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Abstract. A nonlinear perturbation problem for steady two-dimensional inviscid transonic
flow in a nozzle is studied. The existence of a smooth solution to the problem is proved under
the condition of positive acceleration of the given flow. The proof involves the method of
singular perturbations for solving a linear problem associated with the nonlinear one. The
technique for obtaining a priori estimates is simpler than that used in previous papers.
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1. Introduction

We consider gas flow in a Laval nozzle, i.e. a channel of variable cross section area which
has a minimum at some value of the longitudinal coordinate. In such a nozzle, there
exists a flow regime with subsonic–supersonic transition, which is typically shock-free.
This fact is well documented by experimental and numerical studies.

Mathematical conditions of the existence of a smooth solution to the perturbation
problem for flow in a nozzle were established by Kuz’min [14 - 16] and Larkin [19]. The
most simple condition is the positiveness of the acceleration of the given transonic flow.
The solvability was proved using a theory of the equation of mixed type

Lu := k(x, t)utt +
n∑

i,j=1

[aij(x, t)uxi ]xj − α(x, t)ut + c(x, t)u = f(x, t) (1.1)

where the subscripts t, xi and xj denote partial derivatives, the coefficient k(x, t) is of
variable sign in a given cylindrical domain, while the differential operator

∑
aijuxixj

with respect to the variables x = (x1, ..., xn) is a uniformly elliptic one.
In the theory of equation (1.1), of great importance is a basic boundary value prob-

lem, in which the type of that equation is supposed to be elliptic, i.e. k > 0, on both
foundations of the cylindrical domain. Solvability of the basic problem was studied in
[7, 15] with a method of singular perturbations, so that a solution u0 was obtained as
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limit of solutions uε of the third-order equation εuttt + Lu = f as ε → 0. The study of
the basic problem has made it possible to analyse other problems for equation (1.1) and
a perturbation problem for transonic flow in the nozzle [15 - 16]. Further developments
of the theory provided a framework for analysis of transonic flow with a local supersonic
region under a boundary condition that prevents formation of shock waves [17].

We note that a number of attempts to study transonic flow admitting shock waves
[8 - 13, 21] faced huge mathematical difficulties because of the entropy condition to
be held across the shocks. In a recent paper [11], Gamba and Morawetz established
solvability of a viscous model for a system of equations governing the velocity potential
ϕ(x, y) and the gas density ρ(x, y). Also, they proved the existence of a convergent
subsequence (ϕε, ρε) with a limit (ϕ0, ρ0) as ε → 0. However, it has not been proved
that the limit is a weak solution to the inviscid system.

In this paper, we pursue the study of transonic flow without shock waves. The
technique for obtaining a priori estimates is modified, and the analysis of the basic
problem is presented in a form which is most convenient for transonic flow research.
In Section 2, we formulate a problem for flow with subsonic-supersonic transition in a
nozzle. Sections 3 - 5 are concerned with solvability of the basic problem for equation
(1.1) in the case of two independent variables. In contrast with [15, 17], we avoid using
the variables (x, t), which are relevant in the general theory of mixed type equations, and
analyse the basic problem directly in the physical (x, y)-plane where the flow is governed
by the von Karman equation. In Section 6, solvability of the nonlinear perturbation
problem for flow with positive acceleration is established.

2. Formulation of the problem for transonic flow in a nozzle

For simplicity, we consider the nearsonic approximation, in which a steady potential
flow of inviscid gas is governed by the von Karman equation [4]

(γ + 1)(1− ϕx)ϕxx + ϕyy = 0 (2.1)

where ϕ = ϕ(x, y) is the non-dimensional velocity potential and γ > 1 is the ratio of
specific heats. We prescribe the standard slip condition ϕn = (∇ϕ,~n) = 0 on the walls of
a nozzle, where ~n is the normal vector. Using asymptotic expansions with the deviation
of the wall contour from a straight segment [5], one can replace the condition ϕn = 0 on
the walls by ϕy(x,±1) = β±(x), where β± are the angles made by the tangent to the
upper and lower walls with the x-axis. Hence, the problem for flow in a nozzle can be
formulated in a rectangle of the (x, y)-plane as follows (see Figure 1). Find a solution
ϕ of equation (2.1) in the domain

Gnoz =
{

(x, y) ∈ R2 : 0 < x < lnoz and − 1 < y < 1
}

subject to the boundary conditions

ϕ(0, y) = 0, ϕx(0, y) < 1

ϕx(lnoz, y) > 1

ϕy(x,±1) = β±(x)

for − 1 < y < 1

for − 1 < y < 1

for 0 < x < lnoz.





(2.2)
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By virtue of (2.2), the flow velocity is subsonic at the inlet and supersonic at the outlet
of the nozzle. However, its values are not prescribed.

Figure 1

Let ϕ be a solution to problem (2.1), (2.2). If the contour of the walls is slightly
changed, then the angles β± and the flowfield undergo small perturbations. Both ϕ and
the potential ϕf of the perturbed flow satisfy equation (2.1). Therefore, the difference
u = ϕ− ϕf is governed by the equation

(1− ϕx + ux)uxx − ϕxxux + 1
1+γ uyy = 0. (2.3)

The boundary conditions with respect to u follow from (2.2):

u(0, y) = 0

uy(x,±1) = f±(x)

}
(2.4)

where the functions f± are perturbations of β±. Along with (2.3), let us consider the
linear equation

Lgu := (1− ϕx + g)uxx − ϕxxux + 1
1+γ uyy = 0 (2.5)

in which g is a given function. At g ≡ 0, equation (2.5) reduces to

L0u := [(1− ϕx)ux]x + 1
1+γ uyy = 0. (2.6)

Theorem 1. Assume that ϕ ∈ W 2,2(Gnoz), ϕx(0, y) < 1 and ϕx(lnoz, y) > 1. In
addition, let ϕxx(x, y) > 0 a.e. in the domain Gnoz, that is the acceleration of the given
flow be positive in the nozzle. Then the linearized problem (2.4), (2.6) can have at most
one solution u ∈ W 2,2(Gnoz).

Hereafter W p,2(Gnoz) denotes the usual Sobolev space of functions with derivatives
up to the order p, which are square-integrable over Gnoz. The assertion of the theorem
follows from [22: Lemma 2]. Below we present a simple proof of Theorem 1 (see [15])
for methodology purposes.
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Proof. If there are two solutions u1 and u2 of problem (2.4),(2.6), then u = u1−u2

satisfies equation (2.6) and boundary conditions (2.4) with f± = 0. Integrating L0u ·ux

over Gnoz and using Green’s formula, one obtains the identity

− 2
∫

Gnoz

L0u · ux dxdy

=
∫

Gnoz

ϕxxu2
xdxdy +

∫

Γnoz

1
1+γ 2uxuy dx +

[
(ϕx − 1)u2

x + 1
1+γ u2

y

]
dy

(2.7)

where the integration over the boundary Γnoz of Gnoz is carried out in the counterclock-
wise direction. From (2.7), due to the boundary conditions, we find

−2
∫

Gnoz

L0u · ux dxdy =
∫

Gnoz

ϕxxu2
xdxdy +

∫ 1

−1

[(1− ϕx)u2
x]

∣∣
x=0

dy

+
∫ 1

−1

[
(ϕx − 1)u2

x + 1
1+γ u2

y

]∣∣
x=lnoz

dy

(2.8)

where the left-hand side vanishes, while all the integrals in the right-hand side are non-
negative. Therefore, each of the integrals vanishes, and ϕxxu2

x = 0 a.e. in Gnoz. Since
ϕxx > 0, we obtain ux = 0. Due to u(0, y) = 0, one arrives at u(x, y) = 0 a.e. in Gnoz

3. Solvability of a basic problem

In Sections 3 and 4, we treat a more general equation as compared to (2.5):

Lu := k(x, y)uxx + [a(x, y)uy]y − α(x, y)ux + c(x, y)u = f(x, y) (3.1)

in the rectangle

G =
{

(x, y) ∈ R2 : 0 < x < l and − 1 < y < 1
}

.

Suppose that
a(x, y) ≥ δ > 0 in G

k(0, y) > 0

k(l, y) > 0

}
at − 1 ≤ y ≤ 1





(3.2)

i.e. the type of equation (3.1) is elliptic on both the right- and the left-hand sides of
the rectangle G, while the type may be variable in G and at y = ±1, 0 < x < l (see
Figure 2). We notice that the x-axis plays the same role in the case of equation (3.1)
as the t-axis in (1.1). Actually, one can reduce equation (3.1) to (1.1) by substituting t
for x and −x for y.

The boundary conditions are:

u(0, y) = 0 for − 1 < y < 1

ux(l, y) = 0 for − 1 < y < 1

uy(x,±1) = 0 for 0 < x < l.





(3.3)
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Figure 2

We suppose that the coefficients of equation (3.1) are smooth enough: k, a ∈ C3(Ḡ) and
α, c ∈ C2(Ḡ).

Theorem 2. Let inequalities (3.2) and

2α± kx ≥ δ > 0

ax ≤ 0

c ≤ 0

cx ≥ 0





(3.4)

hold in the domain G. Then there exists a unique solution u ∈ W 2,2(G) of problem
(3.1), (3.3) for all f ∈ W 1,2(G). If, in addition,

2α− 3kx ≥ δ > 0

2α− 5kx ≥ δ > 0

}
(3.5)

in G and f ∈ W 3,2(G), then the solution belongs to W 4,2(Gin) where Gin = G ∩ {x :
σ < x < l − σ} for any small σ > 0.

Theorem 2 was proved with different methods in [6, 7, 15]. Below we use the method
of singular perturbations described in [15]. However, we modify the proof and employ
simpler cut-off functions.

Proof of Theorem 2. First, let us establish the estimate

‖ux‖0 ≤ m‖Lu‖0 (3.6)
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valid for any function u ∈ W 2,2(G) satisfying the boundary conditions (3.3), where ‖·‖0
is the norm of the space L2(G) and m > 0. Integrating Lu ·ux over G and using Green’s
formula, one obtains

−2
∫

G

Lu · ux dG =
∫

G

[
(2α + kx)u2

x − axu2
y + cxu2

]
dG

+
∫

Γ

[
2auxuy dx− (

ku2
x − au2

y + cu2
)
dy

] (3.7)

where dG = dxdy and Γ is the boundary of G. Due to (3.3), identity (3.7) reduces to

−2
∫

G

Lu · ux dG =
∫

G

[
(2α + kx)u2

x − axu2
y + cxu2

]
dG

+
∫ 1

−1

(au2
y − cu2)

∣∣
x=l

dy +
∫ 1

−1

(ku2
x)

∣∣
x=0

dy.

(3.8)

Using conditions (3.2), (3.4) and omitting the non-negative terms on the right-hand
side, we find

−2
∫

G

Lu · ux dG ≥
∫

G

(2α + kx)u2
xdG ≥ δ

∫

G

u2
xdG.

The left-hand side can be estimated with Young’s inequality as

1
γ
‖Lu‖20 + γ‖ux‖20 ≥ −2

∫

G

Lu · ux dG ≥ δ

∫

G

u2
xdG (3.9)

where γ is a positive parameter. At γ < δ, inequality (3.9) yields estimate (3.6), which
proves the uniqueness of the solution to problem (3.1), (3.3).

In order to prove the existence of the solution, we insert the term εuxxx into equation
(3.1) and pose an extra condition at x = 0 :

Lεu ≡ εuxxx + Lu = f (ε > 0) (3.10)
u(0, y) = ux(0, y) = 0

ux(l, y) = 0

}
(3.11)

uy(x,±1) = 0 (3.12)

An approximate solution uN,ε of problem (3.10) - (3.12) is sought in Galerkin’s form
[18: Section 4.3]

uN,ε(x, y) =
N∑

i=1

XN,ε
i (x) Yi(y) (3.13)

where {Yi}N
i=1 is a complete system in W 2,2(−1, 1) which is orthonormal in L2(−1, 1).

The functions XN,ε
i are to be found from the relations

∫ 1

−1
(Lεu

N,ε − f)Yjdy = 0 which
reduce to

∫ 1

−1

[(
εuN,ε

xxx + kuN,ε
xx − αuN,ε

x + cuN,ε − f
)
Yj − auN,ε

y · (Yj)y

]
dy = 0 (3.14)
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if one integrates by parts the term (auN,ε
y )yYj and omits (auN,ε

y Yj)
∣∣
y=±1

in view of
(3.12).

Relations (3.14) are a system of third-order ordinary differential equations with
respect to XN,ε

i . Boundary conditions at x = 0 and x = l are prescribed according to
(3.11) by

XN,ε
i (0) =

dXN,ε
i

dx

∣∣∣∣
x=0

=
dXN,ε

i

dx

∣∣∣∣
x=l

= 0. (3.15)

The a priori estimate
‖uN,ε‖21 + ε‖uN,ε

xx ‖20 ≤ m‖f‖20 (3.16)

is true where ‖ · ‖p = ‖ · ‖W p,2(G) is the norm of the space W p,2(G). Hereafter we
denote by m > 0 constants which are independent of uN,ε and may be different in
different formulae. In order to prove (3.16), we multiply each of equations (3.14) by
e−µx(XN,ε

j )x (µ > 0), then sum up the results from 1 to N , and integrate with respect
to x from 0 to l. This yields the relation

∫

G

[(
εuN,ε

xxx + kuN,ε
xx − αuN,ε

x + cuN,ε
)
uN,ε

x − auN,ε
y uN,ε

xy

]
e−µxdG

=
∫

G

fuN,ε
x e−µxdG.

From the latter, (3.16) can be derived in the same way as (3.6) from (3.7). Estimate
(3.16) proves the uniqueness of the solution to problem (3.14), (3.15). The uniqueness
ensures the existence of the solution to the system of N third-order equations endowed
with 3N boundary conditions, as known from the theory of linear ordinary differen-
tial equations. Moreover, the solution XN,ε

i belongs to C4[0, l] due to the smoothness
conditions imposed for the coefficients of equation (3.1). Thus, the existence of the
approximate solution (3.13) is established.

Consider the sequence uN,ε as N → ∞. Owing to (3.16), the norm ‖uN,ε‖1 is
bounded uniformly in N . Therefore, due to the weak compactness of a bounded set in
the Hilbert space, there exists a subsequence with a weak limit uε ∈ W 1,2(G). In order
to prove that uε is a solution of equation (3.10), we multiply each of equations (3.14)
by a function χj ∈ C∞(0, l) vanishing in the vicinities of x = 0 and x = l, then sum
up from j = 1 to j = N , and integrate with respect to x from 0 to l. This yields the
identity

∫

G

[(
εuN,ε

xxx + kuN,ε
xx − αuN,ε

x + cuN,ε − f
)
χN − auN,ε

y χN
y

]
dG = 0 (3.17)

where χN (x, y) =
∑N

j=1 χj(x)Yj(y). Now we pass to the above mentioned subsequence
of uN,ε, integrate by parts the first and second terms in (3.17), and set N →∞ to get

∫

G

[
εuε

xχxx − uε
x(kχ)x − auε

yχy + (−αuε
x + cuε − f)χ

]
dG = 0. (3.18)
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Relation (3.18) is valid for any function χ ∈ W 1,2(G) vanishing at x = 0 and x = l.
Consequently, uε is a weak solution to equation (3.10) [18: Section 4.3]. That solution
satisfies the boundary conditions (3.11), because uε

xx ∈ L2(G) due to (3.16), therefore,
traces of uε and uε

x at x = const belong to L2(−1, 1) and satisfy the same conditions at
x = 0 and x = l as uN,ε and uN,ε

x do owing to (3.15). The boundary condition (3.12) is
involved in (3.18) as verified below (see (3.23)). Hence, uε is a weak solution to problem
(3.10) - (3.12).

Now, let us consider a sequence uε = uε(x, y) as ε → 0. Due to (3.16), the norm
‖uε‖1 is bounded uniformly in ε. Therefore, there exists a subsequence with a weak
limit u0 ∈ W 1,2(G). This limit is a weak solution of the mixed type equation (3.1),
as seen from (3.18) with ε = 0, and it vanishes along with uε on the left-hand side of
G : u0(0, y) = 0. In order to prove that the Neumann condition u0

x(l, y) = 0 holds on
the right-hand side of G, we need to use the estimate

‖uε
x‖W 1,2(Gl−σ) ≤ m‖f‖0 (3.19)

where Gl−σ = G ∩ {x : l − σ < x < l}. The validity of (3.19) is established in Section
4 with a technique of cut-off functions in the same way as in the theory of elliptic
equations. Estimate (3.19) shows that u0

x = 0 along with uε
x = 0 at x = l.

In order to prove the regularity of the obtained solution, i.e. u0 ∈ W 2,2(G), we need
one more estimate

‖uε
xx‖L2(Gin) ≤ m‖f‖1 (3.20)

where Gin = G ∩ {x : σ < x < l − σ}. The validity of (3.20) under the additional
condition 2α − kx ≥ δ > 0 will be established in Section 5. In the strip Gσ = G ∩ {x :
0 < x < σ} adjacent to the left-hand side of G, the type of equation (3.1) is elliptic,
therefore u0 ∈ W 1,2(Gσ) yields [18]

u0 ∈ W 2,2(Gσ). (3.21)

By combining (3.19) - (3.21), we find u0
xx ∈ L2(G). This enables one to represent (3.18)

at ε = 0 in the form
∫

G

[
u0

xxχ− au0
yχy + (ku0

xx − u0
xx − αu0

x + cu0 − f)χ
]
dG = 0. (3.22)

Having denoted by −f̃ the underlined terms, one can interpret u0 as a weak solution of
the equation uxx + (auy)y = f̃ ∈ L2(G). On the other hand, the latter equation under
the boundary conditions (3.3) has a solution ũ ∈ W 2,2(G) as follows from the theory
of equations of the elliptic type [18]. Because of the uniqueness in W 1,2(G), we obtain
u0 ≡ ũ ∈ W 2,2(G). As a consequence, the second term in (3.22) can be integrated by
parts: ∫

G

[
ku0

xx + (au0
y)y − αu0

x + cu0 − f
]
χdG

+
∫ l

0

(au0
yχ)

∣∣
x=−1

dx−
∫ l

0

(au0
yχ)

∣∣
x=1

dx = 0.

(3.23)
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Due to the arbitrariness in the choice of χ ∈ W 1,2(G) we conclude that equation (3.1)
and the boundary condition u0

y(x,±1) = 0 are satisfied a.e.

We notice that estimate (3.20) is not valid over the whole domain G uniformly in ε.
Hence, the boundary condition uε

x(0, y) = 0 is lost with respect to u0 so that only the
condition u0(0, y) = 0 is true (see Figure 3). Consequently, the ”viscous solutions” uε

do not converge to u0 in the norm ‖ · ‖W 2,2(G).

One can prove that u0 ∈ W p,2(Gin) (p = 3, 4) using a priori estimates

‖uε
xxx‖L2(Gin) ≤ m‖f‖2

‖uε
xxxx‖L2(Gin) ≤ m‖f‖3

}
(3.24)

which are similar to (3.20) and valid under conditions (3.5). However, the third and
fourth order derivatives of u0 are not, in general, square integrable over the entire G
because of singularities at the corner points (vertices) of the rectangle G

Figure 3

4. A proof of estimate (3.19)

Since k(x, y) > 0 at x = 0 and x = l, one can choose a small σ > 0 so that k(x, y) > 0
in the strips 0 ≤ x ≤ 2σ and l − 2σ ≤ x ≤ l, |y| ≤ 1. Consider a non-negative cut-off
function η ∈ C∞[0, l] vanishing at x ≤ l − 2σ and equal to eµx at l − σ ≤ x ≤ l where
µ > 0 is large enough so that axη + aηx ≥ 0 at x = l. Let us multiply (3.14) by
η(XN,ε

j )xx, then sum up over j from 1 to N , and integrate with respect to x from 0 to
l. In this way we arrive at

∫

G

[(
εwxxx + kwxx − αwx + cw − f

)
wxx − awywxxy

]
η dG = 0 (4.1)
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where w denotes the approximate solution uN,ε for brevity. Relation (4.1) can be
represented in the form

∫

G

fwxxη dG =
∫

G

[
ε
2 (w2

xx)x + kw2
xx − αwxwxx + cwwxx − awywxxy

]
η dG. (4.2)

Integrating by parts the first and the last terms in the right-hand side and taking into
consideration that wxy(l, y) = 0 due to (3.15), one obtains

∫

G

fwxxη dG

=
∫ 1

−1

ε
2w2

xx(l, y)η(l) dy

+
∫

G

[
− ε

2ηxw2
xx + kηw2

xx − αηwxwxx + cηwwxx + (aηwy)xwxy

]
dG (4.3)

≥
∫

G

[
− ε

2ηxw2
xx + kηw2

xx − αηwxwxx + cηwwxx + (aη)xwywxy + aηw2
xy

]
dG.

The integral
∫ [− ε

2ηxw2
xx] dG can be estimated by ‖f‖20 in view of (3.16):

∫

G

fwxxη dG + m‖f‖20

≥
∫

G

[
kηw2

xx + aηw2
xy − αηwxwxx + cηwwxx + (aη)xwywxy

]
dG.

(4.4)

Integrating by parts the last three terms in (4.4), we find
∫

G

fwxxη dG + m‖f‖20

≥ 1
2

∫ 1

−1

(aη)xw2
y

∣∣
x=l

dy

+
∫

G

[
kηw2

xx + aηw2
xy + 1

2 (αη)xw2
x − (cηw)xwx − 1

2 (aη)xxw2
y

]
dG.

(4.5)

The first integral in the right-hand side is non-negative due to the choice of η and can
be omitted. The terms involving the first-order derivatives of w can be estimated by
‖f‖20 owing to (3.16). That is why (4.5) reduces to

∫

G

fwxxη dG + m‖f‖20 ≥
∫

G

[
kηw2

xx + aηw2
xy

]
dG (4.6)

(we recall that m > 0 is independent of w and may be different in different formulae).
Using Young’s inequality in the left-hand side, we obtain

1
2γ

∫

G

f2dG + γ
2

∫

G

w2
xxη2dG + m‖f‖20 ≥

∫

G

[
kηw2

xx + aηw2
xy

]
dG. (4.7)
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Since η ≡ 0 at x ≤ l− 2σ, the integration in the right-hand side is virtually carried out
over the strip Gl−2σ = G ∩ {x : x > l − 2σ}. In this strip, k ≥ kmin > 0, therefore we
arrive at the estimate

1
2γ ‖f‖20 + m‖f‖20 ≥

∫

Gl−2σ

[
(kminη − 1

2γη2)w2
xx + aηw2

xy

]
dG. (4.8)

The parameter γ > 0 can be chosen small enough to provide kminη − 1
2γη2 > 0, hence

m‖f‖20 ≥
∫

Gl−σ

[w2
xx + w2

xy] dG. (4.9)

The latter means
‖wx‖W 1,2(Gl−σ) ≤ m‖f‖0 (4.10)

where Gl−σ = G ∩ {x : x > l − σ}. Recalling that w = uN,ε and setting N →∞, from
(4.10) we get (3.19).

5. A proof of estimate (3.20)

Let σ and w be the same as in the previous section. We choose now a non-negative cut-
off function η ∈ C∞[0, l] that equals unity at σ ≤ x ≤ l− σ and vanishes at 0 ≤ x ≤ 1

2σ

and l − 1
2σ ≤ x ≤ l. Let us multiply (3.14) by η(XN,ε

j )xxx, then sum up from 1 to N ,
and integrate with respect to x from 0 to l. In this way, we obtain

∫

G

[(
εwxxx + kwxx − αwx + cw − f

)
wxxx − awywxxxy

]
η dG = 0, (5.1)

i.e.
∫

G

fwxxxη dG

=
∫

G

[
εw2

xxx + kwxxwxxx − αwxwxxx + cwwxxx − awywxxxy

]
η dG.

(5.2)

By omitting the term εw2
xxx and integrating by parts the others, due to η(0) = η(l) = 0

we arrive at the estimate

−
∫

G

(fη)xwxxdG

≥
∫

G

[
− 1

2 (kη)xw2
xx + (αwxη)xwxx − (cwη)xwxx − (awyη)xxwxy

]
dG.

(5.3)

Owing to the choice of η, the derivatives ηx and ηxx vanish over G except for two strips
G ∩ {x : 1

2σ < x < σ} and G ∩ {x : l − σ < x < l − 1
2σ} in which k ≥ kmin > 0. The

integrals over the second strip can be estimated by invoking inequality (4.10), while
those over the first strip can be estimated using a similar inequality obtained in the
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same way as (4.10) with a cut-off function that vanishes at x ≤ 1
4σ and x ≥ 3

2σ. Then
(5.3) yields

−
∫

G

fxwxxη dG + m‖f‖20

≥
∫

G

[
− 1

2kxw2
xx + (αwx)xwxx − (cw)xwxx − (awy)xxwxy

]
η dG.

(5.4)

Now we use the condition 2α− kx ≥ δ > 0 valid due to (3.4):

−
∫

G

fxwxxη dG + m‖f‖20 ≥
∫

G

[
1
2δw2

xx + αxwxwxx − (cxw + cwx)wxx

− (axxwy + 2axwxy + awxxy)wxy

]
η dG.

(5.5)

Integrating by parts the underlined terms in the right-hand side and estimating the
terms with ηx again by ‖f‖20, we get

−
∫

G

fxwxxη dG + m‖f‖20

≥ 1
2

∫

G

[
δw2

xx − αxxw2
x + 2(cxw)xwx + cxw2

x + axxxw2
y − 3axw2

xy

]
η dG.

(5.6)

The integral of the terms involving first order derivatives of w can be estimated by
invoking (3.16). Also, we notice that ax ≤ 0 due to conditions (3.4). That is why (5.6)
reduces to

−
∫

G

fxwxxη dG + m‖f‖20 ≥ δ
2

∫

G

w2
xxη dG. (5.7)

Using Young’s inequality in the left-hand side, we find

1
2γ ‖fx‖20 + γ

2 ‖wxxη‖20 + m‖f‖20 ≥ δ
2

∫

G

w2
xxη dG. (5.8)

At γ ≤ 1
2δ, the second term is less than half the right-hand side:

m‖f‖21 ≥ δ
4

∫

G

w2
xxη dG. (5.9)

Since η = 1 in the subdomain Gin = G ∩ {x : σ < x < l − σ}, we obtain

‖wxx‖L2(Gin) ≤ m‖f‖1 (5.10)

where w = uN,ε. At N →∞, (5.10) yields (3.20).
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6. Solvability of the transonic flow problem (2.3), (2.4)

Let us pass to the nonlinear perturbation problem (2.3) - (2.4). By using the solvabil-
ity of the linear problem established in Theorem 2, we shall construct a sequence of
approximate solutions and prove its convergence in an appropriate Sobolev space with
the principle of contractive mappings.

Theorem 3. Assume that ϕ ∈ W 6,2(Gnoz) is a given function such that ϕx(0, y) <
1, ϕx(lnoz, y) > 1 and in addition ϕxx ≥ δ > 0 in Gnoz. Then for any perturbation f±

vanishing in the vicinity of x = 0 and having sufficiently small norm ‖f±‖W 3,2(0,lnoz)

there exists a solution u ∈ W 4,2(Gnoz) of the nonlinear problem (2.3), (2.4). That
solution is unique in the class of functions ‖u‖W 3,2(Gnoz) < r where r depends on ϕ and
Gnoz.

Proof. We employ the approach outlined in [16]. The solution will be constructed
through the following iteration scheme:

(1− ϕx + gi)u(i+1)
xx − ϕxxu(i+1)

x + 1
1+γ u(i+1)

yy = 0 (6.1)

gi = u(i)
x (i ∈ N), g0 ≡ 0

under the boundary conditions (2.4). The proof is split into four steps.

Step 1. The linear problem (2.4), (2.5) can be easily reduced to the problem for the
non-homogeneous equation

Lgu := (1− ϕx + g)uxx − ϕxxux + 1
1+γ uyy = f ∈ W 3,2(Gnoz) (6.2)

given in Gnoz and endowed with the homogeneous boundary conditions

u(0, y) = 0

uy(x,±1) = 0

}
(6.3)

Indeed, one can obtain this by substituting u + û for u in (2.4), (2.5) where û =
1
4f+(x)(1+ y)2− 1

4f−(x)(1− y)2 is a function satisfying the boundary conditions (2.4).
Equation (6.2) coincides with (3.1) in the special case k = 1−ϕx +g, α = ϕxx, a =

1
1+γ , c ≡ 0. Obviously, the expressions

2α + kx = ϕxx + gx

2α− 3kx = 5ϕxx − 3gx

2α− kx = 3ϕxx − gx

2α− 5kx = 7ϕxx − 5gx

}
(6.4)

are positive at sufficiently small g due to ϕxx ≥ δ > 0 in Gnoz. In order to apply Theorem
2, we need to modify problem (6.2), (6.3) so as to gain the elliptic type of the equation on
the right-hand side of a rectangle as well as on the left-hand side. Let us choose l > lnoz

and prolong the functions ϕ, f, g into the domain {(x, y) : lnoz < x < l and −1 < y < 1}
in such a way that ϕx(l, y) < 1, ϕ ∈ W 6,2(G), f ∈ W 3,2(G) and (6.4) remain true in
the extended domain G = {(x, y) : 0 < x < l and − 1 < y < 1}. Since ϕx(l, y) < 1,
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the type of equation (6.2) is elliptic on the right-hand side of G at sufficiently small g.
That is why we prescribe the boundary condition

ux(l, y) = 0 (6.5)

in addition to (6.3). As seen, in the extended domain G, the coefficients of equation
(6.2) satisfy all the inequalities required in Theorem 2. The condition ϕ ∈ W 6,2(G)
yields ϕx ∈ C3(Ḡ) due to the imbedding theorems for the two-dimensional domain
[1]. Therefore, at g ≡ 0 the coefficients of (6.2) are smooth enough, and Theorem 2
establishes the existence of a solution u ∈ W 2,2(G)∩W 4,2(Gin) to problem (6.2), (6.3),
(6.5). The restriction of u to the subdomain Gnoz gives a solution to problem (6.2),
(6.3). Theorem 1 ensures the uniqueness of the solution u ∈ W 2,2(Gnoz) ∩W 4,2(Gin)
obtained in the case g ≡ 0.

Step 2. The condition of vanishing f±(x) in the vicinity of x = 0 yields f(x, y) ≡ 0
near the left-hand side of G and provides u ∈ W 4,2(Gnoz). In order to prove the
latter, we use the even prolongation of u ∈ W 2,2(Gnoz) and smooth prolongation of the
coefficients of (6.2) across the segments y = ±1, 0 ≤ x ≤ σ, where σ is small enough,
into domains 1 < |y| < 1 + σ, 0 < x < σ (see Figure 2, in which the upper domain is
indicated by the dashed segments). By formal differentiation of (6.2) with respect to
y, we find that uy is a weak solution of Dirichlet’s problem for the equation of elliptic
type L0uy = f̄ in the strip 0 < x < σ, |y| < 1 + σ, where f̄ is square-integrable. A
weak solution of such a problem is necessarily regular [18], hence uy ∈ W 2,2(Gσ), Gσ =
{(x, y) : 0 < x < σ and |y| < 1}.

Similarly, the second differentiation of (6.2) shows that uyy ∈ W 2,2(Gσ). Then
equation (6.2) provides uxx ∈ W 2,2(Gσ), consequently u ∈ W 4,2(Gσ). Taking into
consideration that u ∈ W 4,2(Gin), where Gin and Gσ can overlap, one obtains u ∈
W 4,2(Gnoz).

Step 3. In the case 0 6≡ g ∈ W 3,2(Gnoz), which is crucial to the validity of scheme
(6.1), the coefficient in front of uxx in (6.2) does not belong to C3(Ḡnoz). However,
g ∈ C1(Ḡnoz) due to imbedding theorems [1]. Therefore, the assertion of Theorem
2 in the part of the existence of the solution u ∈ W 2,2(G) remains valid, because
estimate (3.20) is true at k ∈ C1(Ḡ), as seen from inequality (5.4) which does not involve
higher order derivatives of k. Consequently, there exists the solution u ∈ W 2,2(Gnoz) of
problem (6.2), (6.3) owing to the arguments of Step 1.

In order to prove that the solution belongs to W 4,2(Gnoz) in the case g ∈ W 3,2(Gnoz)
we first validate a priori estimates

‖u‖W p,2(Gnoz) ≤ m‖Lgu‖W p−1,2(Gnoz) (p = 1, 2, 3, 4; m > 0) (6.6)

for sufficiently small ‖g‖W 3,2(Gnoz) and any function u ∈ W p,2(Gnoz) satisfying boundary
conditions (6.3) and such that Lgu ∈ W p−1,2(Gnoz) and Lgu ≡ 0 in the vicinity of x = 0.
The validity of (6.6) at p = 1 follows from the analysis of the integral

∫
Gnoz

Lgu·uxeµxdG

similar to (2.8). Let us prove that (6.6) is true at p = 4 if it holds at p = 1, 2, 3. The
condition ϕx(0, y) < 1 provides ϕx < 1 in the strip 0 ≤ x ≤ 4σ, |y| ≤ 1 at sufficiently
small σ > 0. Consider a non-negative cut-off function η ∈ C∞[0, l] vanishing at {x ≤ σ}
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and equal to unity at {x ≥ 2σ}. It can be easily checked that the function ũ = ηu
satisfies the equation

Lgũ = f̃ := ηLgu + (1− ϕx + g)(ηxxu + 2ηxux)− ϕxxηxu ∈ W 3,2(Gnoz).

By differentiating Lgũ = f̃ twice with respect to x, we obtain

(1− ϕx + g)(ũxx)xx − 3ϕxx(ũxx)x + 1
1+γ (ũxx)yy

= f̃xx − gxxũxx − 2gxũxxx + 3ϕxxxũxx + ϕxxxxũx.
(6.7)

Hence, ũxx can be considered as a solution of the second order equation that only differs
from (6.2) by the multiplier 3 in front of ϕxx, which does not influence the validity of
(6.6). In addition, ũxx satisfies the boundary conditions (6.3), because ũxx = 0 at
x ≤ σ. That is why one can use (6.6) with p = 2 in order to estimate ‖ũxx‖W 2,2(Gnoz)

by the right-hand side of (6.7):

‖ũxx‖2 ≤ m
∥∥∥f̃xx − gxxũxx − 2gxũxxx + 3ϕxxxũxx + ϕxxxxũx

∥∥∥
1

(6.8)

where ‖ · ‖p denotes ‖ · ‖W p,2(Gnoz). Due to Remark presented below, the second and
third terms in the right-hand side of (6.8) can be estimated as

‖gxxũxx‖1 ≤ m‖gxx‖1‖ũxx‖2 ≤ m‖g‖3‖ũxx‖2
‖gxũxxx‖1 ≤ m‖gx‖2‖ũxxx‖1 ≤ m‖g‖3‖ũxx‖2

}

where m > 0 may as usual be different in different formulae. Therefore, under suffi-
ciently small ‖g‖3, inequality (6.8) reduces to

‖ũxx‖2 ≤ m‖f̃xx + 3ϕxxxũxx + ϕxxxxũx‖1. (6.9)

Since ϕxxx ∈ C1(Ḡnoz), the second and third terms on the right-hand side of (6.9) can
be estimated by (6.6) with p = 3 and p = 2. Then the equation Lgũ = f̃ makes it
possible to estimate ‖ũyy‖2 by ‖ũxx‖2, and we arrive at ‖ũ‖4 ≤ m‖f̃‖3. Recalling that
η = 1 and ũ = u at x ≥ 2σ, we obtain

‖u‖W 4,2(Gnoz∩{x:x>2σ}) ≤ m‖f̃‖3. (6.10)

A similar inequality ‖u‖W 4,2(Gnoz∩{x:x<3σ}) ≤ m‖Lgu‖3 holds due to the elliptic type
of the operator Lgu at 0 ≤ x ≤ 4σ and the considerations of Step 2. By combining the
two inequalities, we get (6.6) with p = 4.

Remark. For u ∈ W 2,2(G) and v ∈ W 1,2(G), the estimate ‖uv‖1 ≤ m‖u‖2‖v‖1 is true.
Indeed,

‖uv‖21 =

Z

G

�
(uxv + uvx)2 + (uyv + uvy)2 + u2v2�dG

≤ 2

Z

G

�
u2

xv2 + u2v2
x + u2

yv2 + u2v2
y

�
dG +

Z

G

u2v2dG

≤ 2

Z

G

(u2
x + u2

y)v2dG + 2
�

max
G

u
�2

‖v‖21
≤ 2‖u2

x + u2
y‖0‖v2‖0 + m‖u‖22‖v‖21

≤ m‖u‖22‖v‖21
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owing to multiplicative inequalities [1, 18], which yield for a rectangle G

‖v2‖0 = ‖v‖2L4(G) ≤ m‖v‖1‖v‖0 ≤ m‖v‖21,

consequently ‖u2
x + u2

y‖0 ≤ m‖u‖22 where the constants m > 0 are independent of u and v.

Now, we use (6.6) in order to prove that the solution u ∈ W 2,2(Gnoz) of problem
(6.2), (6.3) belongs to W 4,2(Gnoz). Let us approximate g in the norm ‖ · ‖W 3,2(Gnoz) by
a sequence gj ∈ C3(Ḡnoz) (j ∈ N). The equations

(1− ϕx + gj)uxx − ϕxxux + 1
1+γ uyy = f (6.11)

endowed with boundary conditions (6.3) have solutions uj ∈ W 4,2(Gnoz) due to the
result of Step 2. These solutions are bounded in the norm ‖ · ‖4 owing to (6.6). Hence,
there exists a subsequence with a weak limit û ∈ W 4,2(Gnoz). On the other hand, the
sequence uj converges to the solution u ∈ W 2,2(Gnoz), because by subtracting (6.11)
from (6.2), one obtains

Lg(u− uj) = (gj − g)ujxx,

therefore

‖u− uj‖2 ≤ m‖Lg(u− uj)‖1 = m‖(gj − g)ujxx‖1 → 0 as j →∞.

That is why u = û ∈ W 4,2(Gnoz).

Step 4. Scheme (6.1) implies solving a sequence of problems (6.1), (2.4) for gi ∈
Br = {g ∈ W 3,2(Gnoz) : ‖g‖3 < r}. On account of Step 3, the solutions u(i+1) exist if
the radius r of the ball Br is small enough. Then scheme (6.1) can be represented in the
form gi+1 = Tgi, in which the operator Tg is defined by Tg = ux for all g ∈ Br where u
is the solution of the equation Lgu = 0 under boundary conditions (2.4). Consequently,
the nonlinear problem (2.4), (2.5) can be rewritten as g = Tg.

Under sufficiently small ‖f±‖, the operator Tg maps the ball Br into Br because

‖Tg‖3 = ‖ux‖3
≤ ‖ux − ûx‖3 + ‖ûx‖3
≤ m‖f‖3 + ‖ûx‖3
≤ m‖ |f+|+ |f−| ‖W 3,2(0,lnoz)

< r.

(6.12)

Let us prove that the operator Tg is a contractive one in the norm ‖ · ‖1 if the radius r
is small enough. Due to (6.6) with p = 2, one obtains for two elements g1 and g2

‖Tg1 − Tg2‖1 = ‖u1x − u2x‖1 ≤ ‖u1 − u2‖2 ≤ m‖Lg1(u1 − u2)‖1. (6.13)

From equation (2.5) we find

Lg1u1 − Lg2u2 = Lg1(u1 − u2) + (g1 − g2)u2xx = 0.



Solvability of a Boundary Value Problem 745

Therefore, the right-hand side of (6.13) can be estimated by

m‖(g1 − g2)u2xx‖1 ≤ m‖g1 − g2‖1 ‖u2xx‖2
≤ m‖g1 − g2‖1 ‖u2x‖3
≤ mr‖g1 − g2‖1

owing to (6.12). Hence, at r < 1
m the operator Tg is a contractive one. Then the

principle of contractive mappings shows that sequential approximations gi+1 = Tgi (i ∈
N0) converge to the unique solution g ∈ W 1,2(Gnoz) of the equation g = Tg. On
the other hand, because of the weak compactness of Br, there exists a subsequence
which weakly converges to ĝ ∈ W 3,2(Gnoz). Due to the uniqueness, one gets g = ĝ ∈
W 3,2(Gnoz). Then u =

∫ x

0
g dx is the solution of the nonlinear problem (2.3) - (2.4)

Conclusion. A shock-free flow with subsonic-supersonic transition in a nozzle was
considered. A nonlinear perturbation problem for the von Karman equation was formu-
lated and studied. The obtained results can contribute to the analysis of finite element
approximations of transonic flow pursued in [2, 3, 20].
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