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The Fundamental Solution of a Modified
Oseen Problem
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Abstract. We study asymptotic properties of the fundamental solution to an Oseen-type sys-
tem coming from fluid mechanics. We show that the solution has similar anisotropic structure
near infinity as the fundamental solution to the (classical) Oseen problem. We also study
integral operators with kernels representing the second gradient of the fundamental solution.
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0. Introduction

This paper is devoted to the study of the Oseen-type problem

−∆u + µ
∂2u

∂x2
1

+ β
∂u

∂x1
+∇π = f

∇ · u = 0





, (0.1)

0 ≤ µ < 1, called here the modified Oseen problem. This problem appears e.g. in the
study of asymptotic properties of solutions to the system of partial differential equations
describing the steady flow of certain classes of incompressible viscoelastic fluids past an
obstacle. In this case, the velocity v and the pressure p satisfy

−η∆v + %(v · ∇)v +∇π = %f +∇ · [F (∇v, T )− λ%((v · ∇)v)⊗ v

+ λ%f ⊗ v + λp(∇v)T
]

∇ · v = 0

p + λ(v · ∇)p = π

T + λ(v · ∇)T + G(∇v, T ) = 2ηD(v)





(0.2)
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M. Pokorný: Palacký Univ., Dept. Math. Anal. & Appl. Math., Tomkova 40, 772 00 Olomouc,
Czech Rep.; supported by the Grant of Palacký Univ. No. 3110 3006.
farwig@mathematik.tu-darmstadt.de; novotny@univ-tln.fr; pokorny@risc.upol.cz

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



714 R. Farwig et. al.

where

F (·, ·), G(·, ·) are bilinear functions
T is the extra stress tensor
D is the symmetric part of the velocity gradient
f is a given function (external force)
% is the constant density
λ, η are positive constants.

We assume system (0.2) to hold in an exterior domain Ω ⊂ RN (N = 2, 3) and consider
the boundary conditions

v = 0

v → v∞ = βe1

on ∂Ω

as |x| → ∞

}
. (0.3)

We may construct a solution to system (0.2) - (0.3) by means of the following
procedure. Define the linear operator

M : (w, s) → (u, π)

where

−η∆u + λ%β2 ∂2u

∂x2
1

+ %β
∂u

∂x1
+∇π = %f +∇ ·

[
F (∇w, T )

− λ%((w · ∇)w)⊗ w − %w ⊗ w

− λ%β
( ∂w

∂x1
⊗ w + ((w · ∇)w)⊗ e1

)

+ λ%f ⊗ (w + βe1) + λp(∇w)T
]

∇ · u = 0

p + λ((w + v∞) · ∇)p = s

T + λ((w + v∞) · ∇)T + G(∇w, T ) = 2ηD(w)





(0.4)

and u satisfies the boundary conditions

u → 0

u = −βe1

as |x| → ∞
on ∂Ω

}
. (0.5)

Let (u, π) be a fixed point of M. Then (v, p), with v = u + v∞ and p solution to
(0.4)3 with s = π and w = u, solves the original problem (0.2) - (0.3). We observe
that the elliptic part of problem (0.4) is exactly system (0.1), i.e. the modified Oseen
problem.

Let us note two peculiarities.
Instead of only constructing solutions to problem (0.2) - (0.3), we also want to study

their asymptotic properties near infinity. Otherwise, we could put the term λ%β2 ∂2

∂x2
1
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to the right-hand side of (0.4)1 and consider the (classical) Oseen problem instead of
the modified one. But in this case we could not get weighted estimates of the solution
due to certain loss in the estimates of convolutions with kernels representing the second
gradient of the fundamental Oseen tensor (cf. [1, 6] or [3]). Therefore, the aim of
this paper is to consider the asymptotic structure of the fundamental solution to the
modified Oseen problem (0.1). The application of this analysis can be found in [6] or
[4, 5].

Secondly, at a first glance it seems to be possible to change variables and modify
the vector v in such a way that we would get the (classical) Oseen problem. This is not
true; the condition ∇ · v = 0 would be replaced by another condition and we could not
treat the problem using the results on the (classical) Oseen problem.

Many properties of solutions to the (classical) Oseen problem are connected with
the properties of the fundamental solution to the Oseen problem. The same holds also
in the case of the modified version (cf. [6]). We are looking for (Oµ, e) such that 1)

[
−∆ + µ

∂2

∂x2
1

+ λ
∂

∂x1

]
Oµ

ij(x; λ) +
∂

∂xi
ej(x) = δijδ

∂Oµ
ij(x; λ)
∂xi

= 0





(0.6)

where δij denotes the Kronecker delta, δ is the Dirac δ-distribution, 0 ≤ µ < 1, and
system (0.6) holds in the sense of distributions.

Throughout the paper we use the standard notation Lp(RN ) for Lebesgue spaces,
D(RN ) for the set of smooth functions with compact support and S for the Schwartz
class. By F(f) = f̂ we denote the Fourier transform of the function f , either in the
sense of L2(RN ) or in the sense of S ′.

1. Fundamental solution to the Oseen problem

Before starting to study problem (0.6), let us recall several properties of the fundamental
solution to the (classical) Oseen problem, i.e. problem (0.6) with µ = 0. We shall write
only O instead of O0 in this case. As is well known (see, e.g., [2]),

e = ∇E(x)

with E(x) the fundamental solution to the Laplace equation. The tensor O satisfies the
homogeneity property

O(x, λ) = λN−2O(λx; 1)

and therefore it is sufficient to study only the case λ = 1.

For small |x|,
O(x; 1) = S(x) +R(x)

1) We use the standard summation convention.
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where S is the fundamental Stokes tensor (see, e.g., [2]) and in three dimensions 2)

DαR(x) ∼ |x|−|α| for |x| → 0

for |α| ≥ 0, while in two dimensions

R(x) ∼ 1

DαR(x) ∼
{

ln |x| if |α| = 1
|x|−|α|+1 if |α| ≥ 2





for |x| → 0.

Recall that

Sij(x) =





1
4π

(
δij log

1
|x| +

xixj

|x|2
)

if N = 2

1
8π

(δij

|x| +
xixj

|x|3
)

if N = 3.

Therefore the second derivatives of S represent Calderón-Zygmund singular integral
kernels, i.e. there exists C = C(p,N) such that

T : D(RN ) 7→ D′(RN ), (Tf)(x) =
∫

RN

∂Skl(x− y)
∂xi

∂f(y)
∂yj

dy,

satisfies
‖Tf‖Lp ≤ C‖f‖Lp

for all f ∈ D(RN ) and 1 < p < ∞. Thus the operator T can be continuously extended
onto Lp(RN ). Moreover, it can be shown that

(Tf)(x) = v.p.
∫

RN

∂2Skl(x′ − y)
∂xi∂xj

f(y) dy + cijklf(x).

Define s(x) = |x| − x1. For |x| → ∞ we have in three space dimensions

O(x; 1) ∼ |x|−1(1 + s(x))−1

DαO(x; 1) ∼ |x|−1− |α|2 (1 + s(x))−1− |α|2 (|α| ≥ 1).

The derivatives with respect to the first variable decay faster; more precisely,

DαO(x; 1) ∼ |x|−1−α1− |α|−α1
2 (1 + s(x))−1− |α|−α1

2 (|α| ≥ 1).

2) Throughout this paper, f ∼ g for |x| → 0 means that there exists Uε(0), a neighborhood
of 0, and C1, C2 ∈ R such that C1|f(x)| ≤ g(x) ≤ C2|f(x)| for x ∈ Uε(0); analogously for
|x| → ∞.
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In two space dimensions the structure is even more complicated. Here we have for
|x| → ∞ (recall that Oij(x; 1) = Oji(x; 1))

O11(x; 1) ∼ |x|− 1
2 (1 + s(x))−

1
2

Oij(x; 1) ∼ |x|−1
(
(i, j) 6= (1, 1)

)

∂O11(x; 1)
∂x2

∼ |x|−1(1 + s(x))−1

∂O11(x; 1)
∂x1

,
∂O12(x; 1)

∂x2
∼ |x|− 3

2 (1 + s(x))−
1
2

∂O12(x; 1)
∂x1

,
∂O22(x; 1)

∂xi
∼ |x|−2 (i = 1, 2)

∂2O11(x; 1)
∂x2

2

∼ |x|− 3
2 (1 + s(x))−

3
2

∂2Oij(x; 1)
∂xk∂xl

∼ |x|−2(1 + s(x))−1
(
(i, j, k, l) 6= (1, 1, 2, 2)

)
.

By analogy with the three-dimensional case the derivatives with respect to the first
variable decay faster. Especially,

∂2Oij(x)
∂x2

1

∼ |x|− 5
2 (1 + s(x))−

1
2 (i, j = 1, 2).

Our aim is to show similar properties also for the modified problem (0.6).

2. Fundamental solution to the modified Oseen problem

We shall search Oµ in the form

Oµ(x;λ) = O(x;λ) + Eµ(x; λ) (2.1)

where O is the (classical) fundamental Oseen tensor and

[
∆− µ

∂2

∂x2
1

− λ
∂

∂x1

]
Eµ

ij = µ
∂2Oij

∂x2
1

(2.2)

in the sense of distributions. As in the Stokes and also classical Oseen problem the
fundamental pressure e is given by ej(x) = ∂E(x)

∂xj
. Therefore it is sufficient to study Eµ,

the solution to (2.2). We further need

∂Eµ
ij

∂xi
= 0 (2.3)

in the sense of distributions, which will be proved in Lemma 2.2 below.
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First we consider the fundamental solution to (2.2), i.e.

[
∆− µ

∂2

∂x2
1

− λ
∂

∂x1

]
E∗ = δ (2.4)

in the sense of distributions. For these reasons define

Xi =
xi√

1− µδi1
and λ =

λ√
1− µ

. (2.5)

Lemma 2.1. The fundamental solution to (2.4) is given by

E∗(x;λ) =





−1
2π
√

1−µ
K0

(
λR
2

)
eλX1/2 if N = 2

−1
4π
√

1−µ
e−λs(X)/2

R if N = 3.
(2.6)

Here X and λ are defined by (2.5), R = |X|, s(X) = R−X1, and K0 denotes a modified
Bessel function of the second kind satisfying

K0(z) =

{− ln z + O(1) for |z| → 0(
π
2z

)1/2

e−z
(
1 + O

(
1
|z|

))
for |z| → ∞.

Proof. Using (2.5) we transform (2.4) into

(
∆− λ

∂

∂X1

)
E(X; λ) = δ

where
E(X; λ) =

√
1− µE∗(x(X); λ), ∆ = ∆X , δ = δ(X).

This problem has the well-known fundamental solution



− 1

2π K0

(
λR
2

)λX1/2

if N = 2

− 1
4π

e−λs(X)/2

R if N = 3

(see [2])

Remark 2.1. By (2.6),

E
∗
(X;λ) ∼

{
|λX|− 1

2 e−λs(X)/2 if N = 2
|X|−1e−λs(X)/2 if N = 3

(as R = |X| → ∞).

Using the change of variables (2.5) we see that
√

1− µR ≤ |x| ≤ R
√

1−µ
2 s(x) ≤s(X) ≤ 2s(x) if x1 ≥ 0

1
2s(x) ≤s(X) ≤ 2√

1−µ
s(x) if x1 ≤ 0

(2.7)
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with s(X) = R−X1. Thus for the study of the asymptotic behaviour, it is not necessary
to distinguish between the behaviour in the variables x and X.

From (2.7) and Lemma 2.1, setting r = |x|, we see:
For N = 2,

E∗ ∈ Lp(R2) for p ∈ (3,∞)

∂1E
∗ ∈ Lp(R2) for p ∈ (1, 2)

since

E∗ ∼
{

r−
1
2 e−s(x) (r →∞)

ln r (r → 0)
, ∂1E

∗ ∼ r−
3
2 e−s(x) (r →∞), ∇E∗ ∼ r−1 (r → 0).

For N = 3,
E∗ ∈ Lp(R3) for p ∈ (2, 3)

∂1E
∗ ∈ Lp(R3) for p ∈ (1, 3

2 )

since

E∗ ∼
{

r−1e−s (r →∞)
r−1 (r → 0)

, ∂1E
∗ ∼ r−2e−s (r →∞), ∇E∗ ∼ r−2 (r → 0).

Lemma 2.2. The solution Eµ = (Eµ
i,j)

N
i,j=1 to (2.2) can be expressed in the form

Eµ(x;λ) = µ

∫

RN

∂

∂x1
E∗(x− y; λ)

∂

∂y1
O(y; λ) dy. (2.8)

This convolution can be understood in the usual notion of Lp-spaces yielding for every
λ > 0

Eµ ∈
{

Lp(R2) for p ∈ (1,∞)
Lp(R3) for p ∈ (1, 3).

Furthermore, Eµ
j = (Eµ

ij)
N
i=1 satisfies in the sense of Schwartz distributions

div Eµ
j = 0 for j = 1, . . . , N.

Proof. The integrability properties of ∂1E
∗ and ∂1O and Young’s inequality imply

that ∂1E
∗ ∗ ∂1O ∈ Lp(RN ) with p ∈ (1,∞) when N = 2 and p ∈ (1, 3) when N = 3. In

particular, Eµ can be considered as a distribution in the Schwartz’ class S ′.
Let (ϕk) ⊂ C∞0 (RN ) be defined by ϕk(x) = ϕ1(x

k ) where ϕ1 = 1 in the ball B1 ⊂ RN

of radius 1 with center 0 and ϕ1 = 0 in Bc
2. Then elementary Lq-estimates prove that

in the sense of S ′

∂1E
∗ ∗ ∂1(ϕkO) → ∂1E

∗ ∗ ∂1O as k →∞.

Furthermore, defining the operator A = ∆− µ∂2
1 − λ∂1,

A
(
∂1E

∗ ∗ ∂1(ϕkO)
)

= ∂1(AE∗) ∗ ∂1(ϕkO)

= (AE∗) ∗ ∂2
1(ϕkO)

= δ ∗ ∂2
1(ϕkO)

= ∂2
1(ϕkO)

→ ∂2
1O
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in the sense of S ′. Consequently, A(∂1E
∗ ∗ ∂1O) = ∂2

1O in S ′ proving that Eµ(·;λ)
given by (2.8) is a solution of (2.2).

To prove div Eµ
j = 0 we use Fourier transform in S ′ to conclude from (2.2) that

(− |ξ|2 + µξ2
1 − iλξ1

)
Êµ

kj = −µξ2
1Ôkj .

Since divOj = 0 or, equivalently, ξ · Ôj = 0, we get

(− |ξ|2 + µξ2
1 − iλξ1

)F(div Eµ
j ) = 0.

Consequently, suppF(div Eµ
j ) = {0} implying that div Eµ

j is a polynomial on RN .
However, since Eµ

kj ∈ Lp(RN ) for some p > 1,

∫

B1(x)

(1− |x− y|2)div Eµ
j (y) dy = −2

∫

B1(x)

(x− y) · Eµ
j (y) dy → 0

as |x| → ∞ by Lebesgue’s theorem on dominated convergence. Thus the polynomial
div Eµ

j vanishes identically in RN

3. Asymptotic properties of the fundamental solution

We start to study the asymptotic behaviour of Eµ near infinity. For notational conve-
nience, we define

ηa
b (x) = (1 + |x|)a(1 + s(x))b.

We have (again, as for the classical Oseen problem, we put λ = 1)

Lemma 3.1. Let N = 3. Then, for k ≥ 0, ε > 0 arbitrarily small and |x| ≥ R À 1,

|∇kEµ
ij(x; 1)| ≤ C|x|− 4+k−ε

2 (1 + s(x))−
2+k
2 . (3.1)

Proof. We divide the convolution integral (2.8) into three parts:

Eµ
ij(x; 1) = µ

( ∫

B1(0)

+
∫

B1(x)

+
∫

R3\B1(0)\B1(x)

)
∂E∗(x− y; 1)

∂x1

∂Oij(y; 1)
∂y1

dy

≡ I1(x) + I2(x) + I3(x).

Obviously,
|I1(x)|+ |I2(x)| ≤ Cη−2

−1(x)

for |x| sufficiently large. For I3 it is enough to estimate the convolution

|I3(x)| ≤ C

∫

R3
(1 + |x− y|)−2e−s(x−y)η−2

−1(y) dy
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which can be assumed as (η−2
−m∗η−2

−1)(x) for m arbitrarily large. We shortly sketch how to
estimate such convolutions (for more details see, e.g., [1, 3] or [6]). Let x′ = (x2, . . . , xN ).
We distinguish the following four situations:

a) |x| ≤ R0

b) x1 > 0, |x′| < √
x1, |x| > R0

c) x1 > 0, |x′| = 1
2 |x|

1
2+σ (σ ∈ [0, 1

2 ], |x| > R0)

d) x1 > 0, |x′| > |x|
2 , |x| > R0 or x1 < 0, |x| > R0.

The most restrictive case is c). Here we divide RN into 16 subdomains, as shown in
Figure 1 below. Here R = |x| and ν = σ + 1

2 .

Figure 1

Now we calculate the convolutions over each subdomain Ωi (i = 0, 1, . . . , 15). After
some lengthy computations we get exponents ei, fi ∈ R such that

∫

Ωi

η−c
−d(x− y)η−a

−b (y) dy ≤ Cη−ei

−fi
(x).

Now, taking e ≤ min{ei}15i=0 and f ≤ min{fi}15i=0, we obtain the desired inequality
(η−c
−d ∗ η−a

−b )(x) ≤ Cη−e
−f (x). The situation is slightly more complicated by the presence

of some logarithmic terms which can be absorbed by taking e < min{ei}15i=0 and/or
f < min{fi}15i=0. The calculations are quite technical and the results are summarized in
[1] when N = 3 and in Tables 1 - 4 in [3] or [6] for N = 2, 3; the results for N > 3 can
be read from the calculations performed in the above references. Thus we get

|I3(x)| ≤ Cη−2+ε
−1 (x)
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where the ε-loss is caused by logarithmic factors. Continuing with the first derivatives
we easily observe that

∣∣∣ ∂

∂xi
I1(x)

∣∣∣ +
∣∣∣ ∂

∂xi
I2(x)

∣∣∣ ≤ Cη
− 5

2
− 3

2
(x).

The term ∂
∂xi

I3(x) needs more care. In subdomains Ω0,Ω2, Ω6, Ω8 and Ω11 (and in
the corresponding situations in Ω4,Ω9,Ω10, Ω14 and Ω15) we simply take the derivative
of I3, otherwise we first use the change of variables z = x − y and then calculate the
derivative. Using Tables 1 - 2 from [3] or [6] we again obtain

∣∣∣ ∂

∂xi
I3(x)

∣∣∣ ≤ Cη
− 5

2+ε

− 3
2

(x).

Analogously we proceed for higher derivatives

Similarly, in two space dimensions:

Lemma 3.2. Let N = 2. Then, for k ≥ 0, ε > 0 arbitrarily small and |x| ≥ R À 1,

|∇kEµ
ij(x; 1)| ≤ C|x|− 3+k−ε

2 (1 + s(x))−
1+k
2 . (3.2)

Proof. It is analogous to the three-dimensional case

Remark 3.1. Obviously, Eµ and ∇Eµ decay faster than O or ∇O, respectively.
Only for ∇2Eµ, due to a certain ε-loss, ∂2O

∂x2
1

decays faster near the axis x1. Nevertheless,

it can be shown that the logarithmic factor does not appear and that ∂2Eµ

∂x2
1

decays as

fast as ∂2O
∂x2

1
. Note also that in applications we usually do not distinguish the asymptotic

behaviour of particular components of ∇2O.

The investigation of Eµ near zero is more delicate. We wish to verify not only that
∇2Eµ ∼ |x|−N for |x| → 0, but also that the singular part of ∇2Eµ represents, similarly
as ∇2S, a kernel of a bounded operator from Lp(RN ) into Lp(RN ).

For simplicity we omit in the following the parameter λ = 1 in (2.8). Introduce two
cut-off functions ϕ,ψ ∈ C∞0 (RN ) satisfying

ϕ =
{

1 on B2

0 on Bc
3

and ψ =
{

1 on B4

0 on Bc
5.

Then
Eµ = µ∂1E

∗ ∗ ∂1O = I1 + I2 + I3

where
I1(x) = µ

∫
∂1(ψE∗)(x− y)∂1(ϕO)(y) dy

is the most crucial term,

I2 = µ∂1((1− ψ)E∗) ∗ ∂1(ϕO)
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vanishes in B1, and
I3 = µ∂1E

∗ ∗ ∂1((1− ϕ)O)

is easily seen to be bounded together with all its derivatives in B1. Obviously,

J = I1 + I2 = µ∂1E
∗ ∗ ∂1(ϕO)

satisfies
(∆− µ∂2

1 − ∂1)J = µ∂2
1(ϕO) in S ′

(cf. Lemma 2.2). Since I2 = 0 in B1, we conclude that I1 ∈ Lp(B1) ∩ C∞(B1\{0})
where p ∈ (1,∞) for N = 2 and p ∈ (1, 3) for N = 3.

To establish the singular behaviour of I1 near 0 we estimate its Fourier transform

Î1 = (2π)
N
2 µF(∂1(ψE∗)) · F(∂1(ψO)) = −(2π)

N
2 µξ2

1ψ̂E∗ · ϕ̂O

and the ξ-derivative Dα
ξ Î1. Note that this formula for Î1 is justified by [7: Theorem 30.4].

Since xα∂1(ψE∗), xα∂1(ϕO) ∈ L1(RN ) for all α ∈ NN
0 , the functions Dα

ξ F(∂1(ψE∗))
and Dα

ξ F(∂1(ϕO)) are continuous on RN vanishing for |ξ| → ∞, the same result being
true when the partial derivative ∂1 is omitted. Thus for all α ∈ NN

0

Dα
ξ Î1(ξ) = O(|ξ|2−|α|) for |ξ| → 0. (3.3)

For large |ξ| we use the representation (see [7: Theorem 30.4])

ψ̂E∗(ξ) = (2π)−
N
2

∫

RN

ψ̂(ξ − λ)Ê∗(λ) dλ

where ψ̂ ∈ S and

|Ê∗(λ)| ≤ c

|λ|2 + |λ1| ≤
c

|λ1| 23 |λ′| 23
(
λ = (λ1, λ

′)
)
.

Consequently,

|ψ̂E∗(ξ)| ≤ cM

|ξ|M
∫

|λ|≤ |ξ|2

1
|λ1| 23 |λ′| 23

dλ +
cM

|ξ|2
∫

|λ|> |ξ|
2

1
(1 + |ξ − λ|)M

dλ

≤ c
(|ξ|−M+N+− 4

3 + |ξ|−2
)

for M ∈ N arbitrarily large. Hence, dealing analogously with ϕ̂O,

|ψ̂E∗(ξ)|+ |ϕ̂O(ξ)| = O(|ξ|−2) as |ξ| → ∞.

For the partial derivative

Dα
ξ ψ̂E∗(ξ) = (2π)−

N
2

∫

RN

(−1)|α|Dα
λ ψ̂(ξ − λ)Ê∗(λ) dλ

=
∫

|λ|≤ |ξ|2
. . . +

∫

|λ|≥ |ξ|2
. . .
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we use integration by parts |α|-times in the second integral. Here the first integral on
|λ| ≤ |ξ|

2 and |α|-many boundary integrals on |λ| = |ξ|
2 can be estimated by cM |ξ|−M

for M arbitrarily large. Finally, for the remaining integral,

∣∣∣∣
∫

|λ|≥ |ξ|2
ψ̂(ξ − λ)Dα

λ Ê∗(λ) dλ

∣∣∣∣ ≤ cM

∫

|λ|≥ |ξ|2

1
(1 + |ξ − λ|)M

|ξ|−2−|α| dλ

≤ c|ξ|−2−|α|.

Thus we proved that for all α ∈ Nn
0

|Dα
ξ ψ̂E∗(ξ)|+ |Dα

ξ ϕ̂O(ξ)| = O(|ξ|−2−|α|) as |ξ| → ∞. (3.4)

Summarizing (3.3) and (3.4) we obtain

|Dα
ξ Î1(ξ)| ≤ cα

|ξ|2−|α|
(1 + |ξ|)4 for ξ 6= 0, α ∈ NN

0 . (3.5)

We shall now reconstruct the asymptotic properties of I1(x) using the following
lemma.

Lemma 3.3. Let F(G) ∈ Cm+N−1(RN \ {0}) (N ≥ 2) be such that

A := sup
|α|≤m+N−1

ξ∈RN\{0}

(1 + |ξ|)4|ξ||α|−2|DαF(G)(ξ)| < ∞.

Then G ∈ Cm(RN \ {0}) and there exists cm,N > 0 such that for all 0 6= x ∈ B1

|G(x)| ≤
{

cm,NA| ln |x| | if N = 2
cm,NA|x|2−N if N ≥ 3

|DβG(x)| ≤ cm,NA|x|2−N−|β| if N ≥ 2, 0 < |β| ≤ m.

Furthermore, for x ∈ Bc
1, N ≥ 2 and 0 ≤ |β| ≤ m,

|DβG(x)| ≤ cm,NA|x|1−N−|β|.

Proof. Fix Φ ∈ C∞0 (RN ) such that Φ = 1 in B 1
2

and Φ = 0 in Bc
1. For β ∈ NN

0

and λ > 0 we define vλ,β and wλ,β by

F(vλ,β)(ξ) = (iξ)βĜ(ξ)Φ
( ξ

λ

)

F(wλ,β)(ξ) = (iξ)βĜ(ξ)
(
1− Φ

( ξ

λ

))

yielding
F(vλ,β) + F(wλ,β) = (iξ)βĜ(ξ) = F(DβG)(ξ).
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Moreover, F(vλ,β) ∈ L1(RN ) and therefore

|vλ,β(x)| ≤ cA

∫

|ξ|≤λ

|ξ||β|+2(1 + |ξ|)−4 dξ ≤ cA

∫ λ

0

r|β|+N+1

(1 + r)4
dr.

For λ < 1 we get |vλ,β(x)| ≤ cAλ|β|+N+2, while for λ > 1 we distinguish between the
cases β = 0, N = 2 and |β|+ N > 2. Obviously,

|vλ,0(x)| ≤ cA(1 + ln λ)

|vλ,β(x)| ≤ cAλ|β|+N−2

if N = 2

if |β|+ N > 2.

Now choose p ∈ NN
0 such that |p| = |β| + N − 1. We will show that xpwλ,β(x) is a

continuous function tending to 0 as |x| → ∞, satisfying

|xpwλ,β(x)| ≤ cA.

The function F(wλ,β) has its support in Bc
λ/2. Evidently, DpF(wλ,β) ∈ L1(RN ) since

it is a linear combination of

ξβ−qDαĜ(ξ)Dr
(
1− Φ

( ξ

λ

))

where α + q + r = p and q ≤ β. If r 6= 0, its support lies between two spheres with
diameters λ

2 and λ. Therefore

cλ−|r|
∫

λ
2 <|ξ|<λ

|ξ||β|−|q||DαĜ(ξ)| dξ

≤ cAλ−|r|
∫

λ
2 <|ξ|<λ

|ξ||β|−|q|+2−|α|(1 + |ξ|)−4 dξ

≤ cAλ−|p|+|β|+N+2(1 + λ)−4.

If r = 0, then the support of ξβ−qDαĜ(ξ)
(
1− Φ

(
ξ
λ

))
lies in Bc

λ/2 and

cA

∫

|ξ|≥λ
2

|ξ||β|−|q|+2−|α|(1 + |ξ|)−4 dξ ≤ cA

∫ ∞

λ
2

r|β|−|p|+N+1(1 + r)−4 dr

≤ cA(1 + λ)−1.

Summarizing the different estimates of xpwλ,β(x) we obtain

|x||p||wλ,β(x)| ≤ cAλ−|p|+|β|+N−1(1 + λ)−1.

Setting λ = 1
|x| we get the result
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In particular, we have reproved that

I1(x) ∼
{

ln |x| if N = 2
1
|x| if N = 3 (|x| → 0).

Moreover, we have obtained that for 0 < |β| ≤ 2

DβI1(x) ∼ 1
|x||β|+N−2

in B1.

Therefore the integral operator
∫

RN

∂I1

∂xi
(x− y)f(y) dy

is well defined on C∞0 (RN ) and can be (eventually) extended due to a density argument
onto some Lq(RN ). Let us consider the integral operator

Tf(x) =
∫

RN

I1(x− y)
∂2f(y)
∂yi∂yj

dy

for f ∈ C∞0 (RN ). Evidently,

F(Tf)(ξ) = (2π)
N
2 Î1(ξ)(−ξiξj)f̂(ξ)

where the multiplication is to be understood in the sense of S ′. Nevertheless, thanks to
the properties of Î1(ξ) we easily see that

F(Tf)(ξ) = −(2π)
N
2 ξiξj Î1(ξ)f̂(ξ) = m(ξ)f̂(ξ)

where m(ξ) ∈ L∞(RN ) ∩ C∞(RN ) \ {0}) and

|Dαm(ξ)| ≤ C

|ξ||α| for all ξ 6= 0, α ∈ Nn
0 .

Therefore, m(ξ) is an Lp-multiplier, 1 < p < ∞. Thus we get the following lemma.

Lemma 3.4. Let 0 < |α| ≤ 2. Then we have for |x| ≤ 1

|Eµ
ij(x; 1)| ≤

{
C ln |x| if N = 2
C|x|−1 if N = 3 and |DαEµ

ij(x; 1)| ≤ C|x|−|α|−N+2.

Moreover,
Eµ

ij(x; 1) = I1(x) + I2(x)

where |DαI2(x)| ≤ C for |x| ≤ 1, |α| = 2, and I1(x), representing the singular part of
the second gradient of Eµ

ij(x; 1), has the property

F
( ∫

RN

I1(· − y)Dαf(y) dy

)
(ξ) = m(ξ)f̂(ξ) (|α| = 2)
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where m(ξ) represents an Lp-Fourier multiplier, 1 < p < ∞. Therefore, if |α| = 2, the
integral operator T ,

Tf(x) =
∫

RN

I1(x− y)Dαf(y) dy,

maps C∞0 (RN ) into Lp(RN ) (1 < p < ∞) and

‖Tf‖p,RN ≤ C‖f‖p,RN

‖Tf‖p,(g),RN ≤ C‖f‖p,(g),RN

for all weights g from the Muckenhoupt class Ap.

Remark 3.2. The non-negative weight g belongs to the Muckenhoupt class Ar (1 ≤
r < +∞) if there is a constant C such that

sup
Q

[(
1
|Q|

∫

Q

g(x) dx

)(
1
|Q|

∫

Q

g(x)−
1

r−1 dx

)r−1]
≤ C < ∞

if r ∈ (1,∞) and

sup
Q

1
|Q|

∫

Q

g(x) dx ≤ Cg(x0) ∀ x0 ∈ RN

if r = 1. In the first case, the supremum is taken over all cubes Q in RN , in the second
case only over those cubes which contain x0; |Q| denotes the Lebesgue measure of Q.
The constant does not depend on x0.

Finally, we study how

Eµ
ij(x;λ) = µ

∫

RN

∂E∗(x− y; λ)
∂x1

∂Oij(y; λ)
∂y1

dy

behaves for λ 6= 1. Recall that we usually assume λ ¿ 1. Since

Oij(x; λ) = λN−2Oij(λx; 1)

E∗(x; λ) = λN−2E∗(λx; 1)

we get
Eµ

ij(x; λ) = λN−2Eµ
ij(λx; 1). (3.6)

We can now summarize the results.

Theorem 3.1. Let N = 2, 3 and 0 ≤ µ < 1. Then the solution to (0.6) can be
written in the form

Oµ(x;λ) = O(x;λ) + Eµ(x; λ)

e(x) = ∇E(x);

here E(x) denotes the fundamental solution to the Laplace equation, O(x; λ) is the fun-
damental Oseen tensor and Eµ(x; λ) has the following properties:
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a) For |x| ≥ R À 1, |α| ≥ 0 and ε > 0 arbitrarily small

|DαEµ
ij(x; 1)| ≤ C|x|−N+1+|α|−ε

2 (1 + s(x))−
N−1+|α|

2 .

b) For |x| ≤ 1 and |α| = 1, 2

|Eµ
ij(x; 1)| ≤

{
C ln |x| if N = 2
C|x|−1 if N = 3

|DαEµ
ij(x; 1)| ≤ C|x|2−N−|α| if N = 2, 3.

Moreover, Eµ
ij(x; 1) = I1(x) + I2(x), where |DαI2(x)| ≤ C for all |α| ≤ 2 and |x| ≤ 1,

and DαI1(x), |α| = 2, representing the singular part of the second gradient of Eµ(x; 1),
defines an integral operator

Tf(x) =
∫

RN

I1(x− y)Dαf(y) dy (|α| = 2)

which maps Lp(RN ) into Lp(RN ) and C∞0 (RN )
‖ · ‖p,(g) into Lp(RN ; g) for 1 < p < ∞,

g ∈ Ap (Muckenhoupt class). Moreover,

Eµ(x; λ) = λN−2Eµ(λx; 1).
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