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Paley-Wiener-Type Theorem
for a Class of Integral Transforms Arising from a

Singular Dirac System

A. I. Zayed and V. K. Tuan

Abstract. A characterization of weighted L2(I) spaces in terms of their images under various
integral transformations is derived, where I is a finite interval. The class of integral transfor-
mations considered is related to certain singular Dirac systems on a half line.
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1. Introduction

The Paley-Wiener theorem [5] gives a characterization of the space L2[−σ, σ] in terms
of its image under the Fourier transformation by showing that a function f(x) is in
L2[−σ, σ] if and only if its Fourier transform f̂(ω) can be continued analytically to
the whole complex plane as an entire function of exponential type at most σ whose
restriction to the real axis belongs to L2(R). This characterization uses complex-variable
techniques and as a result it does not lend itself very naturally to other more complicated
integral transformations.

Alternative approaches using real analysis techniques have been developed in the
last few years to characterize the images of spaces of the form L2[I, dρ], for some measure
dρ and an interval I (finite or infinite), under various integral transformations, such as
the Mellin [11], Hankel [10], Y [9], and Airy transforms [12].

One of the first and simplest of such results was discovered by H. Bang [2]. It can
be rephrased as follows: let f ∈ C∞(R) be such that all its derivatives belong to L2(R).
Then

lim
n→∞

‖f (n)‖
1
n
2 = sup

{|y| : y ∈ suppf̂
}
.

In particular, a function f is the Fourier transform of a square integrable function
vanishing outside the interval [−σ, σ] if and only if

lim
n→∞

‖f (n)‖
1
n
2 ≤ σ.
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In a recent paper [13], we proposed a unified approach to handle a large class of
integral transforms that includes the Fourier sine and cosine transforms, the Hankel,
the Weber, the Kontorovich-Lebedev and the Jacobi transforms. This class of integral
transforms arises from two types of singular Sturm-Liouville problems: singular on a
half line and singular on the whole line. The main idea of this approach goes as follows:

Let L be a differential operator, with a continuous spectrum Ω1, and φ(x, λ) be an
eigenfunction with corresponding eigenvalue λ: Lφ = −λφ. In addition, suppose that
T : L2(Ω1; dρ1) → L2(Ω2; dρ2),

f(x) = (TF )(x) =
∫

Ω1

F (λ)φ(x, λ) dρ1(λ)

is a unitary transformation, i.e.
∫

Ω2

|f(x)|2dρ2(x) =
∫

Ω1

|F (λ)|2dρ1(λ).

In that case, if λnF (λ) ∈ L2(Ω1; dρ1) for any n ∈ N0, we have

Lnf(x) =
∫

Ω1

(−λ)nF (λ)φ(x, λ) dρ1(λ)

and ∫

Ω2

|Lnf(x)|2dρ2(x) =
∫

Ω1

|λnF (λ)|2dρ1(λ). (1)

Raising both sides of (1) to the power 1
2n and taking the limit as n →∞ we get [8]

lim
n→∞

‖Lnf‖
1
n

L2(Ω2;dρ2)
= sup

λ∈ supp F
|λ| (2)

where supp F denotes the support of F , the smallest closed set, outside which the
function F vanishes almost everywhere. From (2) it is obvious that if

lim
n→∞

‖Lnf‖
1
n

L2(Ω2;dρ2)
< ∞, (3)

then F has a compact support. Hence, formula (2) plays a decisive role in studying
integral transforms of functions with compact supports. It can be shown that under
some ”extra conditions” on f inequality (3) gives the necessary and sufficient condition
for a function f to be a T -transform of a function F ∈ L2(Ω1; dρ1) with compact support.
Formula (3) yields Bang’s formula when Ω1 = (−∞,∞), φ(x, λ) = eixλ, dρ1(λ) = dλ
and L = d

dx .
In this paper we extend this technique to study integral transforms arising from

singular Dirac systems of differential equations [4]. The image of the space of functions
with compact supports under those transforms is fully described. As examples, the
Hartley transform and some transforms with the Airy and the Bessel functions as kernels
are considered.
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2. Singular Dirac system

Consider the one-dimensional singular Dirac system on the half line

y′2 + p11(x)y1 + p12(x)y2 = λy1

−y′1 + p21(x)y1 + p22(x)y2 = λy2

}
(0 < x < ∞) (4)

where pij (i, j = 1, 2) are real-valued functions and λ is a parameter. Using matrix
notation, we can write system (4) in the form

BY ′ + P (x)Y = λY

where

B =
(

0 1
−1 0

)
, P (x) =

(
p11(x) p12(x)
p21(x) p22(x)

)
, Y =

(
y1(x)
y2(x)

)
.

In the case when p12 = p21 = 0, p11(x) = V (x) + m, p22(x) = V (x) − m, V is a
potential function, and m is the mass of a particle, system (4) is called a one-dimensional
stationary Dirac system in relativistic quantum theory.

Under the assumption p12 = p21 we can transform system (4) into the canonical
form

BZ ′ + Q(x)Z = λZ (5)

where
Y = H(x)Z

H(x) =
(

cos φ(x) − sin φ(x)
sinφ(x) cos φ(x)

)

Q(x) = H−1(x)B
d

dx
H(x) + H−1(x)P (x)H(x).

In addition, if we choose

φ(x) =

{
1
2 tan−1

(
2p12(x)

p11(x)−p22(x)

)
if p11 6= p22

π
4 if p11 = p22

,

then Q takes the simpler form Q =
(

q1
0

0
q2

)
for some continuous functions q1 and q2.

Thus (5) takes the canonical form

y′2 + q1(x)y1 = λy1

y′1 − q2(x)y2 = −λy2

}
(0 < x < ∞).

In the sequel we will be dealing mainly with the equivalent system

y′1 − q2(x)y2 = λy2

y′2 + q1(x)y1 = −λy1

}
(0 < x < ∞) (6)
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where q1 and q2 are continuous on [0,∞). Let

Φ(x, λ) =
(

φ1(x, λ)
φ2(x, λ)

)
and Θ(x, λ) =

(
θ1(x, λ)
θ2(x, λ)

)
(7)

be the solutions of system (6) that satisfies

φ1(0, λ) = − cos α

φ2(0, λ) = sin α

}
and

θ1(0, λ) = sin α

θ2(0, λ) = cosα

}
. (8)

Let

f(x) =
(

f1(x)
f2(x)

)

be a vector-valued function such that f ∈ L2(R+), i.e.

‖f‖2L2(R+) =
∫ ∞

0

|f(x)|2dx =
∫ ∞

0

(|f1(x)|2 + |f2(x)|2) dx < ∞.

It is known [4] that for any non-real λ there exists a function m(λ), analytic in the
upper and lower half-planes that are not necessarily analytic continuation of each other
so that

Θ(x, λ) + m(λ)Φ(x, λ),

as a vector-valued function of x, is in L2(R+) for non-real λ. Moreover,

1
π

lim
δ→0+

∫ λ

µ

=m(u + iδ) du = ρ(λ)− ρ(µ)

where ρ is a monotone increasing function (see [3]). If f ∈ L2(R+), then

F (λ) =
∫ ∞

0

fT (x)Φ(x) dx =
∫ ∞

0

(
f1(x)φ1(x, λ) + f2(x)φ2(x, λ)

)
dx,

the generalized Fourier transform of f , belongs to L2(R, dρ) and the Parseval equality
∫ ∞

0

|f(x)|2dx =
∫ ∞

−∞
|F (λ)|2dρ(λ) (9)

holds. In addition, if the integrals
∫ ∞

−∞
F (λ)φ1(x, λ) dρ(λ) and

∫ ∞

−∞
F (λ)φ2(x, λ) dρ(λ)

converge absolutely and uniformly in x in each finite interval, then

f1(x) =
∫ ∞

−∞
F (λ)φ1(x, λ) dρ(λ)

f2(x) =
∫ ∞

−∞
F (λ)φ2(x, λ) dρ(λ)





. (10)
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We also have the estimate ∫ ∞

−∞

dρ(λ)
λ2 + 1

< ∞. (11)

Let us denote by L the operator

L = B
d

dx
−Q =

(
0 −1
1 0

)
d

dx
−

(
q1(x) 0

0 q2(x)

)

so that system (6) takes the form
LY = λY.

Hence Φ(x, λ) is a solution of the system

LΦ = λΦ, (12)

and
AT Φ(0, λ) = 0 (13)

where

A =
(

sin α
cosα

)
and Φ(0, λ) =

(
φ1(0, λ)
φ2(0, λ)

)
.

We shall call a vector-valued function f the Φ-transform of F if

f(x) =
∫ ∞

−∞
F (λ)Φ(x, λ) dρ(λ) (14)

where Φ satisfies (12) and (13). We shall assume that Q is infinitely differentiable, such
that the spectrum of the system (12) is either R or R+.

3. Paley-Wiener-type theorem

The following lemma describes the image of the Φ-transform of a function F such that
λnF (λ) ∈ L2(R, dρ) for all n ∈ N0.

Lemma 1. Let the function F be such that λnF (λ) ∈ L2(R, dρ) for all n ∈ N0.
A vector-valued function f is the Φ-transform of F as given by (14) if and only if the
following conditions are satisfied:

1) f is infinitely differentiable on R+.

2) Lnf ∈ L2(R+) for all n.

3) limx→0 AT · (Lnf)(x) = 0.
4) limx→∞(Lnf)(x) = 0.

Proof . Necessity: Let λnF (λ) ∈ L2(R, dρ) for all n ∈ N0. It is easy to see
that λnF (λ) ∈ L1(R, dρ). Indeed, applying formula (11) and the Cauchy-Schwartz
inequality, we get

(∫ ∞

−∞
|λnF (λ)| dρ(λ)

)2

≤
(∫ ∞

−∞
(λ2n+2 + λ2n)|F (λ)|2dρ(λ)

) (∫ ∞

−∞

dρ(λ)
λ2 + 1

)
< ∞.
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1) Since Q is infinitely differentiable, so are φ1(x, λ) and φ2(x, λ) with respect to the
variable x. It also follows as in the Sturm-Liouville case [7] that ∂nφ1(x,λ)

∂xn and ∂nφ2(x,λ)
∂xn

are of order λn as λ →∞. Therefore,

f (n)(x) =
∫ ∞

−∞
F (λ)

∂nΦ(x, λ)
∂xn

dρ(λ)

exists for all n, where

f (n)(x) =
(

f
(n)
1 (x)

f
(n)
2 (x)

)
.

2) By applying the differential operator L to (14) n times, we have

(Lnf)(x) =
∫ ∞

−∞
F (λ)LnΦ(x, λ) dρ(λ) =

∫ ∞

−∞
λnF (λ)Φ(x, λ) dρ(λ),

and since λnF (λ) ∈ L2(R, dρ) we have Lnf ∈ L2(R+).

3) By taking the matrix product with AT , we get

lim
x→0+

AT · (Lnf)(x) = lim
x→0+

∫ ∞

−∞
λnF (λ)(AT · Φ(x, λ)) dρ(λ)

=
∫ ∞

−∞
λnF (λ)(AT · Φ(0, λ)) dρ(λ)

= 0.

Taking the limit inside the integral is justified by the Lebesgue dominated convergence
theorem.

4) Let

f̃(x) = Bf(x) =
(

0 −1
1 0

)(
f1(x)
f2(x)

)
=

(−f2(x)
f1(x)

)
.

We have
∫ N

0

f̃
T
(x) · Lf(x) dx

=
∫ N

0

{
f2(x)

[
f ′2(x) + q1(x)f1(x)

]
+ f1(x)

[
f ′1(x)− q2(x)f2(x)

]}
dx

=
[|f1(x)|2 + |f2(x)|2]∣∣N

0

+
∫ N

0

{[− f
′
1(x) + f2(x)q1(x)

]
f1(x) +

[− f
′
2(x)− f1(x)q2(x)

]
f2(x)

}
dx

=
[|f1(x)|2 + |f2(x)|2]

∣∣N
0

+
∫ N

0

fT (x) · Lf̃(x) dx.

Hence

|f1(N)|2 + |f2(N)|2

= |f1(0)|2 + |f2(0)|2 +
∫ N

0

f̃
T
(x) · Lf(x) dx−

∫ N

0

fT (x) · Lf̃(x) dx.
(15)
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Since f and Lf are in L2(R+), it follows that f̃ and Lf̃ are also in L2(R+). Therefore,
the right-hand side of (15) approaches a limit as N →∞; hence so is the left-hand side
of (15). But because f1 and f2 belong to L2(R+), the limit must be zero, i.e.

lim
N→∞

f1(N) = lim
N→∞

f2(N) = 0.

Similarly one can show that limx→∞(Lnf)(x) = 0 for all n.

Sufficiency: Let f satisfy conditions 1 - 4 of the lemma. Since f ∈ L2(R+) (condition
1 with n = 0), there exists F ∈ L2(R, dρ) such that

F (λ) =
∫ ∞

0

fT (x) · Φ(x, λ) dx.

Then
λnF (λ) =

∫ ∞

0

λnfT (x) · Φ(x, λ)dx =
∫ ∞

0

fT (x) · LnΦ(x, λ) dx.

We show by induction on n that

λnF (λ) =
∫ ∞

0

(Lnf)T (x) · Φ(x, λ) dx.

For n = 1,

λF (λ) =
∫ ∞

0

fT (x) · LΦ(x, λ) dx

=
∫ ∞

0

{
− f1(x)

[
φ′2(x, λ) + q1(x)φ1(x, λ)

]

+ f2(x)
[
φ′1(x, λ)− q2(x)φ2(x, λ)

]}
dx

=
[− f1(x)φ2(x, λ) + f2(x)φ1(x, λ)

]∣∣∞
0

+
∫ ∞

0

{[− φ1(x, λ)f ′2(x) + φ2(x, λ)f ′1(x)
]

− [
φ1(x, λ)f1(x)q1(x) + φ2(x, λ)f2(x)q2(x)

]}
dx

=
[− f1(x)φ2(x, λ) + f2(x)φ1(x, λ)

]∣∣∞
0

+
∫ ∞

0

{[− f ′2(x)− f1(x)q1(x)
]
φ1(x, λ)

+
[
f ′1(x)− f2(x)q2(x)

]
φ2(x, λ)

}
dx

=
[− f1(x)φ2(x, λ) + f2(x)φ1(x, λ)

]∣∣∞
0

+
∫ ∞

0

[(Lf)(x)]T · Φ(x, λ) dx.

Since f(x) and Φ(x, λ) satisfy the same initial condition (13) it follows that

f1(0)φ2(0, λ)− f2(0)φ1(0, λ) = 0.
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As x → ∞, from condition 4 (n = 0) it follows that limx→∞ f(x) = 0, and because
Φ(x, λ) is bounded in x for each fixed λ we have

lim
x→∞

[
f1(x)φ2(x, λ)− f2(x)φ1(x, λ)

]
= 0.

Hence,

λF (λ) =
∫ ∞

0

[(Lf)(x)]T · Φ(x, λ) dx.

As Lf ∈ L2(R+), we have λF (λ) ∈ L2(R, dρ).
Now assume that

λnF (λ) =
∫ ∞

0

[(Lnf)(x)]T · Φ(x, λ) dx.

Then

λn+1F (λ) =
∫ ∞

0

[(Lnf)(x)]T · LΦ(x, λ) dx

=
[− g1(x)φ2(x, λ) + g2(x)φ1(x, λ)

]∣∣∞
0

+
∫ ∞

0

[(Lg)(x)]T · Φ(x, λ) dx

where

g(x) =
(

g1(x)
g2(x)

)
= (Lnf)(x).

For g(x) and Φ(x, λ) satisfy the same initial condition (13), then by conditions 3 and 4
we have [− g1(x)φ2(x, λ) + g2(x)φ1(x, λ)

]∣∣∞
0

= 0.

Thus,

λn+1F (λ) =
∫ ∞

0

[(Ln+1f)(x)]T · Φ(x, λ) dx

and since Ln+1f ∈ L2(R+), it follows that λn+1F (λ) ∈ L2(R, dρ)

Lemma 2. Let f be the Φ-transform of a function F as given by (14). Let λnF (λ) ∈
L2(R, dρ) for n ∈ N0. Then

lim
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
= sup

λ∈supp F
|λ|.

Proof. From the relation

(Lnf)(x) =
∫ ∞

−∞
λnF (λ)Φ(x, λ) dρ(λ)

and the Parseval equation (9) we have

∥∥Lnf
∥∥2

L2(R+)
=

∫ ∞

−∞
λ2n|F (λ)|2dρ(λ).
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First, let F have a compact support: supλ∈supp F |λ| = δ < ∞. Then

∫ ∞

−∞
λ2n|F (λ)|2dρ(λ) =

∫ δ

−δ

λ2n|F (λ)|2dρ(λ) ≤ δ2n

∫ δ

−δ

|F (λ)|2dρ(λ).

Hence,

lim sup
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
≤ δ lim sup

n→∞

{∫ δ

−δ

|F (λ)|2dρ(λ)

} 1
2n

= δ.

On the other hand, because δ is the supremum of the support of F , for any ε with
0 < ε < δ we have ∫

δ−ε<|λ|<δ

|F (λ)|2dρ(λ) > 0.

Therefore,

lim inf
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
≥ lim inf

n→∞

{∫

δ−ε<|λ|<δ

λ2n|F (λ)|2dρ(λ)

} 1
2n

≥ (δ − ε) lim inf
n→∞

{∫

δ−ε<|λ|<δ

|F (λ)|2dρ(λ)

} 1
2n

= δ − ε.

Because ε > 0 is arbitrary, we obtain

lim
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
= δ.

Now let F have a unbounded support. Then for any N large enough
∫

|λ|>N

|F (λ)|2dρ(λ) > 0.

Consequently,

lim
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
≥ lim

n→∞

{∫

|λ|>N

λ2n|F (λ)|2dρ(λ)

} 1
2n

≥ N lim
n→∞

{∫

|λ|>N

|F (λ)|2dρ(λ)

} 1
2n

= N.

Because N is arbitrary, we obtain limn→∞
∥∥Lnf

∥∥ 1
n

L2(R+)
= ∞

Now we are ready to state and prove the following Paley-Wiener-type theorem.
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Theorem. A vector-valued function f is the Φ-transform (14) of a function F ∈
L2(R, dρ) with compact support if and only if f satisfies conditions 1 − 4 of Lemma 1
and

lim
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
< ∞. (16)

Proof. Let F ∈ L2(R, dρ) have a compact support. Then λnF (λ) ∈ L2(R, dρ) for
all n ∈ N0. Consequently, by Lemma 1, f satisfies conditions 1 - 4 of Lemma 1, and by
Lemma 2

lim
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
= sup

λ∈supp F
|λ| < ∞.

Conversely, let f satisfy conditions 1 - 4 of Lemma 1 and (16). By Lemma 1, f is the
Φ-transform (14) of a function F such that λnF (λ) ∈ L2(R, dρ) for all n ∈ N0. By
Lemma 2 and equation (16) we have

sup
λ∈supp F

|λ| = lim
n→∞

∥∥Lnf
∥∥ 1

n

L2(R+)
< ∞.

Hence, F has a compact support

4. Examples

As examples, the Hartley and some transforms with the Airy and the Bessel functions as
kernels are derived, and the Paley-Wiener theorems are obtained for these transforms.

Example 1 (Fourier and Hartley transform). Consider the boundary-value prob-
lem (6) - (8) in which q1 = 0 = q2. It is easy to see that

Φ(x, λ) =
(− cos(λx + α)

sin(λx + α)

)
and Θ(x, λ) =

(
sin(λx + α)
cos(λx + α)

)

and m(λ) = i, since

Θ(x, λ) + m(λ)Φ(x, λ) =
(−iei(λx+α)

ei(λx+α)

)
∈ L2(R+)

for =λ > 0. Thus dρ(λ) = 1
π dλ,

F (λ) =
∫ ∞

0

{
− cos(λx + α)f1(x) + sin(λx + α)f2(x)

}
dx

and
f1(x) = − 1

π

∫ ∞

−∞
cos(λx + α)F (λ) dλ

f2(x) =
1
π

∫ ∞

−∞
sin(λx + α)F (λ) dλ





. (17)

The Paley-Wiener-type theorem for the transforms (17) takes the following form.
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Corollary 1. A vector-valued function f is the Φ-transform (17) of a function
F ∈ L2(R) with compact support if and only if f satisfies the following conditions:

1) f is infinitely differentiable on R+.

2)
(

0
d

dx

− d
dx
0

)n
f(x) ∈ L2(R+) for all n.

3) limx→0 (sinα, cos α) · ( 0
d

dx

− d
dx
0

)n
f(x) = 0.

4) limx→∞
(

0
d

dx

− d
dx
0

)n
f(x) = 0.

5) limn→∞
∥∥(

0
− d

dx

− d
dx
0

)n
f(x)

∥∥ 1
n

L2(R+)
< ∞.

Let α = 0 and

2f(x) = −f1(|x|) + i sign xf2(|x|) (x ∈ R).

Then we obtain the pair of Fourier transforms

F (λ) =
∫ ∞

−∞
e−iλxf(x) dx

f(x) =
1
2π

∫ ∞

−∞
eiλxF (λ) dλ





.

If we put α = 0 and

2f(x) = −f1(|x|) + sign xf2(|x|) (x ∈ R),

then we arrive at the pair of Hartley transforms

F (λ) =
∫ ∞

−∞
(cosλx + sin λx)f(x) dx

f(x) =
1
2π

∫ ∞

−∞
(cos λx + sin λx)F (λ) dλ





.

Example 2 (Airy transform). Consider system (6) - (8) with q1 = 0, q2(x) = −x
and α = 0:

y′1 + xy2 = λy2

y′2 = −λy1

}
(0 < x < ∞). (18)

Eliminating y1 from this system yields

y′′2 − (λx− λ2)y2 = 0.

Setting t + λ̃ = λ
4
3 − λ

1
3 x we obtain

d2y2

dt2
+ (t + λ̃)y2 = 0 and y1 = λ−

2
3
dy2

dt
.
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The general solution of the first equation is

y2(t) = A(t + λ̃)
1
2 J 1

3
(X) + B(t + λ̃)

1
2 Y 1

3
(X)

where
X =

2
3
(t + λ̃)

3
2 =

2
3
λ

1
2 (λ− x)

3
2

and Jµ and Yµ are the Bessel functions of the first and second kinds, respectively. Hence

y2(x) = λ
1
6

{
A(λ− x)

1
2 J 1

3
(X) + B(λ− x)

1
2 Y 1

3
(X)

}

and
y1(x) = λ−

5
6

{
Aλ

1
2 (λ− x)J ′1

3
(X) +

A

2
√

λ− x
J 1

3
(X)

+ Bλ
1
2 (λ− x)Y ′

1
3
(X) +

B

2
√

λ− x
Y 1

3
(X)

}
.

Since X = 2
3λ2 at x = 0 we have

y2(0) = Aλ
2
3 J 1

3

(2
3
λ2

)
+ Bλ

2
3 Y 1

3

(2
3
λ2

)
= 0

and
y1(0) =

A

λ
5
6

{
λ

3
2 J ′1

3

(2
3
λ2

)
+

1
2
√

λ
J 1

3

(2
3
λ2

)}

+
B

λ
5
6

{
λ

3
2 Y ′

1
3

(2
3
λ2

)
+

1
2
√

λ
Y 1

3

(2
3
λ2

)}
= 1

.

Solving this system for A and B, we obtain φ1 and φ2. The explicit solution for φ1 and
φ2 can be found in [7: pp. 92 - 93] and therefore the kernels of the integrals in (10) can
be expressed in terms of the Bessel functions Jµ and Yµ.

However, since the argument of the Bessel functions,

X =
2
3
λ

1
2 (λ− x)

3
2

may be complex or real depending on whether x is greater or less than λ, and hence the
integrals have to be split into different regions with different kinds of Bessel functions
as kernels, it is more convenient to use the Airy functions. In so doing, we can express
f1 and f2 as single integrals extending over the whole real line (see (23) below).

So, let us make the change of variable λx−λ2 = λ
2
3 z to obtain the Airy differential

equation
d2y2

dz2
− zy2 = 0

whose general solution is
y2 = a Ai(z) + bBi(z).
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Here Ai and Bi are the Airy functions [1]. Hence,

y2(x, λ) = a Ai(λ
1
3 x− λ

4
3 ) + b Bi(λ

1
3 x− λ

4
3 ). (19)

Since y1 = −λ−1y′2 we have

y1(x, λ) = −aλ−
2
3 Ai′(λ

1
3 x− λ

4
3 )− bλ−

2
3 Bi′(λ

1
3 x− λ

4
3 ). (20)

Thus, (18) and (19) are the general solution of system (18). The solution Φ(x, λ) satisfies
the initial condition

φ1(0, λ) = −1

φ2(0, λ) = 0

}
.

Thus
aAi(−λ

4
3 ) + b Bi(−λ

4
3 ) = 0

a λ−
2
3 Ai′(−λ

4
3 ) + b λ−

2
3 Bi′(−λ

4
3 ) = 1

}
.

Using the Wronskian equality for the Airy functions [1]

W (Ai(x), Bi(x)) := Ai(x) Bi′(x)−Ai′(x) Bi(x) =
1
π

we get
a = −πλ

2
3 Bi(−λ

4
3 )

b = πλ
2
3 Ai(−λ

4
3 )

}
.

Thus,

φ1(x, λ) = πBi(−λ
4
3 )Ai′(λ

1
3 x− λ

4
3 )− πAi(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

φ2(x, λ) = −πλ
2
3 Bi(−λ

4
3 )Ai(λ

1
3 x− λ

4
3 ) + πλ

2
3 Ai(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

}
.

Similarly, the solution Θ(x, λ) satisfies the initial condition

θ1(0, λ) = 0

θ2(0, λ) = 1

}
,

that yields
aAi(−λ

4
3 ) + b Bi(−λ

4
3 ) = 1

aλ−
2
3 Ai′(−λ

4
3 ) + bλ−

2
3 Bi′(−λ

4
3 ) = 0

}
.

Solving this system we get
a = πBi′(−λ

4
3 )

b = −πAi′(−λ
4
3 )

}
.

Thus

θ1(x, λ) = −πλ−
2
3 Bi′(−λ

4
3 )Ai′(λ

1
3 x− λ

4
3 ) + πλ−

2
3 Ai′(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

θ2(x, λ) = πBi′(−λ
4
3 )Ai(λ

1
3 x− λ

4
3 )− πAi′(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

}
.
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We have

θ1(x, λ) + m(λ)φ1(x, λ) =
[
−λ−

2
3 Bi′(−λ

4
3 ) + m(λ)Bi(−λ

4
3 )

]
πAi′(λ

1
3 x− λ

4
3 )

+
[
λ−

2
3 Ai′(−λ

4
3 )−m(λ)Ai(−λ

4
3 )

]
πBi′(λ

1
3 x− λ

4
3 )

θ2(x, λ) + m(λ)φ2(x, λ) =
[
Bi′(−λ

4
3 )−m(λ)λ

2
3 Bi(−λ

4
3 )

]
πAi(λ−

1
3 x− λ

4
3 )

+
[
−Ai′(−λ

4
3 ) + m(λ)λ

2
3 Ai(−λ

4
3 )

]
πBi(λ

1
3 x− λ

4
3 ).

If we take

m(λ) = λ−
2
3
Ai′(−λ

4
3 ) + iBi′(−λ

4
3 )

Ai(−λ
4
3 ) + iBi(−λ

4
3 )

,

then

θ1(x, λ) + m(λ)φ1(x, λ) = −λ−
2
3
Ai′(λ

1
3 x− λ

4
3 ) + iBi′(λ

1
3 x− λ

4
3 )

Ai(−λ
4
3 ) + iBi(−λ

4
3 )

θ2(x, λ) + m(λ)φ2(x, λ) =
Ai(λ

1
3 x− λ

4
3 ) + iBi(λ

1
3 x− λ

4
3 )

Ai(−λ
4
3 ) + iBi(−λ

4
3 )





.

The relations between the Airy functions and the Hankel functions H
(2)
ν [1]

H
(2)

− 1
3

(
2
3
z

3
2

)
= e−i π

6

√
3
z
(Ai(−z) + iBi(−z))

H
(2)
2
3

(
2
3
z

3
2

)
= e−i π

6

√
3

z
(Ai′(−z) + iBi′(−z))





(21)

yield

θ1(x, λ) + m(λ)φ1(x, λ) = −
(λ− x)H(2)

2
3

(
2
3λ

1
2 (λ− x)

3
2

)

λH
(2)

− 1
3

(
2
3λ2

)

θ2(x, λ) + m(λ)φ2(x, λ) =
(λ− x)

1
2 H

(2)

− 1
3

(
2
3λ

1
2 (λ− x)

3
2

)

λ
1
2 H

(2)

− 1
3

(
2
3λ2

)





.

Using the asymptotic expansion for the Hankel function [1]

H(2)
ν (z) =

√
2
πz

e−i(z− ν
2 π−π

4 )

(
1 + O

(1
z

))

as z →∞ (−2π < arg z < π), it is clear that

(λ− x)H(2)
2
3

(2
3
λ

1
2 (λ− x)

3
2

)

(λ− x)
1
2 H

(2)

− 1
3

(2
3
λ

1
2 (λ− x)

3
2

)





∈ L2(R+). (22)
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for any non-real λ with =λ > 0. Hence,

θ1(x, λ) + m(λ)φ1(x, λ)

θ2(x, λ) + m(λ)φ2(x, λ)

}
∈ L2(R+).

We have

m(λ) =
Ai(−λ

4
3 )Ai′(−λ

4
3 ) + Bi(−λ

4
3 )Bi′(−λ

4
3 ) + iW

(
Ai(−λ

4
3 ), Bi(−λ

4
3 )

)

λ
2
3

(
Ai2(−λ

4
3 ) + Bi2(−λ

4
3 )

) .

Thus
dρ(λ) =

1
π
=m(λ) dλ =

1

πλ
2
3

(
Ai2(−λ

4
3 ) + Bi2(−λ

4
3 )

) dλ.

We arrive at the triple of integral transforms

F (λ) = π

∫ ∞

0

{ [
Bi(−λ

4
3 )Ai′(λ

1
3 x− λ

4
3 )−Ai(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

]
f1(x)

+ λ
2
3

[
−Bi(−λ

4
3 )Ai(λ

1
3 x− λ

4
3 ) + Ai(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

]
f2(x)

}
dx

and

f1(x) =
∫ ∞

−∞

Bi(−λ
4
3 )Ai′(λ

1
3 x− λ

4
3 )−Ai(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

λ
2
3
[
Ai2(−λ

4
3 ) + Bi2(−λ

4
3 )

] F (λ) dλ

f2(x) =
∫ ∞

−∞

−Bi(−λ
4
3 )Ai(λ

1
3 x− λ

4
3 ) + Ai(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

Ai2(−λ
4
3 ) + Bi2(−λ

4
3 )

F (λ) dλ





. (23)

Theorem 1 holds for the transforms (23) if

A =
(

0
1

)
and L =

(
0 − d

dx
d
dx x

)
.

Corollary 2. A vector-valued function f is the Φ-transform (23) of a function
F ∈ L2(R, dρ) with compact support if and only if f satisfies the following conditions:

1) f is infinitely differentiable on R+.

2)
(

0
d

dx

− d
dx
x

)n
f(x) ∈ L2(R+) for all n.

3) limx→0 (0, 1) · ( 0
d

dx

− d
dx
x

)n
f(x) = 0.

4) limx→∞
(

0
d

dx

− d
dx
x

)n
f(x) = 0.

5) limn→∞
∥∥(

0
d

dx

− d
dx
x

)n
f(x)

∥∥ 1
n

L2(R+)
< ∞.
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Example 3 (Second Airy transform). Consider the same system (18), but with
α = π

2 . The solution Φ(x, λ) satisfying the initial condition

φ1(0, λ) = 0

φ2(0, λ) = 1

}

is

φ1(x, λ) = −πλ−
2
3 Bi′(−λ

4
3 )Ai′(λ

1
3 x− λ

4
3 ) + πλ−

2
3 Ai′(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

φ2(x, λ) = πBi′(−λ
4
3 )Ai(λ

1
3 x− λ

4
3 )− πAi′(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

}
.

Similarly, the solution Θ(x, λ) satisfying the initial condition

θ1(0, λ) = 1

θ2(0, λ) = 0

}

is
θ1(x, λ) = −πBi(−λ

4
3 )Ai′(λ

1
3 x− λ

4
3 ) + πAi(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

θ2(x, λ) = πλ
2
3 Bi(−λ

4
3 )Ai(λ

1
3 x− λ

4
3 )− πλ

2
3 Ai(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

}
.

We have

θ1(x, λ) + m(λ)φ1(x, λ) =
[
−Bi(−λ

4
3 )−m(λ)λ−

2
3 Bi′(−λ

4
3 )

]
πAi′(λ

1
3 x− λ

4
3 )

+
[
Ai(−λ

4
3 ) + m(λ)λ−

2
3 Ai′(−λ

4
3 )

]
πBi′(λ

1
3 x− λ

4
3 )

θ2(x, λ) + m(λ)φ2(x, λ) =
[
λ

2
3 Bi(−λ

4
3 ) + m(λ)Bi′(−λ

4
3 )

]
πAi(λ−

1
3 x− λ

4
3 )

+
[
−λ

2
3 Ai(−λ

4
3 )−m(λ)Ai′(−λ

4
3 )

]
πBi(λ

1
3 x− λ

4
3 )





.

If we take

m(λ) = −
λ

2
3

(
Ai(−λ

4
3 ) + iBi(−λ

4
3 )

)

Ai′(−λ
4
3 ) + iBi′(−λ

4
3 )

,

then the relations between the Airy and the Hankel functions (21) yield

θ1(x, λ) + m(λ)φ1(x, λ) =
(λ− x)H(2)

2
3

(
2
3λ

1
2 (λ− x)

3
2

)

λH
(2)
2
3

(
2
3λ2

)

θ2(x, λ) + m(λ)φ2(x, λ) = −
(λ− x)

1
2 H

(2)

− 1
3

(
2
3λ

1
2 (λ− x)

3
2

)

λ
1
2 H

(2)
2
3

(
2
3λ2

)





.

From (22) it is clear that

θ1(x, λ) + m(λ)φ1(x, λ)

θ2(x, λ) + m(λ)φ2(x, λ)

}
∈ L2(R+).
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We have

m(λ) = −λ
2
3

Ai(−λ
4
3 )Ai′(−λ

4
3 ) + Bi(−λ

4
3 )Bi′(−λ

4
3 )− iW

(
Ai(−λ

4
3 ), Bi(−λ

4
3 )

)

Ai′2(−λ
4
3 ) + Bi′2(−λ

4
3 )

.

Thus

dρ(λ) =
1
π
=m(λ) dλ =

λ
2
3

π
(
Ai′2(−λ

4
3 ) + Bi′2(−λ

4
3 )

) dλ.

We arrive at the triple of integral transforms

F (λ) = π

∫ ∞

0

{
λ−

2
3

[
−Bi′(−λ

4
3 )Ai′(λ

1
3 x− λ

4
3 ) + Ai′(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

]
f1(x)

+
[
Bi′(−λ

4
3 )Ai(λ

1
3 x− λ

4
3 )−Ai′(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

]
f2(x)

}
dx

and

f1(x) =
∫ ∞

−∞

−Bi′(−λ
4
3 )Ai′(λ

1
3 x− λ

4
3 ) + Ai′(−λ

4
3 )Bi′(λ

1
3 x− λ

4
3 )

Ai′2(−λ
4
3 ) + Bi′2(−λ

4
3 )

F (λ) dλ

f2(x) =
∫ ∞

−∞

Bi′(−λ
4
3 )Ai(λ

1
3 x− λ

4
3 )−Ai′(−λ

4
3 )Bi(λ

1
3 x− λ

4
3 )

Ai′2(−λ
4
3 ) + Bi′2(−λ

4
3 )

F (λ)λ
2
3 dλ





. (24)

Theorem 1 holds for transforms (24) if

A =
(

1
0

)
and L =

(
0 − d

dx
d
dx x

)
.

Corollary 3. A vector-valued function f is the Φ-transform (24) of a function
F ∈ L2(R, dρ) with compact support if and only if f satisfies the following conditions:

1) f is infinitely differentiable on R+.

2)
(

0
d

dx

− d
dx
x

)n
f(x) ∈ L2(R+) for all n.

3) limx→0 (1, 0) · ( 0
d

dx

− d
dx
x

)n
f(x) = 0.

4) limx→∞
(

0
d

dx

− d
dx
x

)n
f(x) = 0.

5) limn→∞
∥∥(

0
d

dx

− d
dx
x

)n
f(x)

∥∥ 1
n

L2(R+)
< ∞.

Acknowledgement. This work was accomplished while Dr. Zayed was visiting
the Department of Mathematics and Computer Science, Faculty of Science, Kuwait
University, and he would like to take this opportunity to thank the department for
its hospitality. The work of the second named author was supported by the Kuwait
University Research Administration under the research grant SM 187.



712 A. I. Zayed and V. K. Tuan

References

[1] Abramowitz, M. and I. A. Stegun: Handbook of Mathematical Functions, with Formulas,
Graphs, and Mathematical Tables. New York: Dover Publication 1972.

[2] Bang, H. H.: A property of infinitely differentiable functions. Proc. Amer. Math. Soc.
108 (1990), 73 – 76.

[3] Hinton, D. and J. Shaw: Hamiltonian systems of limit point or limit circle type with both
end points singular. J. Diff. Eqs. 50 (1983), 444 – 464.

[4] Levitan, B. M. and I. S. Sargsjan: Sturm-Liouville and Dirac Operators. Dordrecht:
Kluwer Acad. Publ. 1991.

[5] Paley, R. E. A. C. and N. Wiener: Fourier Transforms in the Complex Domain. Provi-
dence (R.I., USA): Amer. Math. Soc. 1934.

[6] Titchmarsh, E. C.: Introduction to the Theory of Fourier Integrals. New York: Chelsea
Publ. Comp. 1986.

[7] Titchmarsh, E. C.: Eigenfunction Expansions Associated with Second-Order Differential
Equations, Part 1. Oxford: Clarendon Press 1962.

[8] Tuan, V. K.: Supports of functions and integral transforms. In: Proc. Int. Workshop
on Recent Adv. Appl. Math. (RAAM’ 96) held in Kuwait May 4 - 7, 1996. Kuwait:
University 1996, pp. 507 – 521.

[9] Tuan, V. K.: On the range of the Y-transform. Bull Austral. Math. Soc. 54 (1996), 329
– 345.

[10] Tuan, V. K.: On the range of the Hankel and extended Hankel transforms. J. Math. Anal.
Appl. 209 (1997), 460 – 478.

[11] Tuan, V. K.: New type Paley-Wiener theorems for the modified multidimensional Mellin
transform. J. Fourier Anal. Appl. 4 (1998), 317 – 328.

[12] Tuan, V. K.: Airy integral transform and the Paley-Wiener theorem. In: Proc. 2nd Int.
Workshop on Transform Methods and Special Functions, Varna (Bulgaria) 23 - 30 August
1996 (eds.: D. Rusev D. et al.). Sofia: IMI-BAS 1998, pp. 523 – 531.

[13] Tuan, V. K. and A. I. Zayed: Paley-Wiener-type theorems for a class of integral transforms
(submitted).

Received 09.08.1999


