′(ξ)

)

= 2
(
s′′(ξ) · γ2(ξ) + s′(ξ) · γ(ξ) · γ′(ξ)

)
.

Thus, using the fact that ξ ∈ Ξ(Ω), we obtain the required equality:

∆s− 1
2

∂

∂s
(γ2(s)) = s′′(ξ)γ2(ξ) + s′(ξ)∆ξ − s′′(ξ) · γ2(ξ)− s′(ξ) · γ(ξ) · γ′(ξ)

= s′(ξ)(∆ξ − γ(ξ) · γ′(ξ))
= 0

and the statement is proved

In what follows we will consider functions depending on ξ ∈ Ξ(Ω). As ξ may
be a real- or complex-valued function, the differentiability with respect to ξ will be
understood in real or complex sense, respectively, without additional comments. The
expression f ′(ξ) will denote the real or complex derivative with respect to ξ, the second
is for the case Im ξ 6≡ 0 in Ω.

5. Solution of the Dirac equation in quaternionic form

In this section we consider the equation
(
D − f0(ξ(x))

)
u(x) = 0 (25)

in some domain Ω ⊆ R3 where ξ is a scalar function of the independent variables x1,
x2, x3.

Let us slightly modify the definition of the projection operators Q± (compare with
Section 3). Taking into account that f0 depends on ξ we introduce Q± with respect to
ξ. Namely,

Q± =
1
2ξ

(ξ ± grad µ)I (26)
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where
(gradµ(x))2 = ξ2(x) (x ∈ Ω) (27)

and ξ(x) 6= 0 for all x ∈ Ω. Note that any solution µ of the eikonal equation (27)
is convenient for us. Sometimes, when Q± will be considered simply as H(C)-valued
functions enjoying such important property as the equivalence of the function to its
square, we will refer to Q± as idempotents. When the operational nature of Q± will be
important we will follow the above used terminology calling them projection operators.
We hope that it cannot provoke any misunderstanding because, in fact, the idempotent
or projection operator is the same mathematical notion, the first variant is used more
frequently in algebra while the second one – in functional analysis.

Let us prove the following

Lemma 1. Let ξ ∈ Ξ(Ω). Then the idempotents Q± may be constructed in the
form

Q± =
1
2

(
1± igrad ξ

|grad ξ|
)

(28)

and
D[Q±] = 0 in Ω. (29)

Proof. Comparing (28) with the general form (26) of Q± we find that grad µ =
iξgrad ξ
|grad ξ| . From this equality we find µ(ξ) = i

∫
ξ

|grad ξ| dξ. In other words, µ is an

antiderivative of the function iξ
|grad ξ| . Moreover, µ is a solution of the eikonal equation

(27): (grad µ)2 = − ξ2(grad ξ)2

|grad ξ|2 = ξ2. Consequently, Q± are idempotents.

Let us verify (29). We have D[Q±] = ±iD
[

grad ξ
|grad ξ|

]
. Using the quaternionic Leibniz

rule (8) we obtain

D

[
grad ξ

|grad ξ|
]

= D

[
grad ξ

γ(ξ)

]

= −γ−2(ξ) · ∂γ(ξ)
∂ξ

· (grad ξ)2 − γ−1(ξ)∆ξ

=
∂γ(ξ)

∂ξ
− 1

γ(ξ)
∆ξ.

Using condition 3 from the definition of Ξ-class we obtain that this expression is zero
and D[Q±] = 0

Using Lemma 1 we obtain the following main result of this section.

Theorem 1. Let ξ ∈ Ξ(Ω), Q± be defined by (28), A± be arbitrary constant complex
quaternions and

h±(ξ) = e±i
∫

f0(ξ)
γ(ξ) dξ. (30)

Then the function
u = Q+h+(ξ)A+ + Q−h−(ξ)A− (31)

is a solution of equation (25).
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Proof. First, let us notice that the constant complex quaternions A± appear in
(31) due to the right H(C)-linearity of equation (25). Then it is sufficient to prove the
theorem for the function Q+h+ (for the second term Q−h− the proof is completely
analogous).

Let us apply the operator D to the function u+ = Q+h+ using the Leibniz rule (8):

Du+ = grad h+ ·Q+ + h+DQ+.

Due to Lemma 1 we obtain Du+ = grad h+ ·Q+. Note that grad h+(ξ) = ∂h+(ξ)
∂ξ ·grad ξ

and

grad ξ ·Q+ =
1
2

(
grad ξ +

i(grad ξ)2

|grad ξ|
)

= −i|grad ξ|1
2

(
igrad ξ

|grad ξ| + 1
)

= −iγ(ξ)Q+

(here once more the idempotent Q+ allows us to turn a vector into a scalar). As can
be seen easily, the function h+ is a solution of the linear ordinary differential equation
dh+(ξ)

dξ + f0(ξ)
iγ(ξ)h

+(ξ) = 0. Then

Du+ = grad h+ ·Q+ = −iγ(ξ)
∂h+(ξ)

∂ξ
·Q+ = f0(ξ)h+(ξ)Q+ = f0 · u+

and the statement is proved

Example 3. Let ξ = ex1+ix2 + cx3 where c is constant. Then, obviously, ξ falls
under Example 2 and belongs to the Ξ-class. In this case

grad ξ = ex1+ix2i1 + iex1+ix2i2 + ci3

and γ(ξ) = c. The idempotents Q± take the form

Q± =
1
2

(
1± i

c

(
ex1+ix2i1 + iex1+ix2i2 + ci3

))
.

Thus, we obtain a solution of equation (25) in the form

u =
(
1 +

i

c

(
ex1+ix2i1 + iex1+ix2i2 + ci3

))
e

i
c F0(ξ)A+

+
(
1− i

c
(ex1+ix2i1 + iex1+ix2i2 + ci3

))
e−

i
c F0(ξ)A−

where F0 is an antiderivative of f0.
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6. Solution of the Schrödinger equation

In this section we consider the scalar three-dimensional Schrödinger equation

(∆ + v(ξ(x)))u(x) = 0. (32)

First, let us notice that applying the operator D to equation (25) we obtain that if u is
a solution of (25), then

−∆u−D[f0] · u− f0Du = −∆u− grad f0 · u− f2
0 u = 0.

In other words, u is a solution of the Schrödinger equation with quaternionic potential

(
∆ + (f2

0 + grad f0)
)
u = 0. (33)

This observation will be used in the proof of the following

Theorem 2. Let ξ ∈ Ξ(Ω), Q+ defined by (28), f0(ξ) be a solution of the Riccati
equation

df0(ξ)
dξ

+
i

γ(ξ)
f2
0 (ξ) =

iv(ξ)
γ(ξ)

(34)

and h(ξ) = ei
∫

f0(ξ)
γ(ξ) dξ. Then the function u = Q+h is a solution of equation (32).

Proof. Note that u = Q+h is a solution of equation (25) (see Theorem 1) and
therefore it is a solution of equation (33) also. Taking into account that grad f0 ·Q+ =
−i∂f0

∂ξ · γ(ξ) ·Q+ we obtain from (33) the equality

(
∆ +

(
f2
0 − i

∂f0

∂ξ
γ(ξ)

))
u = 0. (35)

The Riccati equation (34) gives us

v = −i
∂f0

∂ξ
γ(ξ) + f2

0 (ξ). (36)

Thus, from (35) and (36) we obtain that u is a solution of equation (32)

Theorem 2 signifies that each component of the function u = Q+h is a solution of
equation (32). Consequently, any function of the form

(
a0 +

1
γ(ξ)

(a1∂1ξ + a2∂2ξ + a3∂3ξ)
)
ei

∫
f0(ξ)
γ(ξ) dξ

is a solution of equation (32), where f0 is a solution of equation (34) and ak ∈ C (k =
0, . . . , 3) are arbitrary numbers.
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Example 4. Let ξ = ax1 + bx2 + cx3 + d (Example 1) with
√

a2 + b2 + c2 = 1 and
v(ξ) = ξ(2i− ξ). Then the corresponding Riccati equation takes the form

df0(ξ)
dξ

+ if2
0 (ξ) = iξ(2i− ξ). (37)

To solve the Riccati equation it is sufficient to find any particular solution of it, then
with its aid the Riccati equation may be reduced to a linear one. Here the term on
the right-hand side prompts us that we can try to look for a particular solution of the
form y(ξ) = b0ξ + b1 (b0, b1 ∈ C). Substituting y into (37) we obtain b0 = −i and
b1 = −1. Now with the help of the substitution f0(ξ) = y(ξ) + z(ξ) we obtain the
Bernoulli equation

z′ + 2iyz = −iz2 (38)

for z which by the substitution z1 = 1
z can be transformed into a linear equation, and

this way we obtain the general solution

z(ξ) =
(

i

∫
e(−ξ2+2iξ) dξ + b2

)−1

· e(−ξ2+2iξ)

of equation (38) where b2 ∈ C is an arbitrary constant. Thus,

f0(ξ) = −iξ − 1 +
e(−ξ2+2iξ)

i
∫

e(−ξ2+2iξ)dξ + b2
.

Finally, we obtain ei
∫

f0(ξ) dξ ∈ ker (∆ + ξ(2i− ξ)I).

7. Factorization of the Schrödinger operator

In [3] (see also [4]) it was noticed that the Schrödinger operator can be factorized as

−∆− vI = (D + M
~b)(D −M

~b) (39)

where the vector ~b = grad φ is a solution of the equation

D~b− |~b|2 = v. (40)

Equality (39) can be verified by a direct calculation. Note that when v = 0, equation
(40) can be reduced to a linear one (see [10]).

For the solutions of the Schrödinger equation

∆u + vu = 0 (41)

there was obtained [3] the representation

u(x) = eφ(x)
(
T [e−φ(x)~v(x)] + Φ(x)

)
(42)
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where ~v ∈ ker (D + M
~b) and Φ ∈ kerD. Unfortunately, not for any functions ~v and

Φ from the indicated kernels the expression on the right-hand side of (42) gives us
a solution of equation (41). The function u on the left-hand side of (42) is scalar.
Consequently, we have an additional restrictive condition

Vec
(
T [e−φ(x)~v(x)] + Φ(x)

)
= 0

for ~v and Φ which complicates the things.
Let us notice that the problem of factorization of the Schrödinger operator is equiv-

alent to finding a particular solution of the Schrödinger equation (41). In fact, let
~b = grad φ be a vector satisfying equation (40). First, let us represent it as ~b = grad u

u

where u = eφ. Then applying D to ~b we obtain

D~b = D
[gradu

u

]
= u−2|grad u|2 − u−1∆u = |~b|2 − u−1∆u.

Using (40) we obtain that u must be a solution of equation (41), and vice versa, if u

is a solution of equation (41), then ~b = grad u
u is a solution of equation (40). Thus, the

results of Section 6 may be used to factorize the Schrödinger operator and to obtain
representation (42) for its null-solutions.

8. Fundamental solutions

A distribution U will be called particular fundamental solution of the operator D −
f0(ξ(x))I if

(D − f0(ξ(x)))U(x) = δ(ξ(x)). (43)

We will see that the technique described in the previous sections in some cases allows us
to construct particular fundamental solutions and, consequently, to obtain the integral
representation of the general solution of equation (25) depending only on ξ.

Let ξ = ax1 + bx2 + cx3 + d with a, b, c, d ∈ R and let C =
√

a2 + b2 + c2. The
distribution U will be constructed in the form U = Q+h+ where the idempotent Q+ will
be slightly modified compared with the previous sections and the choice of the scalar
function h+ will be discussed below. We will look for the vector grad µ in the form

gradµ = ξψ(ξ) grad ξ

(µ =
∫

ξψ(ξ) dξ). The eikonal equation (27) gives us the relation

ψ2(ξ) = − 1
γ2(ξ)

= − 1
C2

. (44)

Let us require D[Q+] = Aδ(ξ) where A ∈ C is constant. We have D[ψ(ξ)grad ξ] =
2Aδ(ξ) which is equivalent to the equation −C2ψ′(ξ) = 2Aδ(ξ). From the last equality
we obtain

ψ(ξ) = − A

C2
sign ξ (45)
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where by definition

sign ξ =
{

1 for ξ ≥ 0
−1 for ξ < 0.

Comparing (45) with (44) we obtain A = iC and ψ(ξ) = − i
C sign ξ. Thus,

Q+ =
1
2

(
1− isign ξ

C
grad ξ

)
.

Now, let us consider the expression

gradh+(ξ)Q+ =
∂h+(ξ)

∂ξ
grad ξQ+

which must be equal to f0(ξ)h+(ξ)Q+ (see the proof of Theorem 1). Note that

grad ξ ·Q+ =
1
2
(grad ξ + iCsign ξ)

= iCsign ξ
1
2

(
1− i

C
sign ξ grad ξ

)

= iCsign ξ ·Q+.

Then we obtain for h+ the equation

iCsign ξ
∂h+(ξ)

∂ξ
− f0(ξ)h+(ξ) = 0

the solution of which is the function h+(ξ) = Be−
i
C

∫
sign ξf0(ξ) dξ. The antiderivative F0

of the function f0 we fix by the condition F0(0) = 0. Then the constant B we find from
the requirement h+(ξ)DQ+ = iCh+(ξ)δ(ξ) = δ(ξ). Consequently, B = 1

iC . Finally, we
obtain that the distribution

U(ξ) =
1

2iC

(
1− isign ξ

C
(ai1 + bi2 + ci3)

)
e−

i
C sign ξF0(ξ)

is a solution of equation (43).

9. Solutions of the Dirac equation in “traditional” form

As it was shown in Section 2 the Dirac operators Dps
ω,m,Dsc

ω,m,Del
ω,m with pseudoscalar,

scalar and electric potential, respectively, can be rewritten in biquaternionic form with
the aid of the maps A and A−1. Using some projection operators (Section 3), the
corresponding biquaternionic operators Rps

α , Rsc
α , Rel

α can be reduced to an operator
of the form D − f0I. In subsequent sections we obtained some null-solutions of this
operator. Now, in order to write down the solutions for Dps

ω,m,Dsc
ω,m,Del

ω,m we have to
apply the inverse procedure. We consider here only the case of pseudoscalar potential
– the two other cases may be considered by analogy.
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Equality (9) gives us the equivalence

q ∈ kerDps
ω,m(Ω) ⇐⇒ u := A[q] ∈ kerRps

α (Ω̃).

First, let ω2 6= m2. Then from (13) we have

u ∈ kerRps
α (Ω̃) ⇐⇒ u = P+u+ + P−u−

where P± are defined by (12), u+ and u− are solutions of equations (14) and (15),
respectively.

Now, let in (4) g = g(ξ(x)) where ξ ∈ Ξ(Ω). Note that in this case ξ̃ ∈ Ξ(Ω̃) where
as above Ω may coincide with the whole R3. Using Theorem 1 we obtain that the
function

u+ = Q+h+
1 (ξ̃)A+ + Q−h−1 (ξ̃)A−

is a solution of equation (14) in Ω̃ where

Q± =
1
2

(
1± igrad ξ̃

|grad ξ̃|

)
and h±1 (ξ̃) = exp

(
± i

∫
ig(ξ̃)−√ω2 −m2

γ(ξ̃)
dξ̃

)

and A± are arbitrary constant complex quaternions. By analogy,

u− = Q+h+
2 (ξ̃)B+ + Q−h−2 (ξ̃)B−

is a solution of equation (15) in Ω̃ where

h±2 (ξ̃) = exp
(
± i

∫
ig(ξ̃) +

√
ω2 −m2

γ(ξ̃)
dξ̃

)

and B± are arbitrary constant complex quaternions. Thus,

u = P+
(
Q+h+

1 (ξ̃)A+ + Q−h−1 (ξ̃)A−
)

+ P−
(
Q+h+

2 (ξ̃)B+ + Q−h−2 (ξ̃)B−)

∈ kerRps
α (Ω̃).

(46)

To obtain the corresponding solution q of equation (4) (q = A−1[u]) we have to
rewrite equation (46) in component-wise form and then apply the map A−1. Let us
introduce the notations

u++ = P+Q+h+
1 (ξ̃)A+

u+− = P+Q−h−1 (ξ̃)A−

u−+ = P−Q+h+
2 (ξ̃)B+

u−− = P−Q−h−2 (ξ̃)B−.

Each of the four functions belongs to kerRps
α (Ω̃). Thus, each of their images

q++ = A−1[u++]

q+− = A−1[u+−]

q−+ = A−1[u−+]

q−− = A−1[u−−]
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satisfies equation (4). We will consider in detail the function u++ and the corresponding
solution q++ of equation (4). For the three other solutions q+−, q−+, q−− we will write
down only the final result.

First, let us rewrite u++ in the component-wise form

u++ =
ih+

1 (ξ̃)
4
√

ω2 −m2 · γ(ξ̃)

{(− id0γ(ξ̃) + d1∂1ξ̃ + d2∂2ξ̃ + d3∂3ξ̃
)
i0

+
(
id1γ(ξ̃) + d0∂1ξ̃ − d3∂2ξ̃ + d2∂3ξ̃

)
i1

+
(
id2γ(ξ̃) + d3∂1ξ̃ + d0∂2ξ̃ − d1∂3ξ̃

)
i2

+
(
id3γ(ξ̃)− d2∂1ξ̃ + d1∂2ξ̃ + d0∂3ξ̃

)
i3

}

where
d0 = A+

0

√
ω2 −m2 + iωA+

1 + mA+
2

d1 = −A+
1

√
ω2 −m2 + iωA+

0 −mA+
3

d2 = −A+
2

√
ω2 −m2 + iωA+

3 + mA+
0

d3 = −A+
3

√
ω2 −m2 − iωA+

2 + mA+
1 .

Let us notice that although the constants A+
0 , A+

1 , A+
2 , A+

3 are independent, the intro-
duced constants d0, d1, d2, d3 due to the action of projection operators are not already
independent. A simple calculation shows that

(ω + m)(−d0 + id3) = −
√

ω2 −m2(d2 − id1)

(ω + m)(d2 + id1) = −
√

ω2 −m2(d0 + id3)

}
. (47)

Applying the transform A−1 to the function u++ we obtain the solution

q++ =
h+

1 (ξ)
4
√

ω2 −m2 · γ(ξ)

×




(d2 + id1)γ(ξ) + (d0 − id3)∂1ξ − (d3 + id0)∂2ξ − (d2 + id1)∂3ξ

(−d0 + id3)γ(ξ)− (d2 + id1)∂1ξ + (d1 − id2)∂2ξ − (d0 − id3)∂3ξ

(d0 + id3)γ(ξ)− (d2 − id1)∂1ξ + (d1 + id2)∂2ξ − (d0 + id3)∂3ξ

(d2 − id1)γ(ξ)− (d0 + id3)∂1ξ + (d3 − id0)∂2ξ + (d2 − id1)∂3ξ




of equation (4) in Ω. Finally, let us introduce the notations

a+
1 = d2 + id1

a+
2 = −d0 + id3.

Then taking into account relations (47) we rewrite the obtained solution in the form

q++ =
h+

1 (ξ)
4
√

ω2 −m2 · γ(ξ)




q++
0

q++
1

− (ω+m)√
ω2−m2 q++

0

− (ω+m)√
ω2−m2 q++

1



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where
q++
0 = a+

1 γ(ξ)− a+
2 ∂1ξ + ia+

2 ∂2ξ − a+
1 ∂3ξ

q++
1 = a+

2 γ(ξ)− a+
1 ∂1ξ − ia+

1 ∂2ξ + a+
2 ∂3ξ.

To verify that q++ is a solution of equation (4) when g = g(ξ) with ξ ∈ Ξ(Ω), one can
simply substitute it into the equation using its explicit form:

∂1q3 − i∂2q3 + ∂3q2 − gq2 + i(ω + m)q0 = 0

∂1q2 + i∂2q2 − ∂3q3 − gq3 + i(ω + m)q1 = 0

−∂1q1 + i∂2q1 − ∂3q0 + gq0 − i(ω −m)q2 = 0

−∂1q0 − i∂2q0 + ∂3q1 + gq1 − i(ω −m)q3 = 0.





By analogy, we obtain the other three solutions:

q+− =
h−1 (ξ)

4
√

ω2 −m2 · γ(ξ)




q+−
0

q+−
1

− (ω+m)√
ω2−m2 q+−

0

− (ω+m)√
ω2−m2 q+−

1


 (49)

where
q+−
0 = a−1 γ(ξ) + a−2 ∂1ξ − ia−2 ∂2ξ + a−1 ∂3ξ

q+−
1 = a−2 γ(ξ) + a−1 ∂1ξ + ia−1 ∂2ξ − a−2 ∂3ξ,

q−+ =
h+

2 (ξ)
4
√

ω2 −m2 · γ(ξ)




q−+
0

q−+
1

(ω+m)√
ω2−m2 q−+

0

(ω+m)√
ω2−m2 q−+

1


 (50)

where
q−+
0 = b+

1 γ(ξ)− b+
2 ∂1ξ + ib+

2 ∂2ξ − b+
1 ∂3ξ

q−+
1 = b+

2 γ(ξ)− b+
1 ∂1ξ − ib+

1 ∂2ξ + b+
2 ∂3ξ,

q−− =
h−2 (ξ)

4
√

ω2 −m2 · γ(ξ)




q−−0

q−−1
(ω+m)√
ω2−m2 q−−0

(ω+m)√
ω2−m2 q−−1


 (51)

where
q−−0 = b−1 γ(ξ) + b−2 ∂1ξ − ib−2 ∂2ξ + b−1 ∂3ξ

q−−1 = b−2 γ(ξ) + b−1 ∂1ξ + ib−1 ∂2ξ − b−2 ∂3ξ.

Thus, the following statement is proved.
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Theorem 3. The functions defined by (48) - (51), where a±1 , a±2 , b±1 , b±2 ∈ C are
arbitrary (independent) constants, belong to kerDps

ω,m(Ω) when g = g(ξ), ξ ∈ Ξ(Ω) and
ω2 6= m2.

Now, let us consider the case ω2 = m2. We have that if v ∈ ker (D − ig̃I), then
u := vα ∈ kerRps

α (see Section 3). That is, the function

u = Q+h+(ξ̃)a+α + Q−h−(ξ̃)a−α where h±(ξ̃) = e
∓

∫
g(ξ̃)
γ(ξ̃)

dξ̃

and a± are arbitrary constant complex quaternions, is a solution of equation (17).
Denote

u+ = Q+h+(ξ̃)a+α

u− = Q−h−(ξ̃)a−α.

Then applying the transformation A−1 to u+ and u− we obtain the corresponding
solutions q+ = A−1[u+] and q− = A−1[u−] of equation (4):

q+ =
h+(ξ)
2γ(ξ)

×



(ω −m)((−a+
0 + ia+

3 )γ(ξ)− (a+
2 − ia+

1 )∂1ξ + i(a+
2 − ia+

1 )∂2ξ + (a+
0 − ia+

3 )∂3ξ)

(ω −m)((a+
2 − ia+

1 )γ(ξ) + (a+
0 − ia+

3 )∂1ξ + i(a+
0 − ia+

3 )∂2ξ − (a+
2 − ia+

1 )∂3ξ)

(ω + m)((a+
2 + ia+

1 )γ(ξ)− (a+
0 + ia+

3 )∂1ξ + i(a+
0 + ia+

3 )∂2ξ − (a+
2 + ia+

1 )∂3ξ)

(ω + m)((a+
0 + ia+

3 )γ(ξ)− (a+
2 + ia+

1 )∂1ξ − i(a+
2 + ia+

1 )∂2ξ + (a+
0 + ia+

3 )∂3ξ)




and

q− =
h−(ξ)
2γ(ξ)

×



(ω −m)((−a−0 + ia−3 )γ(ξ) + (a−2 − ia−1 )∂1ξ − i(a−2 − ia−1 )∂2ξ − (a−0 − ia−3 )∂3ξ)

(ω −m)((a−2 − ia−1 )γ(ξ)− (a−0 − ia−3 )∂1ξ − i(a−0 − ia−3 )∂2ξ + (a−2 − ia−1 )∂3ξ)

(ω + m)((a−2 + ia−1 )γ(ξ) + (a−0 + ia−3 )∂1ξ − i(a−0 + ia−3 )∂2ξ + (a−2 + ia−1 )∂3ξ)

(ω + m)((a−0 + ia−3 )γ(ξ) + (a−2 + ia−1 )∂1ξ + i(a−2 + ia−1 )∂2ξ − (a−0 + ia−3 )∂3ξ)




Note that for both cases ω = m or ω = −m we obtain two-component solutions. When
ω = m, the two first components of each solution are zero. Similarly, when ω = −m,
the last two components are zero. Thus, the following statement is true.

Theorem 4. The functions q+ and q−, where a±k ∈ C (k = 0, . . . , 3) are arbitrary
(independent) constants, belong to kerDps

ω,m(Ω) when g = g(ξ), ξ ∈ Ξ(Ω) and ω2 = m2.

Concluding Remark. A new method for obtaining solutions of the Dirac equation
and of the Schrödinger equation is proposed. The method permits to construct exact
solutions for any potential which depends on a combination ξ of the variables x1, x2, x3

from a quite ample class which we called Ξ-class. At least, we obtain solutions for any
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potential depending on the linear combination ξ = ax1 + bx2 + cx3 + d. Moreover, for
the linear combination we are able to construct a fundamental solution for the Dirac
operator. The main tool of the method are some special biquaternionic projection
operators which are constructed after having solved an eikonal equation corresponding
to the combination ξ. Let us notice that the use of biquaternionic form of the Dirac
operator and the methods of biquaternionic analysis allowed us to make all essential
calculations quite transparent. Perhaps the most laborious part is the return of the
solutions obtained in quaternionic form into the “traditional” form, but after all this is
only arithmetic.
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