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Abstract. It is shown that best approximation by trigonometric polynomials is achieved in
average by families of linear polynomial operators in the Lp-metric for all p, 0 < p ≤ ∞. This
is compared with approximation by Fourier means and interpolation means which is restricted
to 1 ≤ p ≤ ∞ and p = ∞, respectively.
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0. Introduction

In the present paper we deal with the method of trigonometric approximation of 2π-
periodic functions by families of linear polynomial operators introduced in [6 - 8] for
Lp-spaces with 0 < p ≤ 1. It was proved that approximation by families in such
spaces enables to achieve the best order of approximation. We will show that the same
result is also valid in Lp-spaces with 1 < p ≤ +∞, that is, the method turns out
to be an universal method of approximation for all Lp-spaces with 0 < p ≤ +∞ in
difference to the methods of approximation by the Fourier means that make sense only
for 1 ≤ p ≤ +∞ as well as to the methods of approximation by the interpolation means
which is restricted to continuous functions.

We will study approximative properties of operators {Ln;λ}λ∈R,n∈N0 given by

Ln;λ(f ; x) = 1
2N+1

2N∑

k=0

f

(
2πk

2N + 1
+ λ

)
Wn

(
x− 2πk

2N + 1
− λ

)

where Wn is a kernel of Vallée-Poussin type. The main result is Theorem 4.2 where it
is shown that (∫ 2π

0

‖f − Ln;λ(f)‖p
p dλ

) 1
p

≤ CpEn(f)p

for all f ∈ Lp (0 < p ≤ +∞). Here En(f)p denotes the best Lp-approximation
by trigonometric polynomials of order at most n. It means that the best order of
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approximation is achieved in average. For fixed λ (e.g. λ = 0) this is true for p = +∞
only. Furthermore, Theorem 4.3 deals with the case of randomly chosen parameters.
Then the best order of approximation can be realized with a priori given probability.

The paper is organized as follows. In Section 1 we introduce notations and give some
definitions we will use henceforth. In Section 2 we study properties of trigonometric
kernels. For the convenience of the reader we collect some well-known facts of the theory
of approximation by linear operators in Section 3. In Section 4 we introduce families
of linear polynomial operators and study their approximative properties. Here we also
compare various methods of approximation mentioned above.

1. Preliminaries

1. We will deal with 2π-periodic functions in Lp, where 0 < p ≤ +∞ (as usual, L∞ = C
with a standard norm), that sometimes will depend not only on the main variable x,
but also on a parameter λ. By ‖ · ‖p or ‖ · ‖p;x we denote the p-norm (quasi-norm, if
0 < p < 1) on x. For the p-(quasi-)norm on the parameter λ we use the symbol ‖ · ‖p;λ.
The notation ‖ · ‖p will be used for

∥∥ ‖ · ‖p;x

∥∥
p;λ

, that is, for the p-(quasi-) norm on
x and λ together. For the sake of simplicity, we will use the notation ”norm” for all
0 < p ≤ +∞.

2. As usual, the norm of a linear operator L in Lp (0 < p ≤ +∞) is given by

‖L‖(p) = sup
‖f‖p=1

‖Lf‖p.

An operator L is bounded, if its norm is finite. By Sλ we denote the translation operator
defined by

Sλf(x) = f(x + λ).

Clearly, its norm is equal to 1 for all 0 < p ≤ +∞.

3. Apart from single operators we will also consider one-parametric families of linear
operators {Lλ}λ∈R in Lp (0 < p ≤ +∞) that are 2π-periodic on λ. We define the
averaged norm of such family by

‖{Lλ}‖(p) = (2π)−
1
p sup
‖f‖p=1

‖Lλf(x)‖p

= sup
‖f‖p=1

{ (
1
2π

∫ 2π

0
‖Lλf(x)‖p

p dλ
) 1

p

if 0 < p < +∞
maxλ ‖Lλf(x)‖∞ if p = +∞.

In analogy to the case of operators we will say that a family {Lλ} is bounded in Lp, if
its averaged norm is finite. The family of translation operators {Sλ} is an example of a
family that is bounded for all 0 < p ≤ +∞.

4. By the symbol f ∗ g we denote the convolution of 2π-periodic L1-functions f and g,
that is

(f ∗ g)(x) = 1
2π

∫ 2π

0

f(x + h)g(h) dh = 1
2π

∫ 2π

0

f(h)g(h− x) dh. (1.1)
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For 2π-periodic functions f and g that are defined on R we introduce its discrete coun-
terpart

(f ∗ g)(N)(x) = 1
2N+1

2N∑

k=0

f(tkN )g(tkN − x) (1.2)

that we will call N -discrete convolution of f and g. In (1.2) N ∈ N0 and tkN = 2πk
2N+1 (k =

0, 1, . . . , 2N) are points of uniform partition of [0, 2π).

5. As usual, the best trigonometric approximation of a function f in Lp (0 < p ≤ +∞)
of order n ∈ N0 is given by

En(f)p = inf
T∈Tn

‖f − T‖p

where Tn is the space of real-valued trigonometric polynomials of order at most n.

6. The Fourier transform of a function f that belongs to L1 on R is defined by

f̂(x) = 1√
2π

∫

R
f(ξ)e−iξxdξ.

2. Trigonometric kernels and their properties

Throughout the paper we will study trigonometric polynomials Wn (n ∈ N0) of the
special type

W0(x) = 1

Wn(x) =
∑

k∈Z
ψ

(k

n

)
eikx (n ∈ N)





(2.1)

that are usually called kernels. Here we suppose that ψ is an even function defined on
R, such that

ψ(t) =
{

1 if |t| ≤ 1
0 if |t| > 1 + δ

(2.1)′

where δ is some positive number.

Lemma 2.1.

1. The function Wn (n ∈ N0) is a real-valued even trigonometric polynomial of
order at most N = [(1 + δ)n].

2. For any T in Tn (n ∈ N0) we have

(T ∗Wn)(x) = T (x) (2.2)
(T ∗Wn)(N)(x) = T (x) (2.3)

for all x ∈ R.
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Proof. Part 1 follows immediately from the definition of kernels. It is clear because
of linearity that it is sufficient to prove (2.2) and (2.3) for harmonics eimx with |m| ≤ n.
We get

(eim · ∗Wn)(x) = 1
2π

∫ 2π

0

eimhWn(x− h) dh

=
∑

k∈Z
ψ

(k

n

)
eikx

(
1
2π

∫ 2π

0

eimhe−ikhdh

)

=
∑

k∈Z
ψ

(k

n

)
δmkeikx

= eimx.

Now we recall that for s ∈ Z

δ(s; N) =
2N∑

k=0

exp
(

2πisk

2N + 1

)
=

{
2N + 1 if s ≡ 0(mod(2N + 1))
0 otherwise.

(2.4)

Using (1.2) and (2.1) we have for |m| ≤ n

(eim · ∗Wn)(N)(x) =
∑

k∈Z
ψ

(k

n

)
eikx 1

2N+1

2N∑
ν=0

exp(imtνN ) exp(−iktνN )

=
∑

k∈Z
ψ

(k

n

)
eikx 1

2N+1

2N∑
ν=0

exp
(

2πi(m− k)
2N + 1

ν

)

=
∑

k∈Z
ψ

(k

n

)
eikx 1

2N+1 δ(m− k; N).

(2.5)

Since ψ
(

k
n

)
= 0 for |k| > N , the summation in (2.5) is for |k| ≤ N , and as |m| ≤ n, we

have |m− k| ≤ |m|+ |k| ≤ n + N ≤ 2N < 2N + 1. Therefore, m− k ≡ 0(mod(2N + 1))
if and only if m = k, and now (2.4) implies

(eim · ∗Wn)(N)(x) = ψ
(m

n

)
eimx = eimx.

The proof is complete

For n ∈ N0, N = [(1 + δ)n], g ∈ Lp (0 < p ≤ +∞) let us define

JN ;p(g) =





(2π)−
1
p ‖g‖p if 0 < p ≤ 1

1
2N+1

∑2N
k=0

(
1
τ

∫ tk+1
N

tk
N

|g(h)|pdh

) 1
p

if 1 ≤ p +∞
1

2N+1

∑2N
k=0 max

h∈[tk
N

,tk+1
N

]
|g(h)| if p = +∞

where τ = 2π
2N+1 . We will often denote JN ;p(Wn) by Jn;p .
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Lemma 2.2. Let 0 < p ≤ 1. If ψ defined by (2.1)′ is continuous and ψ̂ belongs to
Lp(R), then

J0;p = 1

Jn;p ≤ (2π)
1
2− 1

p ‖ψ̂‖Lp(R)n
1− 1

p (n ∈ N)

}
. (2.6)

Proof. To prove this lemma we need the Poisson summation formula

Wn(x) =
∑

k∈Z
ψ

(k

n

)
eikx =

√
2π n

∑

k∈Z
ψ̂(n(x + 2πk)). (2.7)

It is proved [11: p. 252/Corollary 2.6] that, for ϕ belonging to the Schwartz space S of
rapidly decreasing test functions, (2.7) is valid.

If ψ̂ ∈ Lp(R) for 0 < p < 1, then ψ̂ ∈ L1(R) and, hence, it is enough to prove (2.7)
for p = 1. It is known [13: p. 22/Section 1.4.1] that for any ε > 0 there is a function
ϕ ∈ S with compact support such that

‖ψ̂ − ϕ̂‖L1(R) <
ε

2
√

2π(N + 1)
. (2.8)

We denote by Iψ and Jψ the left- and right-hand sides of (2.7), respectively. Then we
get

‖Jψ − Jϕ‖1 ≤
√

2π n
∑

k∈Z

∥∥ψ̂(n(x + 2πν))− ϕ̂(n(x + 2πν))
∥∥

1

=
√

2π n
∥∥ψ̂(nx)− ϕ̂(nx)

∥∥
L1(R)

=
√

2π ‖ψ̂ − ϕ̂‖L1(R).

(2.9)

Furthermore,

‖Iψ − Iϕ‖1 ≤
∑

k∈Z

∣∣∣ψ
(k

n

)
− ϕ

(k

n

)∣∣∣ ‖eikx‖1

≤ 2π(2N + 1) ‖ψ − ϕ‖C(R)

≤
√

2π(2N + 1) ‖ψ̂ − ϕ̂‖L1(R).

(2.10)

Recalling that Iϕ = Jϕ, we get from (2.8) - (2.10)

‖Iψ − Jψ‖1 ≤ ‖Iψ − Iϕ‖1 + ‖Jψ − Jϕ‖1 ≤ 2
√

2π(N + 1) ‖ψ̂ − ϕ̂‖L1(R) < ε

that completes the proof of (2.7).
Now we prove (2.6). We have from (2.7) (using 0 < p < 1)

‖Wn‖p
p ≤ (2π)

p
2 np

∑

k∈Z
‖ψ̂(n(x + 2πk))‖p

p

= (2π)
p
2 np‖ψ̂(nx)‖p

Lp(R)

= (2π)
p
2 np−1‖ψ̂‖p

Lp(R).

The proof is finished
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Lemma 2.3. Let 1 ≤ p ≤ +∞. If ψ defined by (2.1)′ is continuous and ψ̂ belongs
to L1(R), then

J0;p = 1

Jn;p ≤ Jn;∞ ≤ (π + 1)(2π)−
1
2 ‖ψ̂‖L1(R) (n ≥ 1)

}
. (2.11)

Proof. The first part of inequality (2.11) is obvious. There exist points ξk
N ∈

[tkN , tk+1
N ] (k = 0, 1, . . . , 2N) such that

Jn;∞ = 1
2N+1

2N∑

k=0

max
h∈[tk

N
,tk+1

N
]
|Wn(h)| = 1

2N+1

2N∑

k=0

|Wn(ξk
N )|. (2.12)

We consider the function

F (λ) = 1
2N+1

2N∑

k=0

|Wn(tkN + λ)|.

Clearly
(
τ = t1N = 2π

2N+1

)
,

1
τ

∫ τ

0

F (λ) dλ = 1
2π

2N∑

k=0

∫ tk+1
N

tk
N

|Wn(h)| dh = 1
2π‖Wn‖1. (2.13)

Hence, there is a number λ∗ ∈ [0, τ ] such that

F (λ∗) = 1
2π ‖Wn‖1. (2.14)

By using Bernstein’s inequality that is valid with constant 1 (see [1]), we get from (2.12)
and (2.14)

Jn;∞ ≤ 1
2N+1

2N∑

k=0

∣∣Wn(tkN + λ∗)−Wn(ξk
N )

∣∣ + 1
2π‖Wn‖1

≤ 1
2N+1

2N∑

k=0

∫ tk+1
N

tk
N

|W ′
n(h)| dh + 1

2π ‖Wn‖1

≤ 1
2N+1‖W ′

n‖1 + 1
2π ‖Wn‖1

≤ (
N

2N+1 + 1
2π

) ‖Wn‖1
≤ 1

2

(
1 + 1

π

) ‖Wn‖1
= (π + 1)Jn;1.

(2.15)

Applying (2.6) with p = 1 we obtain (2.11)

Remark 2.2. In this section we considered kernels that guarantee ”a preserving”
of a trigonometric polynomial in the sense of part 2 of Lemma 2.1. As is well-known, the
Dirichlet kernel that corresponds to the characteristic function of [−1, 1] as well as the
Vallée-Poussin kernel that corresponds to ψ with extralinear connection on the segments
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[−1 − δ,−1] and [1, 1 + δ] have this property. We also mention that in approximation
theory there are many other kernels like kernels of Fejér, Favard, Jackson, Rogozinski,
Bochner-Riesz that do not preserve a polynomial. Their properties are described in
many papers and monographs (see, for example, [12]).

The idea to present kernels in the form (2.1) as well as the idea to apply Fourier
transform methods to study their properties was developed in [3, 9] and many other pa-
pers. For example, an approach based on the use of Nikolskii’s inequality was elaborated
in [9]. The idea to use Poisson’s summation formula appeared in [3].

Some sufficient conditions on a function ψ that guarantee the validity of Poisson’s
summation formula (2.7) were obtained in terms of smooth characteristics of ψ or in
terms of its Fourier transform (see, for example, [11]). The condition ψ̂ ∈ L1 seems to
be new. We want to emphasize that the proof of (2.7) with this condition was based on
properties of the spaces LΩ

p [13: p. 24].

3. Approximation by linear polynomial operators

In this section we discuss some aspects of the classical and wide-spread method of
approximation by linear polynomial operators. We will also show that this method
turns out to be unapplicable in the case 0 < p < 1. Usually, they deal with Fourier
means and interpolation means that are given by

Fn(f) = f ∗Wn (3.1)
In(f) = (f ∗Wn)(N) (3.2)

respectively. In (3.1) and (3.2) N = [(1 + δ)n]. Wn is defined by (2.1) and (2.1)′, and
the convolution and its discrete counterpart are given by (1.1) and (1.2), respectively.
The Fourier means are linear operators mapping Lp (1 ≤ p ≤ +∞) into TN . The
interpolation means that are correctly defined on C and are linear mappings from C
into TN .

In this paper we consider only one of the approximation problems connected with
the constructions (3.1) and (3.2), namely, we are interested in conditions implying the
validity of the inequality (Ln is Fn or In)

‖f − Ln(f)‖p ≤ C1En(f)p (3.3)

where the positive constant C1 does not depend on f and n. Inequality (3.3) has a long
history. As is known, if Wn is the Vallée-Poussin kernel, (3.3) is valid for all 1 ≤ p ≤ +∞
in the case of Fourier means and for p = +∞ in the case of interpolation means. In the
case of the Dirichlet kernel inequality (3.3) fails for both types of operators, if p = +∞,
and additionally for the type (3.1), if p = 1. However, as it was proved by M. Riesz,
(3.3) holds in this case, if 1 < p < +∞. For more details and other references we refer,
for instance, to [4: Chapter 4].

Now let us consider the general case.
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Definition 3.1. A sequence of linear operators (Ln)n∈N0 mapping Lp (1 ≤ p ≤
+∞) into TN (N = [(1 + δ)n], δ ≥ 0) is of Vallée-Poussin type in Lp, if

1. Ln(T ) = T for any T ∈ Tn (n ∈ N0)

2. ‖Ln‖(p) ≤ C2, where the positive constant C2 does not depend on n.

Lemma 3.1. If (Ln)n∈N0 is of Vallée-Poussin type in Lp for some 1 ≤ p ≤ +∞,
then (3.3) is valid.

Proof. For an arbitrary ε > 0 we consider T in Tn such that

‖f − T‖p ≤ En(f)p + ε.

Now we get

‖f − Ln(f)‖p = ‖f − T + Ln(T )− Ln(f)‖p

≤ ‖f − T‖p + ‖Ln(f − T )‖p

≤ (1 + ‖Ln‖(p)) (En(f)p + ε)

≤ C1(En(f)p + ε)

that implies (3.3)

At first we consider Fourier means.

Theorem 3.1. If ψ defined by (2.1)′ is continuous and ψ̂ belongs to L1(R), then the
sequence (Fn)n∈N0 given by (3.1) is of Vallée-Poussin type in Lp for any 1 ≤ p ≤ +∞
and (3.3) holds.

Proof. As it follows from part 2 of Lemma 2.1, Fn preserves any polynomial T in
Tn. On the basis of Lemma 2.2 and the generalized Minkovski inequality we get

‖Fn‖(p) = sup
‖f‖p=1

‖Fnf‖p

≤ 1
2π sup

‖f‖p=1

∫ 2π

0

‖f(x + h)‖p|Wn(h)| dh

≤ 1
2π ‖Wn‖1

< C2

that completes the proof

Theorem 3.2. If ψ defined by (2.1)′ is continuous and ψ̂ belongs to L1(R), the
sequence (In)n∈N0 given by (3.2) is of Vallée-Poussin type in L∞ and (3.3) holds for
p = +∞.

Proof. As it follows from part 2 of Lemma 2.1, In preserves any polynomial T in
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Tn. On the basis of Lemma 2.3 we get

‖In‖(∞) ≤ 1
2N+1 sup

‖f‖∞=1

max
x∈[0,2π)

2N∑

k=o

|f(tkN )| |Wn(x− tkN )|

≤ 1
2N+1

2N∑

k=o

max
x∈[0,τ ]

|Wn(x− tkN )|

= Jn;∞

≤ C2

that completes the proof

Remark 3.1. It follows from Lemmas 2.2, 2.3 and the proofs of Theorems 3.1, 3.2
that in the case of Fourier means (3.3) is valid for all 1 ≤ p ≤ +∞ with the constant

C1 = 1 + 1√
2π
‖ψ̂‖L1(R)

and in the case of interpolation means for p = +∞ with the constant

C1 = 1 + π+1√
2π
‖ψ̂‖L1(R).

In Lemma 3.1 and Theorems 3.1, 3.2 we followed the classical scheme that has many
applications in approximation theory. In the next section we will show how this scheme
works in the case of families of linear polynomial operators.

We notice that the requirement for operators to be bounded is quite natural, because
of its necessity for the validity of (3.3). Indeed, for 0 < p ≤ +∞ inequality (3.3) implies
(p̃ = min(1, p))

‖Lnf‖p̃
p ≤ ‖f‖p̂

p + ‖f − Ln(f)‖p̃
p ≤ ‖f‖p̃

p + C p̃
1 En(f)p̃

p ≤ (1 + C p̃
1 ) ‖f‖p̃

p

for all f ∈ Lp.
In contrast to the case 1 ≤ p ≤ +∞ the following statement holds.

Lemma 3.2. For any m ∈ N0 and 0 < p < 1 there are no non-trivial linear bounded
operators mapping Lp into Tm ⊂ Lp.

Proof. On the contrary, if L is such an operator, by virtue of Nikolski’s inequality
[10: p. 145] we get for any f in Lp

‖Lf‖1 ≤ c(m + 1)
1
p−1‖Lf‖p ≤ c(m + 1)

1
p−1 ‖L‖p‖f‖p

and L is a bounded operator from Lp into L1, that contradicts to the fact that for
0 < p < 1 there are no non-trivial linear bounded operators mapping Lp into any
Banach space X (see, for instance, [5: p. 37])
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4. Approximation by families of linear polynomial operators

It will be shown in this section that bounded families of linear polynomial operators
exist in all Lp-spaces with 0 < p ≤ +∞ in contrast to single operators existing for
1 ≤ p ≤ +∞ only. We will also see that families have approximative properties that are
similar to the properties of operators in a certain sense. We apply the scheme described
in the previous section and we give its realization by constructing appropriate families
of linear polynomial operators.

We consider a family of linear operators {Ln;λ}λ∈R mapping Lp (0 < p ≤ +∞) into
TN , where, as usual, N = [(1 + δ)n] for some δ ≥ 0. We suppose that Ln;λ = Ln;λ+2π

for n ∈ N0 and λ ∈ R, and for each f ∈ Lp the function Ln;λ(f ;x) of variables λ and x
belongs to Lp on the two-dimensional torus T2.

Definition 4.1. A family {Ln;λ} is of Vallée-Poussin type in Lp (0 < p ≤ +∞) if

1. Ln;λ(T ) = T for any T ∈ Tn (n ∈ N0) and λ ∈ R
2. ‖{Ln;λ}‖(p) ≤ C3, where the positive constant C3 does not depend on n.

Theorem 4.1. If {Ln;λ} is of Vallée-Poussin type in Lp (0 < p ≤ +∞), then

(2π)−
1
p ‖f − Ln;λ(f)‖p ≤ C En(f)p (n ∈ N0) (4.1)

where the positive constant C does not depend on f and n.

Proof. We put p̃ = min{1, p}. For an arbitrary ε > 0 we consider T ∈ Tn such
that

‖f − T‖p ≤ En(f)p + ε.

Then, for any real λ,

‖f − Ln;λ(f)‖p̃
p ≤ ‖f − T + Ln;λ(T )− Ln;λ(f)‖p̃

p

≤ ‖f − T‖p̃
p + ‖Ln;λ(f − T )‖p̃

p.
(4.2)

Taking the p-norm with respect to λ if 1 ≤ p ≤ +∞, and and integrating with respect
to λ from 0 to 2π if 0 < p < 1, on both sides of inequality (4.2), we obtain

(2π)−
p̃
p ‖f − Ln;λ(f)‖p̃

p ≤ (2π)−
p̃
p ‖f − T‖p̃

p + (2π)−
p̃
p ‖Ln;λ(f − T )‖p̃

p

≤ ‖f − T‖p̃
p + ‖{Ln;λ}‖p̃

(p)‖f − T‖p̃
p

≤ (
1 + ‖{Ln;λ}‖p̃

(p)

) (
En(f)p + ε

)p̃

that implies (4.1)

Remark 4.1. The proof of Theorem 4.1 enables us to estimate the constant C.
More precisely, (4.1) is valid with

C =
(
1 + sup

n
‖{Ln;λ}‖p̃

(p))
1
p̃ = sup

n
C(n). (4.3)
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For computational needs, when n is a priori given, one can use the constant C(n).

Let now δ be a non-negative real number, Wn (n ∈ N0) be given by (2.1) and (2.1)′,
N = [(1 + δ)n]. Henceforth, we deal with the family

Ln;λ(·) = S−λ(Sλ(·) ∗Wn)(N), (4.4)

that is,

Ln;λ(f ; x) = 1
2N+1

2N∑

k=0

f(tkN + λ)Wn(x− tkN − λ). (4.5)

It follows immediately from (4.5) that if a 2π-periodic function f is defined almost
everywhere on [0, 2π], then for almost every λ all numbers f(tkN +λ) (k = 0, 1, . . . , 2N)
are defined and the function Ln;λ(f ; x) of the variable x is a trigonometric polynomial
of order at most N . Moreover, if the functions f1 and f2 coincide almost everywhere,
then Ln;λ(f1;x) = Ln;λ(f2; x) (x ∈ R) for almost every λ. These remarks show that
the families (4.4) are correctly defined for all Lp-spaces with 0 < p ≤ +∞. As we see,
the introduction of the parameter, that has the sense of translation of knots, enables us
to extend the construction of interpolation, that make sense only for p = +∞, to the
general case 0 < p ≤ +∞.

Theorem 4.2. Let 0 < p ≤ +∞. If ψ defined by (2.1)′ is a continuous and ψ̂
belongs to Lp̃(R) where p̃ = min{1, p}, then the family {Ln;λ} given by (4.4) is of
Vallée-Poussin type in Lp and (4.1) holds.

Proof. Using part 2 of Lemma 2.1 we notice that

Ln;λ(T ) = S−λ

(
(Sλ(T ) ∗Wn)(N)

)
= S−λ(Sλ(T )) = T

for T ∈ Tn (n ∈ N0) and λ ∈ R. Now we check the boundedness of {Ln;λ}. Let first
p = +∞. On the basis of Lemma 2.3 we get

‖{Ln;λ}‖(∞) ≤ 1
2N+1 sup

‖f‖∞=1

max
x,λ

2N∑

k=0

|f(tkN + λ)| |Wn(x− tkN − λ)|

≤ 1
2N+1

2N∑

k=0

max
h∈[0,τ ]

|Wn(h− tkN )|

= Jn;∞

≤ C3.

In the case 0 < p ≤ 1 we have for f ∈ Lp and n ∈ N0

‖Ln;λ(f)‖p
p ≤ (2N + 1)−p

2N∑

k=0

∫ 2π

0

|f(tkN + λ)|p
(∫ 2π

0

|Wn(x− tkN − λ)|pdx

)
dλ

= (2N + 1)1−p‖f‖p
p ‖Wn‖p

p.

(4.6)
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By Lemma 2.2 we obtain from (4.6) for n ∈ N

‖{Ln;λ}‖(p) ≤ (2π)−
1
p (2N + 1)

1
p−1 ‖Wn‖p = (2N + 1)

1
p−1Jn;p ≤ C3.

Finally, we consider the case 1 < p < +∞. For almost every λ from [0, τ ] (we recall
that τ = 2π

2N+1 ) we have

J(λ) = ‖Ln;λ(f ;x)‖p
p;x

≤ (2N + 1)−p

∫ 2π

0

(
2N∑

k=0

|f(tkN + λ)| |Wn(x− tkN − λ)|
)p

dx

= (2N + 1)−p

2N∑
m=0

∫ tm+1
N

tm
N

(
2N∑

k=0

|f(tkN + λ)| |Wn(x− tkN − λ)|
)p

dx

= (2N + 1)−p

2N∑
m=0

∫ τ

0

(
2N∑

k=0

|f(tkN + λ)| |Wn(x− tk−m
N − λ)|

)p

dx

= (2N + 1)−p

2N∑
m=0

∫ τ

0

(
2N∑

k=0

|f(tk+m
N + λ)| |Wn(x− tkN − λ)|

)p

dx.

(4.7)

We consider the space of vector-functions

ā(x) = (a0(x), . . . , a2N (x))

with components in Lp[0, τ ] that is equipped with the norm

‖ā(x)‖{p} =

(
2N∑

m=0

∫ τ

0

|am(x)|pdx

) 1
p

.

We consider also the vector-functions

ā(k)(x) =
(
a
(k)
0 (x), . . . , a(k)

2N (x)
)

(k = 0, 1, . . . , 2N)

where
a(k)

m (x) = |f(tk+m
N + λ)| |Wn(x− tkN − λ)| (m = 0, . . . , 2N).

From (4.7) we have

J(λ) ≤ (2N + 1)−p

∥∥∥∥∥
2N∑

k=0

ā(k)(x)

∥∥∥∥∥

p

{p}

≤ (2N + 1)−p

(
2N∑

k=0

‖ā(k)(x)‖{p}
)p

(4.8)

= (2N + 1)−p




2N∑

k=0

(
2N∑

m=0

|f(tk+m
N + λ)|p

∫ τ

0

|Wn(x− tkN − λ)|pdx

) 1
p




p
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= (2N + 1)−p




2N∑

k=0

(∫ τ

0

|Wn(x− tkN − λ)|pdx

) 1
p

(
2N∑

m=0

|f(tk+m
N + λ)|p

) 1
p




p

= (2N + 1)−p
2N∑

m=0

|f(tmN + λ)|p



2N∑

k=0

(∫ tk+1
N

tk
N

|Wn(h + λ)|pdh

) 1
p




p

= τ

2N∑
m=0

|f(tmN + λ)|p(JN ;p(Wn(·+ λ))
)p

≤ τ

2N∑
m=0

|f(tmN + λ)|p(J∗n;p)
p

where
J∗n;p = max

λ∈[0,τ ]
JN ;p(Wn(·+ λ)). (4.9)

Noticing that the function J is τ -periodic, we have from (4.8)

‖{Ln;λ}‖(p) = (2π)−
1
p sup
‖f‖p=1

‖Ln;λ(f ;x)‖p

= sup
‖f‖p=1

(
1
2π

∫ 2π

0

J(λ) dλ

) 1
p

= sup
‖f‖p=1

(
1
τ

∫ τ

0

J(λ) dλ

) 1
p

≤ sup
‖f‖p=1

(
2N∑

m=0

∫ τ

0

|f(tmN + λ)|pdλ

) 1
p

J∗n;p

= J∗n;p.

(4.10)

Applying (2.15) and Lemma 2.2 for p = 1 we get from (4.10)

‖{Ln;λ‖(p) ≤ max
λ∈[0,τ ]

JN ;∞(Wn(·+ λ))

≤ max
λ∈[0,τ ]

π+1
2π ‖Wn(·+ λ)‖1

= (π + 1)Jn;1

≤ C3.

Theorem 4.2 is completely proved

Now we make some conclusions. We have considered the family {Ln;λ} given by
formula (4.4). Comparing it with formula (3.2) we get

Ln;λ = S−λ ◦ In ◦ Sλ (4.11)
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that establishes a connection between {Ln;λ} and In. However, as it was mentioned
above the introduction of the parameter λ enables us to consider {Ln;λ} in Lp-spaces
for all 0 < p ≤ +∞ in contrast to the interpolation means that make sense for p = +∞
only.

Integrating formula (4.5) with respect to the parameter λ we obtain a connection
between {Ln;λ} and the Fourier means given by (3.1) in the case 1 ≤ p ≤ +∞, that can
be symbolically represented in the form

1
2π

∫ 2π

0

Ln;λ dλ = Fn. (4.12)

In the present section we have considered the value

en(f)p = en(f)p;ψ =

{(
1
2π

∫ 2π

0
‖f − Ln;λ(f)‖p

pdλ
) 1

p

if 0 < p ≤ +∞
maxλ ‖f − Ln;λ(f)‖∞ if p = +∞.

It can be called an averaged approximation by {Ln;λ}. We have proved that if 0 < p ≤
+∞, ψ is continuous and ψ̂ belongs to Lp̃(R), where p̃ = min{1, p}, then

en(f)p ≤ Cn(p;ψ)En(f)p (4.13)

where the constants Cn(p; ψ) are uniformly bounded on n. As it follows from the proofs
of Theorems 4.1, 4.2 and from Lemmas 2.2, 2.3, they can be estimated in one of the
following ways:

Cn(p;ψ) ≤




(
1 + (2N + 1)1−pJp

n;p

) 1
p if 0 < p ≤ 1

1 + J∗n;p if 1 ≤ p < +∞
1 + Jn;+∞ if p = +∞

(4.14)

C0(p;ψ) ≤ 2
1
p̃

Cn(p;ψ) ≤
{ (

1 + (2π)
p
2−1‖ψ̂‖p

Lp(R)(2(1 + δ) + 1
n )1−p

) 1
p if 0 < p ≤ 1

1 + (π + 1)(2π)−
1
2 ‖ψ̂‖L1(R) if 1 < p ≤ +∞

(4.15)

where n ∈ N. If we replace the value
(
2(1 + δ) + n−1

)
by 3 + 2δ, we get a universal

constant C(p;ψ) that bounds all Cn(p;ψ).
Now we compare the approximative properties of Fourier means, interpolation

means and families of linear polynomial operators (in the cases, when it makes sense).
Clearly,

‖f − In(f)‖∞ ≤ en(f)∞ (f ∈ C, n ∈ N0). (4.16)

As it follows from Remark 4.1, the right-hand side of (4.16) can be estimated by 1 +
‖{Ln;λ}‖(∞). However,

‖In‖(∞) ≤ ‖{Ln;λ}‖(∞)

= sup
‖f‖∞=1

max
λ
‖S−λ ◦ In ◦ Sλ(f)‖∞

= sup
‖f‖∞=1

max
λ
‖In ◦ Sλ(f)‖∞

≤ sup
‖f‖∞=1

max
λ
‖In‖(∞)‖Sλ(f)‖∞

= ‖In‖(∞),
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and (4.16) gives the same estimate for ‖f−In(f)‖∞ as we have obtained in the proof of
Lemma 3.1. Hence, the substitution In by {Ln;λ} does not lead to essential increasing
of the approximation error.

In the case of Fourier means we have the same situation. Let now 1 ≤ p ≤ +∞.
Using Minkovski’s generalized inequality, Hölder’s inequality, and relation (4.12) we
obtain for n ∈ N0

‖Fn‖(p) = sup
‖f‖p=1

‖Fn(f)‖p

≤ 1
2π sup

‖f‖p=1

∫ 2π

0

‖Ln;λ(f)‖pdλ

≤ 1
2π

(∫ 2π

0

dλ

) 1
q

sup
‖f‖p=1

‖Ln;λ(f)‖p

= ‖Ln;λ(f)‖(p).

By the same arguments we get

‖f −Fn(f)‖p ≤ en(f)p (f ∈ Lp, n ∈ N0). (4.17)

Thus, Theorem 3.1 is an immediate consequence of Theorem 4.2.
As we have seen the approximation by families of linear polynomial operators gives

the best order of approximation in average on the parameter λ. Now we will show
that the same outcome can be obtained with an a priori defined probability error, if
the parameters λ are randomly chosen. More exactly, the following theorem holds. As
usual, we put N = [(1 + δ)n] and τ = 2π

2N+1 . The constants Cn = Cn(p; ψ) have the
same meaning as in inequality (4.13). By P (A) we denote the probability of an event A.
It will follow from below that we practically use the geometrical concept of probability.

Theorem 4.3 Let 0 < p < +∞, ψ defined by (2.1)′ be continuous and ψ̂ belong to
Lp̃(R), where p̃ = min{1, p}. Let also 0 < σ < 1, γ > 1, k ∈ N satisfy γ−pk ≤ σ and
ξj (j = 0, 1, . . . , 2N) be independent random variables uniformly distributed on [0, τ ].
Then for f ∈ Lp and n ∈ N0

P

{
min

j=1,...,k
‖f − Ln;ξj (f)‖p ≤ γCnEn(f)p

}
≥ 1− σ. (4.18)

Proof. First we notice that if ξ is a uniformly distributed on [0, τ ] random value,
then

P{ξ ∈ e} = 1
τ µ{λ ∈ e} (4.19)

for each set e ⊂ [0, τ ] measurable in the Lebesgue sense. As it follows from formula
(4.5), the function ‖f − Ln;λ(f)‖p is τ -periodic on λ, and therefore

1
2π

∫ 2π

0

‖f − Ln;λ(f)‖p
pdλ = 1

2π

2N∑

k=0

∫ tk+1
N

tk
N

‖f − Ln;λ(f)‖p
pdλ

= 1
2π

2N∑

k=0

∫ τ

0

‖f − Ln;λ−tk
N

(f)‖p
pdλ

= 1
τ

∫ τ

0

‖f − Ln;λ(f)‖p
pdλ.

(4.20)
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Taking into account that the random values ξj are independent and have the same
distribution law we get using (5.2), (5.3), (4.13) and Chebyshev’s inequality

P

{
min

j=1,...,k
‖f − Ln;ξj

(f)‖p ≤ γ CnEn(f)p

}

= 1− P





k⋂

j=1

{‖f − Ln;ξj
(f)‖p > γ CnEn(f)p}





= 1−
k∏

j=1

P{‖f − Ln;ξj
(f)‖p > γ CnEn(f)p}

= 1−
(
P{‖f − Ln;ξj

(f)‖p > γ CnEn(f)p}
)k

= 1−
(

1
τ

µ
{

λ ∈ [0, τ ]
∣∣∣ ‖f − Ln;λ(f)‖p

p > (γ CnEn(f))p
p

})k

≥ 1−
(

1
τ

(
γ CnEn(f)p

)−p
∫ τ

0

‖f − Ln;λ(f)‖p
pdλ

)k

≥ 1−
((

γ CnEn(f)p

)−p(
CnEn(f)

)p
)k

= 1− γ−pk

≥ 1− σ.

The proof is complete
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