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Traces of Besov Spaces Revisited

J. Johnsen

Abstract. For the trace of Besov spaces Bs
p,q onto a hyperplane, the borderline case with

s = n
p
− (n − 1) and 0 < p < 1 is analysed and a new dependence on the sum-exponent q is

found. Through examples the restriction operator defined for s down to 1
p
, and valued in Lp, is

shown to be distinctly different and, moreover, unsuitable for elliptic boundary problems. All
boundedness properties (both new and previously known) are found to be easy consequences
of a simple mixed-norm estimate, which also yields continuity with respect to the normal
coordinate. The surjectivity for the classical borderline s = 1

p
(1 ≤ p < ∞) is given a simpler

proof for all q ∈ ]0, 1], using only basic functional analysis. The new borderline results are
based on corresponding convergence criteria for series with spectral conditions.
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criteria, elliptic boundary problems
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1. Introduction

This note concerns the (distributional) trace operator γ0 that restricts to the hyperplane
Γ = {xn = 0} in Rn for n ≥ 2,

γ0 : f(x1, . . . , xn) 7→ f(x1, . . . , xn−1, 0). (1.1)

The title should indicate both that there remains unexplored borderlines in the Lp-
theory of γ0 and that the existing literature do not reveal the full efficacy of the Fourier-
analytic proof methods.

The main purpose is to describe the borderline cases for 0 < p < 1. See the below
Theorem 1.2 concerning s = n

p −n + 1, where it is shown that the smallest Besov space
containing γ0(Bs

p,q) has its integral-exponent equal to max(p, q), hence depending on
both the integral-exponent and the sum-exponent of the domain. This result seems to
be hitherto undescribed.

Secondly, Theorem 1.2 is proved in a mere two lines, deriving from the Paley-Wiener-
Schwartz theorem and the Nikolskĭı-Plancherel-Polya inequality a basic mixed-norm, in
fact Lp(Rn−1; L∞,xn), estimate. In addition, all the known boundedness results are
recovered equally easily from the same calculation. The ensuing unified treatment is in
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contrast with the existing literature, which has various page-long arguments both for the
generic cases (s > 1

p + (n− 1)( 1
p − 1)+) and the classical borderline s = 1

p (1 ≤ p ≤ ∞).
The present paper should also be interesting for this reason.

Thirdly, another perspective on γ0 is also gained from the mixed-norm estimate, for
this yields (since the value xn = 0 has no special significance) that all the treated spaces
Bs

p,q are contained in C(R,D′(Rn−1)) and that γ0 is a restriction of the natural trace on
the latter space. This property has not been given much attention in the Besov space
literature (J. Peetre’s report [18] seems to be the only example), although in practice γ0

has been defined space by space by means of a limiting procedure. Evidently, this raises
the question whether γ0u is consistently defined when u belongs to both C(Rn) and
B1

1,1(Rn) or to another intersection of two spaces. However, the consistency is always
assured by the below embedding into C(R,D′(Rn−1)).

Finally, the surjectivity of γ0 : B
1
p
p,q(Rn) → Lp(Rn−1) for 1 ≤ p < ∞ and 0 < q ≤ 1

is given a new proof by an easy extension of the Closed Range Theorem to quasi-Banach
spaces.

For precision’s sake it should be mentioned that γ0 in the beginning of the analysis
refers to a working definition of the trace as

γ0u =
∑

(Φ̌k ∗ u)|xn=0,

whereby
u =

∑
F−1(Φkû)

is a Littlewood-Paley decomposition (cf. Section 3 below). Consistency and indepen-
dence of the Φk are obtained post-festum (cf. (1.3) and Theorem 1.4 below).

As a point of departure, the generic properties of γ0 are recalled:

Theorem 1.1 (see [12, 20]). When applied to the Besov spaces Bs
p,q(Rn) with

0 < p, q ≤ ∞, the trace γ0 is continuous

γ0 : Bs
p,q(Rn) → B

s− 1
p

p,q (Rn−1) (1.2)

for s > 1
p if p ≥ 1, and for s > n

p − n + 1 if p < 1. Moreover, γ0 has a right inverse K,

which is a bounded operator from B
s− 1

p
p,q (Rn−1) to Bs

p,q(Rn) for every s ∈ R.

It is known, but proved explicitly here that, on the one hand, γ0 in (1.2) is a
restriction of the distributional trace, that is of

f(0) defined for f ∈ C(R,D′(Rn−1)). (1.3)

(This is also denoted by γ0f in the rest of the introduction.) On the other hand, the
restriction of γ0 to the Schwartz space S(Rn) extends by continuity (cf. [5, 6, 13, 22])
to an operator

T : Bs
p,q(Rn) → Lp(Rn−1) for s > 1

p , 0 < p < 1. (1.4)
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It should be emphasised that T is rather different from γ0 when s < n
p − n + 1 =

1
p +(n−1)( 1

p−1) (whereby γ0 acts only on the intersection of Bs
p,q and C(R,D′(Rn−1)),

cf. (1.3)). Their incompatibility may be exemplified by tensorising some ϕ ∈ C∞0 (R)
equal to 1 near xn = 0 with the delta measure δ0 in Rn−1, for

γ0

(
δ0(x′)⊗ ϕ(xn)

)
= δ0(x′) (1.5)

whereas
T

(
δ0(x′)⊗ ϕ(xn)

)
= 0. (1.6)

Here (1.5) is clear by (1.3), since aδ0 depends continuously on the scalar a.
The result in (1.6) is connected to the fact that the co-domain Lp is not continuously

embedded into D′ when p < 1; this fact is elementary, for when η ∈ S(Rn) with
∫

η = 1,
then knη(k·) tends to δ0 in D′ and to 0 in Lp for k →∞ because

‖knη(k·)|Lp‖ = ‖η|Lp‖kn(1− 1
p ) → 0 for each p < 1. (1.7)

With a similar η ∈ S(Rn−1) and ψk(x) = kn−1η(kx′)ϕ(xn),

γ0ψk = kn−1η(kx′) → δ0 in D′ (1.8)

whereas
Tψk = kn−1η(kx′) → 0 in Lp, (1.9)

so the sequence (ψk) is treated rather differently by γ0 and T (in fact (1.6) can be proved
thus, cf. Remark 8.1 below). These phenomena also depend on the domain chosen in
(1.4). Indeed, γ0 in (1.3) is for p < 1 continuous B

n
p−n+1
p,q → D′ only if q ≤ 1 (and a

fortiori not at all for s < n
p −n + 1) by [16: Lemma 2.8] or [14: Lemma 2.5.2]; however,

the counterexample there does not contradict (1.4), cf. Remark 8.2. (Similarly, for s = 1
p

and q > 1, hence for s < 1
p , it was shown too that γ0 is never continuous from Bs

p,q,
regardless of the co-domain.) Moreover, the severe shortcomings of T in connection with
elliptic boundary problems for s ≤ n

p − n + 1 are reviewed in Remark 8.3 below.

Altogether T discards so much information that it is inconsistent with the distribu-
tion trace γ0, seemingly to the extent that it is inappropriate, for the usual applications,
to maintain s = 1

p as the borderline when p < 1.

In view of the above, it is natural to analyse s = n
p − n + 1 when p < 1. The main

point is that q ≤ p ≤ 1 and p < q ≤ 1 constitute two rather different cases:

Theorem 1.2. For 0 < p < 1 the operator γ0 is continuous

γ0 : B
n
p−n+1
p,q (Rn) → B

(n−1)( 1
p−1)

p,∞ (Rn−1) if q ≤ p < 1, (1.10)

whereas it is bounded

γ0 : B
n
p−n+1
p,q (Rn) → B

(n−1)( 1
q−1)

q,∞ (Rn−1) when p < q ≤ 1. (1.11)
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Furthermore, q is the smallest possible integral-exponent for the co-domain in (1.11),
for even Bt

r,∞ can only receive when r ≥ q.

This shows that the smallest Besov space one may use as a co-domain of γ0 is
B

(n−1)( 1
r−1)

r,∞ with r = max(p, q) when s = n
p − n + 1 and 0 < p < 1; in addition, neither

(1.10) nor (1.11) is a surjection (hence the range is not a Besov space, cf. Remark 1.5
below). Altogether this makes a noteworthy contrast with Theorem 1.1.

To elucidate Theorem 1.2, one can observe that the above-mentioned operator T is
a continuous surjection (see [5: Theorem 5.1] and [22: 4.4.3]),

T : B
1
p
p,q(Rn) → Lp(Rn−1) for 0 < q ≤ p < 1. (1.12)

Here the condition q ≤ p is known to be necessary, and formally a distinction between the
same cases appear in Theorem 1.2, too. This seems surprising and unnoticed hitherto,
and a fortiori the theorem is a novelty (cf. Remark 1.5 below).

As an interpretation of (1.1), note that it follows from (1.10) when combined with
a Sobolev embedding. In fact, given (1.10), then

B
n
p−n+1
p,q (Rn) ↪→ B

n
q −n+1
q,q (Rn)

γ0−→ B
(n−1)( 1

q−1)
q,∞ (Rn−1), (1.13)

and since q is the optimal integral-exponent on the right-hand side of (1.11) (cf. Section
7 below), this is the only way to apply γ0 when p < q ≤ 1. Moreover, in both (1.10)
and (1.11) one can take L1(Rn−1) as the receiving space, for by a Sobolev embedding
into B1

1,1(Rn) the question is reduced to a case (viz. p = 1) of the following

Theorem 1.3. Let 1 ≤ p ≤ ∞ and 0 < q ≤ 1. Then γ0 in (1.3) is bounded

γ0 : B
1
p
p,q(Rn) → Lp(Rn−1). (1.14)

Moreover, (1.14) is a surjection if 1 ≤ p < ∞ and 0 < q ≤ 1.

Earlier Burenkov, Gol’dman and Peetre [2, 10, 18] proved surjectivity for q = 1 (the
latter two even for anisotropic spaces), but the first to consider this borderline were
seemingly Agmon and Hörmander [1] (cf. their note), who covered p = 2. However,
the borderline itself was found in 1951 by Nikolskĭı [17]. Using atomic decompositions,
Frazier and Jawerth [5] proved the surjectivity for 0 < q ≤ 1. An alternative argument
is given below by means of a short application of the Closed Range Theorem (extended
to quasi-Banach spaces); it should be interesting because of the simplicity.

Theorems 1.1 − 1.3 are proved and re-proved here, for they may actually all be
obtained by combining general principles with a single, mixed-norm estimate; in its
turn, this estimate follows straightforwardly from the Paley-Wiener-Schwartz theorem
and the Nikolskĭı-Plancherel-Polya inequality (see Section 4 below). Besides being a
unified proof, it is also simple compared to those, e.g., in [3, 5, 21].

The mixed-norm estimate actually shows S ′-convergence of the series entering the
working definition of γ0u in (3.1) below. In Theorem 1.3 this is a consequence of Lp’s
completeness, and for the generic cases in Theorem 1.1 it follows from known conver-
gence criteria for series with spectral conditions, summed up in part (ii) of Theorem 3.1
below.

Furthermore, a small reflection about this estimate yields
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Theorem 1.4. Let s ≥ 1
p + (n − 1)( 1

p − 1)+, and suppose q ≤ 1 holds in the case
of equality. Then there is an inclusion

Bs
p,q(Rn) ⊂ C(R,D′(Rn−1)), (1.15)

and the working definition of γ0 equals the restriction to Bs
p,q(Rn) of the natural trace

on the space C(R, D′(Rn−1)).

For the two cases in Theorem 1.2 it is also noteworthy that they stem from an
analogous destinction in part (iii) of Theorem 3.1 below. However, part (iii) of the
latter theorem is actually a generalisation of the criteria to the borderline s = n

p − n,
and the necessity of the splitting into two cases is shown in Proposition 3.2. Hence this
paper also contributes to the convergence criteria in general Besov spaces.

Remark 1.5. In a subsequent joint work [7], inspired by the present article, es-
pecially Theorems 1.2 and 1.4, the traces of all admissible Besov and Triebel-Lizorkin
spaces were determined. In particular, the exact ranges in (1.10) and (1.11) were found

to be the approximation space A
(n−1)( 1

p−1)
p,q in both cases. So although r = max(p, q) is

the smallest possible integral-exponent when the co-domain is stipulated to be a Besov
space (as in Theorem 1.2 ff. and throughout this paper), the situation is different if the
scale of As

p,q spaces is adopted.

Acknowledgement. In the early stages I benefitted from discussions with Prof.
H. Triebel, who also kindly provided [18].

2. Preliminaries

For the general notions in distribution theory standard notation is used, similarly to
[11]; C(R, X) denotes the vector space of continuous functions from R to X, and if X
is a Banach space, Cb(R, X) stands for the sup-normed space of continuous bounded
functions.

For the Besov spaces Bs
p,q the conventions of [23] are adopted, so the norm is defined

from a Littlewood-Paley decomposition 1 =
∑∞

j=0 Φj(ξ), where the Φj(ξ) vanish unless
11
202j ≤ |ξ| ≤ 13

102j when j > 0. This may, moreover, be obtained by letting Φ0 = Ψ0

and Φj = Ψj − Ψj−1 when Ψj(ξ) = Ψ(2−j |ξ|) for some real C∞ function Ψ(t) on R
vanishing for t > 13

10 and equalling 1 for t < 11
10 ; in this case Ψj = Φ0 + . . . + Φj . Then

Bs
p,q is defined to consist of the u ∈ S ′(Rn) for which

‖u|Bs
p,q‖ =

( ∞∑

k=0

2skq‖F−1(Φkû)|Lp‖q

) 1
q

< ∞. (2.1)

On Rn−1 a partition of unity 1 =
∑

Φ′j with Φ′j(ξ
′) = Φj(ξ′, 0) is used.

Equivalently, a partition may be used in which each function is a product of n
factors, each depending on a single coordinate ξj of ξ. This is folklore, but for precision
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the following easy construction and Lemma 2.1 below are given. Let Φ(1)
k and Ψ(1)

k

denote the functions obtained in the manner above for n = 1. Then

Ψ̃k(ξ) := Ψ(1)
k (ξ1) · · ·Ψ(1)

k (ξn) (2.2)

equals 1 in B∞(0, 11
102k), the max-norm ball of radius 11

102k, centred at the origin; suppΨ̃k

lies in B∞(0, 13
102k). Now insertion of Ψ(1)

k = Ψ(1)
k−1 + Φ(1)

k gives, for k ≥ 1,

Ψ̃k(ξ) = Ψ̃k−1(ξ) +
∑

∅6=J⊂{1,...,n}
ΘJ,k(ξ) (2.3)

whereby

ΘJ,k(ξ) =
∏

j∈J

Φ(1)
k (ξj)

∏

j /∈J

Ψ(1)
k−1(ξj). (2.4)

Letting ΘJ,0 = Ψ̃0, this yields a smooth partition of unity since for ξ ∈ Rn

1 =
∞∑

k=0

∑

J

ΘJ,k(ξ). (2.5)

When k ≥ 1, then evidently

suppΘJ,k ⊂ B∞(0, 13
102k) \B∞(0, 11

102k−1). (2.6)

Observe also the tensor product structure of the function ΘJ,k and that ΘJ,k(ξ) =
ΘJ,1(2−(k−1)ξ) for k ≥ 1.

Finally, the next lemma may be proved in the usual way by means of part (iv) in
Theorem 3.1 below, using also that independently of k there are (1 or) 2n − 1 terms in
the sum over J .

Lemma 2.1. For every s ∈ R and p, q ∈ ]0,∞] the Besov space Bs
p,q(Rn) coincides

with the set of u ∈ S ′(Rn) for which the quasi-norm

‖u|Bs
p,q‖Θ =

( ∞∑

k=0

∑

J

2skq‖F−1(ΘJ,kû)|Lp‖q

) 1
q

(2.7)

is finite. Moreover, ‖ · |Bs
p,q‖Θ is an equivalent quasi-norm for Bs

p,q.
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3. Definition of the trace

3.1 The working definition. When dealing with γ0u it is convenient to take a
Littlewood-Paley partition of unity, say 1 =

∑∞
j=0 Φj , and let

γ0u =
∞∑

j=0

F−1(ΦjFu)
∣∣
xn=0

(3.1)

for those u ∈ S ′(Rn) for which the sum converges in D′(Rn−1): by the Paley-Wiener-
Schwartz theorem each summand F−1(ΦjFu) is an entire analytic function for which
restriction to xn = 0 makes sense. However, the limit in (3.1) might depend on the Φj ,
but in Proposition 5.1 below, this is shown not to be the case for the spaces treated here.
(The procedure in (3.1) was used to define the trace in [12], but without justification or
relation to other trace notions.)

The usefulness of (3.1) depends on the availability of easy-to-apply results for the
convergence of a series

∑∞
j=0 uj . While for a general Banach space X a finite norm

series,
∑∞

j=0 ‖uj |X‖ < ∞, is such a criterion, Bs
p,q has a variant with `s

q(Lp)-norms
without the troublesome F−1ΦjF acting on uj .

For the reader’s sake, these criteria for series with spectral conditions are recalled
with [23: Theorems 3.6 and 3.7] in parts (ii) and (iv) of the theorem below, together
with supplements on the borderline cases for s = max(0, n

p − n) in parts (i) and (iii).

Theorem 3.1. Let a series
∑∞

j=0 uj of distributions uj in S ′(Rn) be given together
with numbers s ∈ R and p, q ∈ ]0,∞], and consider then

B =
( ∞∑

j=0

2sjq‖uj |Lp‖q

) 1
q

(3.2)

as a constant in [0,∞] (with sup-norm over j if q = ∞). Then the following assertion
is valid:

(i) If s = 0, 1 ≤ p ≤ ∞ and q ≤ 1, then B < ∞ implies that
∑

uj converges in
Lp(Rn) to a sum u for which ‖u|Lp‖ ≤ B holds.

In addition, suppose that for some A > 0 the spectral condition

suppFuj ⊂ {ξ | |ξ| ≤ A2j} (3.3)

is satisfied by each uj (j ≥ 0). Then one has:

(ii) If s > max(0, n
p − n), then B < ∞ implies convergence of

∑
uj in S ′(Rn) to a

limit u in Bs
p,q(Rn) for which ‖u|Bs

p,q‖ ≤ cB holds for some constant c = c(n, s, p, q).

(iii) If s = n
p − n, p ∈ ]0, 1[ and q ∈ ]0, 1], then B < ∞ implies convergence of∑

uj in L1(Rn) to a limit u in L1 for which ‖u|L1‖ ≤ cB holds for some constant
c = c(n, p, q).



770 J. Johnsen

Moreover, there is then a constant c = c(n, p, q) such that u belongs to B
n
p−n
p,∞ or

B
n
q −n
q,∞ and satisfies the estimate

‖u|B
n
p−n
p,∞ ‖ ≤ cB when q ≤ p < 1 (3.4)

‖u|B
n
q −n
q,∞ ‖ ≤ cB when p < q ≤ 1, (3.5)

respectively.
(iv) Furthermore, if the stronger condition

suppFuj ⊂
{
ξ | A−12j ≤ |ξ| ≤ A2j

}
(3.6)

holds for j > 0, then assertion (ii) holds for all s ∈ R.

Proof. The completeness of Lp easily gives assertion (i) (cf. [15: Proposition 2.5]).
The L1-part of assertion (iii) may be reduced to assertion (i) by means of the Nikolskĭı-
Plancherel-Polya inequality (cf. [15: Proposition 2.6]; modulo typos there: Lp should
have been L1 and the corresponding estimate ‖u|L1‖ ≤ cB). This gives the existence
of u, and since

F−1(Φj û) =
∞∑

k=j−h

F−1(Φj ûk)

for some fixed h ∈ Z, we may for q ≤ p use `q ↪→ `p to get

‖F−1(Φj û)|Lp‖ ≤
( ∞∑

k=j−h

‖Φ̌j ∗ uk|Lp‖p

) 1
p

≤ c

( ∞∑

k=j−h

2k( n
p−n)p‖Φ̌j |Lp‖p‖uk|Lp‖p

) 1
p

≤ c max
(‖Φ̌0|Lp‖, ‖Φ̌1|Lp‖

)
2j(n−n

p )B.

(3.7)

Therefore u is in Bs
p,∞ for s = n

p − n with the required estimate. For p < q the
Nikolskĭı-Plancherel-Polya inequality applied to B reduces the question to the case with
p = q

It was also shown in [15: Example 2.4] that in both the assertions (i) and (iii) of
Theorem 3.1 the restriction q ≤ 1 is optimal; for q > 1 there exists series diverging in
D′(Rn) for which the associated B is finite.

In addition to this, the receiving spaces in assertion (iii) must have sum-exponents
equal to infinity (see [7: Theorem 6], where this is derived from trace estimates) and
the integral-exponents cannot be smaller than p and q, respectively:

Proposition 3.2. If for some t ∈ R and r > 0 there exists c ∈ ]0,∞[ such that
every u ∈ S(Rn) satisfies

‖u|Bt
r,∞‖ ≤ c

( ∞∑

j=0

2j( n
p−n)q‖uj |Lp‖q

) 1
q

(3.8)
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whenever u =
∑

uj is a decomposition satisfying (3.3), then r ≥ q.

Consequently, for p < q ≤ 1 in part (iii) of Theorem 3.1, the receiving space B
n
q −n
q,∞

is optimal with respect to the integral-exponent.

Proof. The latter statement follows from the former, for on the one hand B
n
q −n
q,∞ ↪→

B
n
r−n
r,∞ for r ≥ q, and if, on the other hand, B

n
r−n
r,∞ receives with an estimate for some

r < q, then (3.8) holds. In particular, it does so when u =
∑

uj is a decomposition of
a Schwartz function, so the contradicting conclusion r ≥ q follows.

When (3.8) holds, one may for arbitrary fixed points xj ∈ Rn define

ωN =
N∑

k=1

Ψ̌k(x− xk). (3.9)

Independently of the choice of xj , the right-hand side of (3.8) equals cN
1
q ‖Ψ̌0|Lp‖, and

it is well known that x1, x2, . . . may be chosen such that

‖ωN |Bt
r,∞‖ ≥ c(r)N

1
r ; (3.10)

so in view of (3.8) the inequality r ≥ q must hold. For completeness’ sake it is remarked
that (3.10) may be seen thus: clearly, the fact Ψk ≡ 1 on supp Φ0 yields

‖ωN |Bt
r,∞‖ ≥ ‖Φ̌0 ∗ ωN |Lr‖ =

∥∥∥∥
N∑

k=1

Φ̌0(· − xk)
∣∣∣∣Lr

∥∥∥∥. (3.11)

Moreover, Φ0(ξ) = Φ0(−ξ) ≥ 0, so Φ̌0 is real-valued with Φ̌0(0) > 0, hence some δ > 0
fulfils Φ̌0(x) > 1

2 Φ̌0(0) > 0 for |x| < δ. There is also R > δ such that |Φ̌0(x)| < 1
2N Φ̌0(0)

for |x| > R, so if xj = 3jR(1, 0, . . . , 0),

‖ωN |Bt
r,∞‖ ≥

1
2

( N∑

k=1

∫

B(xk,δ)

|Φ̌0(x− xk)|r dx

) 1
r

= c(r,Φ0, δ)N
1
r . (3.12)

Indeed,
|Φ̌0 ∗ ωN | ≥ Φ̌0(· − xj)− N−1

2N Φ̌0(0) ≥ 1
2 Φ̌0(· − xj)

holds on the ball B(xj , δ) because |xk − x| > R does so for k 6= j. This shows (3.10)

Remark 3.3. In assertions (ii) and (iv) of Theorem 3.1, the series u =
∑

uj

converges in Bs
p,q if q < ∞ and in Bs−ε

p,1 for ε > 0 if q = ∞. This is a well-known easy
consequence of the completeness and the norm estimate in the theorem.

Remark 3.4. The spectral conditions in (3.3) are robust under restriction: when
x = (x′, x′′) is a splitting of the variables and x′′ is kept fixed, then

suppFx′→ξ′uj(·, x′′) ⊂ {ξ′ | |ξ′| ≤ A2j} (3.13)
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by the Paley-Wiener-Schwartz theorem, for uj(·, x′′) is still an analytic function satis-
fying the relevant estimates in Re z′ and Im z′. By the same argument, (3.6) goes over
into (3.13) for uj(·, x′′).

3.2 The distribution trace. A rather general definition of the trace is obtained as
r0f := f(0) on the subspace

C(R,D′(Rn−1)) ⊂ D′(Rn). (3.14)

For the spaces considered in this note, the working definition in (3.1) actually amounts
to a restriction of r0. This is proved in Proposition 5.1 below by means of the injection
in (3.14), so this folklore is explicated (in lack of a reference):

Proposition 3.5. Let f ∈ C(R,D′(Rn−1)), whereby D′(Rn−1) has the w∗-topology.
Then

〈Λf , ϕ〉 =
∫

R
〈f(t), ϕ(·, t)〉 dt (ϕ ∈ C∞0 (Rn)) (3.15)

defines an injection of C(R,D′(Rn−1)) into D′(Rn).

Proof. When ϕ ∈ C∞0 is supported by the rectangle K = [−k, k]n, bilinearity
and the Banach-Steinhaus theorem for C∞0 ([−k, k]n−1) give continuity of the map t 7→
〈f(t), ϕ(·, t)〉 and, for constants ck, Nk < ∞, the bound

∣∣∣∣
∫ k

−k

〈f(t), ϕ(·, t)〉 dt

∣∣∣∣ ≤ 2kck sup
{
Dαϕ(x) | x ∈ K, |α| ≤ Nk

}
, (3.16)

while ϕ of the form ψ(x′)χ(t) yields the injectivity of f 7→ Λf

While it is meaningful, for every subspace X of D′(Rn), to ask whether

X ⊂ C(R,D′(Rn−1)), (3.17)

it is for arbitrary u ∈ D′(Rn) meaningless to ask whether the dependence on xn is
continuous. Despite this peculiarity, the estimates yielding boundedness of γ0 in (3.1)
do also give inclusions like (3.17) for the domains of γ0 (cf. Proposition 5.1).

Remark 3.6. On X = Cb(Rn), where the inclusion in (3.17) is clear, it follows
that (3.1) converges to the continuous function obtained from the operation in (1.1)
as expected. Indeed, since Ψk = Φ0 + . . . + Φk gives an approximative identity, viz.
F−1Ψk, for the convolution algebra X,

u(0) = lim
k→∞

Ψ̌k ∗ u(·, 0) = γ0u. (3.18)

Remark 3.7. Considering ρ0 : H1(R+) → C given by ρ0u = u(0), the restriction
ρ0|C∞0 extends by continuity to the zero-operator L2 → C. This exemplifies that when
a restriction of an operator is extended by continuity between another pair of spaces,
the resulting map may be very different from the original one. A less obvious example
is γ0|S extended as T in (1.4) (cf. (1.6)− (1.8)).

Remark 3.8. To avoid phenomena as those in Remark 3.7, the approach of this
paper is first of all to define r0 as the distributional trace on C(R,D′(Rn−1)); for this
reason Proposition 3.5 is included. Secondly, boundedness of γ0:X → Y is obtained
together with the identity γ0 = r0|X without extension by continuity.
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4. Boundedness

To obtain the continuity properties, observe that since F−1(Φj û) has spectrum in the
ball B(0, R2j) for R = 13

10 , it follows from Remark 3.4 by freezing x′ that F−1(Φj û)(x′, ·)
has spectrum in [−R2j , R2j ], hence by the Nikol’skĭı-Plancherel-Polya inequality that

∥∥F−1(Φj û)(x′, ·)
∣∣L∞(R)

∥∥ ≤ c(R2j)
1
p

∥∥F−1(Φj û)(x′, ·)
∣∣Lp(R)

∥∥, (4.1)

when the latter is applied in the xn-variable only. Integration with respect to x′ then
gives the basic Lp-L∞ estimate

∥∥∥ sup
xn∈R

|F−1(Φj û)(·, xn)
∣∣
∣∣∣Lp(Rn−1)

∥∥∥ ≤ c2
j
p

∥∥F−1(Φj û)
∣∣Lp(Rn)

∥∥, (4.2)

and taking in particular xn = 0,

∥∥F−1(Φj û)(·, 0)
∣∣Lp(Rn−1)

∥∥ ≤ c2
j
p

∥∥F−1(Φj û)
∣∣Lp(Rn)

∥∥. (4.3)

The boundedness in Theorems 1.1− 1.3 now follows by Theorem 3.1 and Remark 3.4.

For example, that u ∈ B
1
p

p,1(Rn) means that the right-hand side of (4.3) is in `1, so∑∞
j=0 F−1(ΦjFu)

∣∣
xn=0

converges in Lp (because of its convergent norm series); hence
also in D′(Rn−1) when 1 ≤ p ≤ ∞. So, with the limit denoted γ0u according to the
working definition of γ0,

‖γ0u|Lp‖ ≤
∞∑

j=0

‖F−1(Φj û)(·, 0)|Lp‖ ≤ c‖u|B
1
p

p,1‖. (4.4)

For B
1
p
p,q with 0 < q < 1 part (i) of Theorem 3.1 applies.

When s = n
p − n + 1 for p < 1, then (4.3) may be multiplied by 2j(s− 1

p ) and the
`q-norm of both sides calculated. By Remark 3.4 – this time applied with the freezing
xn = 0 – and (iii) of Theorem 3.1, the properties in (1.10)−(1.11) are obtained. Observe
here that the assumption on s is equivalent to

s− 1
p = (n− 1)( 1

p − 1) (4.5)

which is required when part (iii) of Theorem 3.1 is applied to the co-domain B
s− 1

p
p,q (Rn−1).

In the same way (4.3) and part (ii) of Theorem 3.1 may be used to show the boundedness
in Theorem 1.1.

Following [21: 2.7.2], the right inverse K of γ0 may be taken as

Kv =
∞∑

j=0

ψ(2jxn)F−1(Φ′j v̂)(x′) (4.6)
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when ψ ∈ S(R) has suppFψ ⊂ [−1, 1] and ψ(0) = 1. Indeed, letting vj = F−1Φ′jFv,

suppF(ψ(2j ·)vj) ⊂
{
ξ ∈ Rn | 2j ≤ |ξ| ≤ 3 · 2j

}
(4.7)

‖ψ(2j ·)vj |Lp(Rn)‖ = 2−
j
p ‖ψ|Lp(R)‖ ‖vj |Lp(Rn−1)‖, (4.8)

so part (iv) of Theorem 3.1 gives that Kv is well defined and that, for s ∈ R,
∥∥Kv

∣∣Bs
p,q(Rn)

∥∥ ≤ c
∥∥v

∣∣Bs− 1
p

p,q (Rn−1)
∥∥. (4.9)

Moreover, for s > 1
p + (n− 1)( 1

p − 1)+ the already shown continuity of γ0 gives

γ0Kv =
∑

γ0

(
ψ(2jxn)vj(x′)

)
=

∑
ψ(0)vj = v. (4.10)

This reproves the claims on K in Theorem 1.1.

Remark 4.1. The spaces B
1
p

p,1(Rn) with 1 ≤ p ≤ ∞ are maximal among those
under consideration, for when s > 1

p + (n− 1)( 1
p − 1)+,

Bs
p,q ↪→ B

1
r
r,1 for r = max(1, p) (4.11)

and this also holds when s = 1
p + (n− 1)( 1

p − 1)+ and q ≤ 1.

5. Continuity in the xn-variable

In view of Remark 4.1, the proof of Theorem 1.4 need only be conducted for the B
1
p

p,1(Rn)
spaces with 1 ≤ p ≤ ∞. Clearly, xn = 0 does not play a special role, for the mixed
norm estimate in (4.2) ‘absorbs’ any value equally well: obviously,

sup
xn∈R

∥∥F−1(Φj û)(·, xn)
∣∣Lp(Rn−1)

∥∥ ≤ c2
j
p

∥∥F−1(Φj û)
∣∣Lp(Rn)

∥∥ (5.1)

follows in the same way as (4.3). This means that the function series

t 7→
∞∑

j=0

F−1(Φj û)
∣∣
xn=t

(5.2.)

converges in the Banach space Cb(R, Lp(Rn−1)), say, with the limit denoted by fu(t).

So for every u ∈ B
1
p

p,1(Rn) with 1 ≤ p ≤ ∞,

fu ∈ Cb(R, Lp(Rn−1)) ↪→ D′(Rn) (5.3)

and fu(0) = γ0u by the working definition of γ0. By (3.5), the injection in (5.3) is well
defined and continuous; in fact

|〈f, ϕ〉| ≤
∫
‖f(t)|Lp‖ ‖ϕ(·, t)|Lp′‖ dt

≤ (diam supp ϕ)
1
p ‖f |Cb(R, Lp)‖ ‖ϕ|Lp′(Rn)‖

(5.4)

for every test function ϕ, when p + p′ = pp′. However, since the series of C∞-functions
in (5.2) converges to the given u in S ′(Rn), hence in D′(Rn), it follows from (5.3)−(5.4)
that u = fu. This proves
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Proposition 5.1. Let u ∈ B
1
p
p,q(Rn) for some p ∈ [1,∞] and q ≤ 1. Then the

function fu given by (5.2)− (5.3) defines a distribution Λfu
, by Proposition (3.5), that

coincides with u; that is, Λfu
= u.

Thereby (3.17) has been verified for the result in Theorem 1.3, so the distribution

trace u(0) is defined for every u ∈ B
1
p

p,1; viewing u as an element of C(R,D′(Rn)) gives
u(0) = fu(0) = γ0u as desired. In particular, γ0u in (3.1) is independent of the choice
of partition of unity.

6. Surjectivity

Since γ0 in (1.14) has dense range, it is for q = 1 surjective precisely when its adjoint
γ∗0 has a bounded inverse from ran(γ∗0 ) to L∗p (see, e.g., [19: Theorem 4.15]).

For 1 ≤ p < ∞ and q = 1 the adjoint is bounded, when p + p′ = pp′,

γ∗0 : Lp′(Rn−1) → B
1
p′−1

p′,∞ (Rn) (6.1)

(cf. [23] for the dual space) and γ∗0u = u⊗ δ0 for u ∈ Lp′ since for ϕ ∈ S

〈γ∗0u, ϕ〉 = 〈u, ϕ(·, 0)〉 = 〈u⊗ δ0, ϕ〉. (6.2)

It remains to be shown, with primes omitted for simplicity, that

‖u|Lp‖ ≤ c‖u⊗ δ0|B
1
p−1
p,∞ ‖ =: cB(u) (6.3)

for all u ∈ Lp(Rn−1) whenever p ∈ ]1,∞]. Using Lemma 2.1 we have a partition of unity
1 =

∑∞
k=0

∑
J 6=∅ΘJ,k, where each ΘJ,k is a product:

ΘJ,k(ξ) = ηJ,k(ξ′) θJ,k(ξn)

ηJ,k(ξ′) = ηJ(2−kξ′), θJ,k(ξn) = θJ(2−kξn) (k > 0).
(6.4)

By (6.1), the corresponding B
1
p−1
p,∞ -norm with supremum over (J, k) gives

‖θ̌J |Lp‖ ‖η̌J,k ∗ u|Lp‖ = 2j( 1
p−1)

∥∥F−1(ΘJ,kF(u⊗ δ0))|Lp

∥∥ ≤ B(u) < ∞. (6.5)

Since ηJ(0) 6= 0 for some J , we can take J such that

η̌J,k ∗ u → a · u in D′ for k →∞ (6.6)

if a :=
∫

η̌J 6= 0. The w∗-compactness of the balls in Lp together with (6.5) − (6.6)
show that (6.3) holds with c equal to (a‖θ̌J |Lp‖)−1. From the Besov spaces’ point of
view the surjectivity is proved in a natural way above; essentially it is known from the
technical report [18].
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For q ≤ 1 the dual of B
1
p
p,q is independent of q, because (B

1
p
p,q)∗ = B

− 1
p

p′,∞ then (cf.
[21: 2.11.2]). Therefore the adjoint remains equal to (6.1) for q < 1, so it suffices to
show that the Closed Range Theorem is valid when the domain is a quasi-Banach space.
Observe first, for precision, that Bs

p,q is an F -space in Rudin’s terminology [19] when
d(u, v) := ‖u − v|Bs

p,q‖λ and λ = min(1, p, q). Hence continuity and boundedness are
equivalent for operators between these quasi-Banach spaces [19].

Moreover, defining the operator norm in the usual way, B(X, Y ) becomes a quasi-
Banach space; ‖S + T‖ ≤ c(‖S‖ + ‖T‖) holds with the same constant as it does for
‖ · |Y ‖. In particular, X∗ is always a Banach space. As usual each T ∈ B(X, Y ) has an
adjoint T ∗ ∈ B(Y ∗, X∗).

Proposition 6.1. Let X be a quasi-Banach space such that ‖ · |X‖λ is subadditive
for some λ ∈ ]0, 1], let Y be a Banach space and T : X → Y be a bounded linear operator.
When T (X) = Y , then boundedness of T ∗−1 from T ∗(Y ∗) to Y ∗ implies that T is
surjective, i.e. T (X) = Y .

Proof. Since kerT ∗ ⊂ T (X)⊥ = {0}, the inverse is well defined; by assumption
there is a constant c < ∞ such that

‖y∗|Y ∗‖ ≤ c ‖T ∗y∗|X∗‖ for all y∗ ∈ Y ∗. (6.7)

This inequality implies that T is open. Indeed, if X is a Banach space, this is the content
of [19: Lemma 4.13]. When only Y is assumed to be a Banach space, the reduction
from part (b) to (a) in the proof of [19: Lemma 4.13] carries over verbatim (since the
Hahn-Banach theorem is only used for Y ), and in the proof of (a) the sequence (εn)
should be picked in `λ such that

∑∞
n=1 ελ

n < 1−‖y1|Y ‖λ. Then the sequences (xn) and
(yn) defined there satisfy

∞∑
n=1

‖xn|X‖λ ≤ ‖x1|X‖λ +
∞∑

n=1

ελ
n < ‖y1|Y ‖λ + (1− ‖y1|Y |λ) = 1; (6.8)

hence x =
∑

xn converges in X and has ‖x|X‖ < 1 as desired. Thus (6.7) implies that
T is an open mapping, but as such it’s necessarily surjective

Altogether this shows that Lp(Rn−1) is the image of B
1
p
p,q(Rn) under γ0 for every

q ≤ 1 when 1 ≤ p < ∞.

Remark 6.2. It is known that every quasi-Banach space X has an equivalent quasi-
norm such that ‖ · |X‖λ is sub-additive for some λ ∈ ]0, 1]. In view of this, Proposition
6.1 holds for all quasi-Banach spaces.
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7. The borderline for 0 < p < 1

Since the boundedness in Theorem 1.2 is proved in Section 4 above, it remains to show
the claim on the integral-exponents. That it is necessary for p < q ≤ 1 in Theorem 1.2

to let B
(n−1)( 1

q−1)
q,∞ (Rn−1) receive γ0u follows because the inequality r ≥ q is implied by

the estimate
‖γ0u|Bt

r,∞‖ ≤ c‖u|B
n
p−n+1
p,q ‖. (7.1)

To show this implication, it suffices to extend the ωN in the proof of Proposition 3.2 by
taking some η ∈ S(R) satisfying supp η ⊂ ]1, 2[ and η̌(0) = 1 and set

EωN (x) =
N∑

k=1

η̌(2kxn)Ψ̌k(x′ − x′k). (7.2)

Using (7.1) and part (ii) of Theorem 3.1 to estimate the Besov norm of EωN , it is easily
seen that

∥∥ωN

∣∣Bt
r,∞(Rn−1)

∥∥ =
∥∥γ0EωN

∣∣Bt
r,∞

∥∥ ≤
∥∥EωN

∣∣B
n
p−n+1
p,q (Rn)

∥∥ ≤ cN
1
q . (7.3)

Because of (3.10) the inequality r ≥ q holds.

8. Final remarks

Some of the claims made after (1.4) in the introduction shall now be explained for the
reader’s sake. While the first two remarks concern the difference between γ0 and T , the
third observation about the boundary problems might be of general interest.

Remark 8.1. To show (1.6), note first that in addition to (1.9),

ψk := 2k(n−1)η(2k·)ϕ → δ ⊗ ϕ

in Bs
p,1 for k →∞ when 1

p < s < n
p − n (which entails p < 1− 1

n ), at least if η̂ = 1 in a
ball around ξ′ = 0. Indeed, by Remark 3.3,

δ0 = η +
∞∑

k=1

(
2k(n−1)η(2k·)− 2(k−1)(n−1)η(2k−1·)

)

converges in Bs
p,1(Rn−1) while · ⊗ ϕ maps continuously into Bs

p,1(Rn) by [9]. Hence
ψk → δ0 ⊗ ϕ there, and Tψk → 0 as shown in (1.9); i.e. (1.6) holds.

Remark 8.2. For s = n
p − n + 1 it is useful to consider

vk(x) =
1
k

2k∑

l=k+1

2l(n−1)f(2lx′)g(2lxn) (8.1)
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for Schwartz functions f and g with their spectra in balls of radius 1
2 such that

∫
f = 1

and g(0) = 1. As shown in [16: Lemma 2.8], γ0vk → δ0 in D′ while vk → 0 in B
n
p−n+1
p,q

if q > 1, so that γ0 is only continuous from B
n
p−n+1
p,q if q ≤ 1.

However,

Tvk = 1
k

2k∑

l=k+1

2l(n−1)f(2l·)

since vk ∈ S, and ‖Tvk|Lp‖ is O(k(n−1)(1− 1
p )) and so tends to 0 for k → ∞; that is,

already at the borderline γ0 and T behave differently.

Remark 8.3. For Ω equal to the unit ball in Rn (n ≥ 3), Franke and Runst [8:
Section 6.5] proved that B

n
p−n+1
p,∞ (Ω) contains an infinite-dimensional solution space for

the problem
−∆u = 0 in Ω

Tu = 0 on Sn−1

}
. (8.2)

In fact, for each boundary point z ∈ Sn−1 they showed that Φ(x−z)− 1
n−2z·gradΦ(x−z),

where Φ(x) = c|x|2−n is the fundamental solution of−∆, belongs to this space and solves
problem (8.2).

Moreover, in [14] it was proved that the Boutet de Monvel calculus of pseudo-
differential boundary operators (for elliptic problems) extends nicely to spaces with
p < 1. However, for trace operators and PΩ + G that precisely have class r ∈ Z, it was
proved that s ≥ n

p − n + r is necessary for continuity from Bs
p,q to D′ when p < 1.

Taken together, these facts show that not only the usual Fredholm properties but
also the continuity of solution operators for elliptic problems would break down for
p < 1 unless s = n

p − n + r is taken as the borderline for operators of class r. (For the
Dirichlét realisation of ∆, the latter fact was also shown by Chang, Krantz and Stein
[4].)
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