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Capillary Surfaces in Non-Cylindrical Domains

G. Schindlmayr

Abstract. This paper is concerned with the capillary problem in a class of non-cylindrical
domains in K ⊂ Rn+1 obtained by scaling a bounded cross-section Ω ⊂ Rn along the vertical
axis. The capillary surfaces are described in two different ways. In the first model, they are
described as the boundary of a Caccioppoli set and in a second model, after transforming
K to a cylinder, they are described as graphs of functions on Ω. The volume of the fluid is
prescribed. For both models, the energy functional is derived and declared on the appropriate
function space consisting of BV -functions. Main results are existence and a priori bounds
of minimizers, using the direct methods in the calculus of variations. For the special case
of a cone over the domain Ω, a criterion is given to assure that the tip is not filled with
liquid. Another point of examination concerns modelling the volume restriction by means of a
Lagrange multiplier.
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1. Introduction

Physically it can be observed that drops of liquid are held in equilibrium in vessels that
have tips at the bottom or that are unbounded with sufficently fast narrowing cross
section. Examples are the cone in Rn+1 over some domain Ω ⊂ Rn or the narrowing
tube, both shown in Figure 1.

Figure 1: Equilibrium drops in narrowing vessels

Responsible for that phenomenon are capillary forces on the free surface of the
liquid and on the interface between the liquid and the boundary of the vessel. In an
equilibrium configuration, the total energy of the liquid takes a (local) minimum. The
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total energy is given by the sum of the surface energy, being proportional to the area
of the free surface, the wetting energy, being proportional to the area of the liquid-solid
interface and the potential energy. Thus, the equilibrium problem naturally leads to
the formulation as a variational problem. A broad variety of mathematical methods
have successfully been applied to capillary problems. A survey over many aspects of
capillary surfaces and their mathematical treatment is given in [8].

In [12] the problem of capillary surfaces in a domain K is treated, where K is
assumed to be the supergraph of a Lipschitz function ω bounded from below and sat-
isfying limy→∞ ω(y) = ∞. The liquid is described by a Caccioppoli set E ⊂ K, i.e.∫

K
|DχE | < ∞, with prescribed volume |E| = V . The advantage of such a general

setting is that no assumptions about the topological type of the solution surface are
needed to be made. Main results are the existence of a minimizer for the total energy
and the regularity of the boundary of E. A regulariy result concerning the intersection
curves of the vessel boundary with the liquid surface can be found in [14], formulated
by means of currents from geometric measure theory (cf. [7]).

A special case extensively studied in the literature is the case where the vessel is a
cylinder over some cross-section Ω, such that a surface can be described by the graph of
a function u : Ω → R. Besides treating the Euler-Lagrange equation of the variational
problem, which is an equation of prescribed mean curvature with Neumann boundary
condition, advances in the existence theory have been made using the direct methods in
the calculus of variations in the space BV of functions of bounded variations (cf. [6, 9 -
11]). In [10] existence and regularity of a capillary surface in a cylinder with prescribed
volume below the surface are shown.

The aim of this work is to study the capillary problem in a class of non-cylindrical
domains such as those shown in Figure 1. They are obtained by scaling a cross-section Ω
along the vertical coordinate t via a scaling function φ(t) > 0. Particularly, the existence
of a solution and the physical phenomenon of drops held in equilibrium, as described
at the beginning of this article, are regarded. In Section 2 the liquid is modeled as a
Caccioppoli set as done in [12]. For the cone K over some domain Ω ⊂ Rn (scaling
function φ(t) = t), a criterion is given to assure that the tip of the cone is not filled
with liquid (Theorem 1). For the domain K, obtained by choosing φ(t) = 1

|t| as scaling
function (right-hand side of Figure 1), existence and boundedness of the solution set E
are shown (Theorem 2).

In Section 3 a coordinate transformation is used to transform the domain K onto
a cylinder, where K is again obtained by scaling a cross-section Ω along the vertical
axis. Then, the upper and lower surfaces of the liquid can be described by means of
two functions u and v. Motivated by [10], the volume constraint is taken into account
by introducing a Lagrange multiplier. After deriving the energy functional (19), it is
explained how the functional is declared for general u, v ∈ BV (Theorem 3). For the
special case of the cone (scaling function φ(t) = t), existence and boundedness of a
solution are shown and the dependence on the Lagrange multiplier µ is examined. It is
proved that the volume between the surfaces monotonically converges to infinity with
µ →∞. The results are summarized in Theorem 4.

It shall be remarked that the results from this article are part of the doctoral thesis
[11], where also some more details can be found.
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2. Model I: Caccioppoli sets

Representing the fluid by a set E ⊂ K, the energy functional is given by

F(E) =
∫

K

|DχE |+ κ

∫

K

xnχE dx + σ

∫

∂K

χE dHn−1 (1)

where χE is the characteristic function of E, κ > 0 is the constant of gravity and σ
is the wetting constant, which is assumed to be non-negative. The contact angle γ is
related to σ by the identity σ = − cos γ. The perimeter

∫
K
|DχE | of E in K is defined

by ∫

K

|DχE | = sup
{∫

K

χE div g dx

∣∣∣∣ g ∈ C1
0 (K,Rn) with sup

x∈K
|g(x)| ≤ 1

}
. (2)

The variational problem under consideration then is

minF(E) (E ∈ {F ⊂ K : |F | = V }). (3)

Using the functional above, Giusti (cf. [12]) shows the existence and boundedness
of a solution if the vessel is bounded from below and has Lipschitz-regular boundary.
(Further regularity of K might be needed if σ < 0.) As a crucial tool to construct feasible
comparison functions, Giusti used the following lemma, which will also be helpful here.

Lemma 1 (Giusti [12]). Let L be a Borel set und D an open domain,
∫

D
|DχL| > 0.

Then there exist v0 > 0 and Q0 > 0 depending on D and L ∩D such that for |v| < v0

a set F exists with F = L outside of D and

|F | = |L|+ v (4)
∫

D

|DχF | ≤
∫

D

|DχL|+ Q0|v| (5)
∫

D

|χF − χL| dx ≤ Q0|v|
∫

D

|χL|. (6)

2.1 The Cone. Let Ω ⊂ Rn be open and bounded with Lipschitz-continuous boundary
∂Ω and outer unit normal vector ν(x). Let K ⊂ Rn+1 be the cone over Ω,

K =
{
(tx, t)| (x, t) ∈ Ω× R≥0

}
. (7)

This domain K is a special case of the problem treated in [12]. Therefore existence and
regularity of the minimizer are guaranteed. The following theorem states the condition
under which the tip of the cone is not filled with liquid in equilibrium.

Theorem 1. If the domain Ω satisfies the inequality

|Ω| < σ
n

∫

∂Ω

√
1 + (x · ν)2 dHn−1, (8)

then for the solution E of problem (3) there exists no ε0 > 0 such that {x ∈ K|xn+1 <
ε0} ⊂ E.
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Proof. To construct a contradiction, it is assumed that there exists an ε0 such that
{x ∈ K|xn+1 < ε0} ⊂ E. Let D ⊂⊂ K with

inf{xn+1|x ∈ D} > ε0,

∫

D

|DχE | > 0,

∫

∂D

|DχE | = 0.

For notational convenience, let

Eε := {x ∈ E|xn+1 < ε}
Eε := {x ∈ E|xn+1 > ε}
Γε := {x ∈ E|xn+1 = ε}.

The idea of the proof is to compare the energies of E and Eε. To get a contradiction to
the minimizing property of E, one cannot directly compare Eε to E because Eε does
not satisfy the volume restriction. Speaking in physical terms, the liquid being removed
from the tip of the cone has to be put somewhere else (which will be inside of D) in
such a way that one can still estimate the energy. To use Lemma 1 with L = Eε one
first notices that the constants v0 and Q0 do not depend on ε for ε ≤ ε0, since one can
take the same D and hence has the same sets L ∩D. Now ε1 ≤ ε0 is chosen in such a
way that |Eε| < v0 for all ε < ε1, which is always possible since clearly limε→0 |Eε| = 0.
By Lemma 1, for each ε < ε1 there exists a set F with F = Eε outside of D such that
(4) - (6) hold with L = Eε and v = |Eε|. In particular, by (4), |F | = |Eε|+ |Eε| = V ,
i.e. F is feasible. From (6) it follows

∫

K

xn+1χF dx ≤
∫

K

xn+1χEε dx + c1|Eε|. (9)

Using F(F ) ≤ F(Eε)+ c2|Eε| by (9) and (5) and comparing the energies for Eε and E,
one gets

F(F ) ≤ F(E) +Hn(Γε)− σ

∫

∂K

χEε dHn + c2|Eε| (10)

where Hn denotes the n-dimensional Hausdorff measure. As Eε is just the tip of the
cone by assumption, elementary integration yields

Hn(Γε) = εn|Ω| and
∫

∂K

χEε dHn = εn

n

∫

∂Ω

√
1 + (x · ν)2 dHn−1 (11)

whereas |Eε| = εn+1|Ω|
n+1 is of higher order in ε. For ε small enough, (8) leads to the

contradiction F(F ) < F(E)

Remark. The geometrical interpretation of the criterion given in Theorem 1 is a
condition on the opening angle of the cone. The opening half-angle α can be defined by
the identity

sin α =
Hn(Γε)
Hn(Sε)
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where Hn(Sε) =
∫

∂K
χEε

dHn is the area of the surface Sε = ∂Eε ∩ ∂K at the tip. By
(11), criterion (8) can be written in the form

Hn(Γε)∫
∂K

χEε
dHn

< σ.

In terms of the opening angle α and the contact angle γ defined by − cos γ = σ this
inequality takes the form sin α < σ or α < γ − π

2 . Written in this from there are formal
similarities to results in [4].

2.2 The 1
t
-scaled domain in R3. Let Ω ⊂ R3. The domain

R =
{(

x
t ,−t)| (x, t) ∈ Ω× R≥0

}

can also be parametrized by

Ψ : Q = Ω× R→ R2 × R, (x, t) 7→ (etx,−e−t).

In these local coordinates (x, t), the volume element is vQ = et. The standard coordi-
nates in R3 will be denoted by y to avoid confusion. The following version of Poincaré’s
inequality holds in R.

Lemma 2. Let v ∈ BV (R). Then there is a constant C = C(Ω) such that
∣∣∣∣
∫

R

y3|v| dy

∣∣∣∣ ≤ C

(∫

R

|Dv|+
∫

∂R

|v| dH2

)
.

Proof. Let v ∈ BV (R) and u = v ◦Ψ be the pull-back on Q. Then by Poincaré’s
inequality in Ω

∣∣∣∣
∫

R

y3|v| dx

∣∣∣∣ =
∫

Q

e−t|u| vQ dxdt

=
∫

R

∫

Ω

|u(x, t)| dxdt

≤
∫

R
C

(∫

Ω

|Dxu|+
∫

∂Ω

|u| dH1

)
dt.

(12)

For smooth v, by coordinate transformation, one has the estimates
∫

R

|Dv| =
∫

Q

∣∣(D1u,D2u, xD1u + yD2u−D3u
)∣∣ dxdt ≥

∫

R

∫

Ω

|Dxu| dxdt

and ∫

∂R

|v| dH2 =
∫

R

∫

∂Ω

|u|
√

1 + e4t(x · ν)2 dH1dt ≥
∫

R

∫

∂Ω

|u| dH1dt

proving the assertion for smooth v. For v ∈ BV (R) the assertion follows by approxi-
mation
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To avoid the asymptotic behaviour at y3 = 0, a vessel K is constructed from the
1
t -scaled tube R by setting a truncated cone on top of R, such that the boundary of K
has infinite height. The behaviour for t → −∞ is not affected. An explicit formular for
K could be

K :=

{
(y, y3) ∈ R3

∣∣∣∣∣
y = x/|y3 − 1| for y3 < 0

y = x(y3 + 1) for y3 > 0
(x ∈ Ω)

}
. (13)

What remains to be examined is the question whether a drop can be in equilibrium
without “falling down” the vessel. An answer is given in the theorem below.

Theorem 2. Let F be the functional defined in (1), 0 < σ ≤ 1. Let κ be sufficently
small. Then there exists a set E ⊂ K minimizing F among all sets F ⊂ K with |F | = V
und inf{y3| y ∈ F} > −∞.

Proof. The first step is to show that the energy functional (1) is bounded from
below. For E ⊂ K, E0 = E ∩ {y3 < 0}, one can apply Lemma 2 to get

κ

∫

K

y3χE dy ≥ κ

∫

K

y3χE0 dy

≥ −κC

(∫

K

|DχE0 |+
∫

∂K

χE0dH2

)

≥ −
(∫

K

|DχE |+ σ

∫

∂K

χE dH2 + |Ω|
)

for κ ≤ σ
C . The boundedness of (2) now follows immediately.

The next step is to find a minimizer among all sets F ⊂ K−M , where K−M = {y ∈
K| y3 > −M} is the vessel with an artificial obstacle at level −M . The vessel K−M fits
into the framework of [12], thus the existence (and C1,α-regularity) is ensured.

The last step is to show that the obstacle is not touched, such that for M ≥ M0 one
has the same minimizer. This follows from Lemma 3, where an a priori lower bound for
the minimizer is shown, that is independent of M

Lemma 3. Let F be the functional defined in (1), 0 < σ ≤ 1 and κ be sufficently
small. Let E minimize F among all F ⊂ K−M , |F | = V where K−M = {y ∈ K| y3 >
−M}. Then there exists a bound M0 independent of M such that inf{y3| y ∈ F} > −M0.

Proof. The idea of the proof follows [12] where upper bounds are shown. Let

ET := {y ∈ E| y3 < T}
ET := {y ∈ E| y3 > T}
ΓT := {y ∈ E| y3 = T}.

Let D ⊂⊂ K open with
∫

D
|DχE | > 0 and

∫
∂D
|DχE | = 0. For T < T0 ≤ inf{y3| y ∈ D}

one has |ET | < v0 and by Lemma 1 there is a set F with F = ET outside of D such
that (4) - (6) hold with v = |ET |. In particular, |F | = V , i.e. F is feasible, and

∫

K

y3χF dx ≤
∫

K

y3χET dx + c1|ET |.
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By comparing F and E, one gets

F(F ) ≤ F(ET ) + c2|ET |
≤ F(E) + 2H2(ΓT )−

∫

K

|DχET
|

− σ

∫

∂K

χET
dH2 − κ

∫

K

y3χET
dx + c2|ET |.

Using Lemma 2 and subsequently the isoperimetric inequality gives

F(F ) ≤ F(E) + 2H2(ΓT )− (1− a)
(∫

K

|DχET
|+ σ

∫

∂K

χET
dH2

)
+ c2|ET |

≤ F(E) + 2H2(ΓT )− (1− a)σ
∫

R3
|DχET

|+ c2|ET |

≤ F(E) + 2H2(ΓT )− c3|ET |1− 1
n + c2|ET |

≤ F(E) + 2H2(ΓT )− c4|ET |1− 1
n

for T < T0 where in the last step |ET | → 0 for T → −∞ was used. Since E is a
minimizer,

2H2(ΓT )− c4|ET |1− 1
n ≥ 0. (14)

The remaining steps are similar to [12]: From (14) it follows that

d

dT
|ET | = H2(ΓT ) ≥ c4

2
|ET |1− 1

n .

Assuming ET > 0 for T < T0, integrating the last inequality leads to

|ET0 |
1
n − |ET | 1n ≥ c4

2n
(T0 − T )

and thus T ≥ T0 − 2n
c4
|ET0 |

1
n

3. Model II: non-parametric surfaces

3.1 General scaled vessels. Let the vessel K be constructed by scaling a cross-section
Ω ⊂ Rn along the vertical axis,

K =
{
(φ(t)x, t)| (x, t) ∈ Ω× R}

. (15)

The scaling function φ is assumed to be smooth. To represent surfaces in K by graphs
of functions, one can use local coordinates, that transform K onto the cylinder Ω× R.
Such local coordinates are given by the map

Ψ : Q = Ω× R→ Rn+1, (x, t) 7→ (φ(t)x, t). (16)
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For the moment, let ∂Ω be smooth. The induced metric tensors gK on K and g∂K on
∂K are

gK =
(

φ2In φφ′x
φφ′xT 1 + (φ′)2|x|2

)

g∂K =
(

φ2In−1 φφ′Px
φφ′(Px)T 1 + (φ′)2|x|2

) (17)

where P is the orthogonal projection onto T (∂Ω). The induced metric tensor on a
surface S(u) : t = u(x) is

gS = φ2In + φφ′(x⊗Du + Du⊗ x) + (1 + |x|2)Du⊗Du. (18)

The corresponding volume elements
√

det g are vK = φn,

v∂K = φn−1
√

1 + (φ′)2(x · ν)2

vS =
(
φ2(n−1)(u)|Du|2 + (div (φn(u)x))2

) 1
2

.

The energy functional for a liquid between the surfaces S(u1) and S(u2), where u1 and
u2 are smooth functions, can be written as

J(u1, u2) =
∫

Ω

vS(u1) + vS(u2) dx

+ κ

∫

Ω

∫ u2

u1

tvK dtdx + σ

∫

∂Ω

∫ u2

u1

v∂K dtdHn−1.

After another transformation v = Φ(u) with Φ′ = φn−1 > 0 and Φ(0) = 0 and after
introducing a Lagrange multiplier µ for the volume restriction, the final version of the
energy functional is (writing u and v instead of v1 and v2)

Fµ(u, v) =
∫

Ω

(|Du|2 + (div (ψ(u)x))2
) 1

2 +
∫

Ω

(|Dv|2 + (div (ψ(v)x))2
) 1

2

+
∫

Ω

∫ v(x)

u(x)

Hµ(t) dtdx + σ

∫

∂Ω

∫ v(x)

u(x)

√
1 + (ψ′(t))2(x · ν)2 dtdHn−1.

(19)

Here, ψ = φn ◦ Φ−1/n, Hµ = κζΦ−1 − µζ and ζ = φ ◦ Φ−1.
In analogy to the capillary problem in the cylinder (cf. [6, 9 - 11]), a minimum

is sought in the class BV of functions of bounded variation. This is due to the linear
growth of F in the gradients of u and v. Therefore the functional F has to be defined for
general BV -functions. This can be done via a measure-theoretical method developed
in [5] (cf. also [1, 2]).

The following theorem holds.

Theorem 3. Let Ω ⊂ Rn be bounded and f ∈ C(Ω̄× R× Rn), such that

m|p| − a ≤ f(x, s, p) ≤ M |p|+ A
(
(x, s, p) ∈ Ω× R× Rn

)
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with constants m > 0 and a,A, M ≥ 0. For every (x, s) ∈ Ω × R let the map p 7→
f(x, s, p) be convex on Rn. Then the functional u 7→ ∫

Ω
f(x, u, Du) dx can be extended

to the functional u 7→ I(u) ≡ ∫
Ω

f(x, u, Du) on BVloc(Ω), such that:

1. I(u) is lower semi-continuous on BVloc(Ω) with respect to L1
loc(Ω)-convergence.

2. For u ∈ BV (Ω) ∩ L∞(Ω) there exists a sequence {uk} of functions uk ∈ C1(Ω)
such that uk → u in L1(Ω) and

∫
Ω

f(x, uk, Duk) → ∫
Ω

f(x, u, Du) for j →∞.

The construction
∫
Ω

f(x, u, Du) shall shortly be reviewed. For a Radon measure
λ, let λ = λa + λs be the Lebesgue decomposition in an absolutely continuous and a
singular part with respect to the Lebesgue measure Ln. The Ln-density of E in x is
defined as

lim
ρ→0+

|E ∩Bρ(x)|
|Bρ(x)| where Bρ(x) =

{
y ∈ Rn| |y − x| < ρ

}
.

Let
f0 : Ω×R× Rn → R+, f0(x, s, p) = lim

t→0+
f(x, s, p/t)t

and

f̃ : Ω×R× Rn × R− → R+, f̃(x, s, p, t) =
{−f(x, s,−p/t)t if t < 0

f0(x, s, p) if t = 0 .

Then (p, t) 7→ f̃(x, s, p, t) is convex and homogeneous of degree one on Rn × R−. The
following definitions are still needed: Let M(u) ⊂ Ω be a Borel set with

Ln(M(u)) = |Du|s(Ω−M(u)) = 0.

Furthermore, let

u− = sup
{
t| {y|u(y) < t} has Ln − density 0 in x

}

u+ = inf
{
t| {y|u(y) > t}has Ln − density 0 in x

}

N(u) =
{
x ∈ Ω|u−(x) < u+(x)

}

S(u) =
{
(x, s) ∈ Ω× R| s < u+(x)

}
.

Then
∫
Ω

f(x, u,Du) is defined by the identity
∫

Ω

f(x, u, Du) =
∫

Ω

f
(
x, u(x), (Du)a(x)

)
dx

+
∫

M(u)−N(u)

f0

(
x, u+(x),

dDu

d|Du| (x)
)

d|Du|

+
∫

N(u)

∫ u+(x)

u−(x)

f0

(
x, s,

dDu

d|Du| (x)
)

dHn−1.

Evaluating the divergence term in the integrand
(|Du|2 + (div (ψ(u)x))2

) 1
2 , Theorem 2

can be applied to the functional F in (19) setting

f(x, s, p) =
(|p|2 + (nψ(s) + ψ′(s)p · x)2

) 1
2 .
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The convexity of f can be checked via the Hessian matrix. For details of the relaxation
procedure cf. [13].

In the following subsection, the special case where K is a cone is treated in greater
detail. Applying the non-parametric methods to the case where K is 1

t -scaled, one gets
similar results corresponding to those from Subsection 2.2.

3.2 Non-parametric surfaces in the cone. The cone is a special case of the vessels
considered in (15) with scaling function φ(t) = t. The total energy functional (19)
becomes

Fµ(u, v) : =
∫

Ω

(|Du|2 + (div (ux))2
) 1

2 +
∫

Ω

(|Dv|2 + (div (v x))2
) 1

2

+
∫

Ω

κ
(
v

n+2
n − u

n+2
n

)
− µ

(
v

n+1
n − u

n+1
n

)
dx

+ σ

∫

∂Ω

(v − u)
√

1 + (x · ν)2 dHn−1.

(20)

Remark. As an alternative to the general theory behind Theorem 3, the surface
area functional for the cone can be defined by∫

Ω

(|Du|2 + (div (ux))2
) 1

2

= sup

{∫

Ω

udiv g + ux ·Dgn+1 dx

∣∣∣∣
g = (g, gn+1) ∈ C1

0 (Ω,Rn+1)

supx∈Ω|g(x)| ≤ 1

}
.

(21)

A similar technique was used in [3]. Property 1 (lower semi-continuity) from Theorem 3
is easily checked, whereas property 2 (smooth approximation) is more complicated and
proved by using mollifiers (cf. [13]).

The aim of this section is to prove the following theorem.

Theorem 4 (Summary of Theorems 5 - 9). Let ∂Ω be of class C2 and 0 < σ ≤
1− a (a > 0). Then for µ > 0 the problem Fµ(u, v) → min has a solution in

Kδ =
{

(u, v) ∈ (BV (Ω))2 ∩ (L∞(Ω))2
∣∣∣ 0 ≤ u ≤ δ ≤ v

}
. (22)

The solution functions uµ and vµ satisfy the estimate

0 ≤ uµ ≤ vµ ≤ kµ ≡
(

(n + 1)µ
(n + 2)κ

)n

. (23)

The sequences {uµ} and {vµ} are non-increasing and non-decreasing in µ, respectively.
For µ →∞ one has

lim
µ→∞

inf
Ω

vµ = ∞ (24)

lim
µ→∞

sup
Ω

uµ = 0. (25)

If |Ω| < σ
n

∫
∂Ω

√
1 + (x · ν)2dHn−1, then u is not identical to zero on Ω.

The monotony in µ and the limits (24) - (25) describe how the solution depends on

the Lagrange multiplier. In particular, the volume of the liquid, V =
∫

v
n+1

n
µ −u

n+1
n

µ dx →
∞ as µ → ∞. For clearness of the proof, the theorem is split into the sequence of
Theorems 5 - 9.
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Theorem 5 (Existence). Let ∂Ω be of Lipschitz type and 0 ≤ σ ≤ 1. Then the
problem

Fµ(u, v) → min in Kδ

has a solution (u, v) satisfying v ≤ kµ ≡
( (n+1)µ

(n+2)κ

)n.

Proof. As a first step, the a priori estimate for v shall be derived. Let v0 =
min(v, kµ) and A = {x ∈ Ω| v(x) > kµ}. Assume |A| > 0. Clearly,

∫

Ω

(|Dv0|2 + div (v0x)2
) 1

2 ≤
∫

Ω

(|Dv|2 + div (vx)2
) 1

2 (26)

σ

∫

∂Ω

(v0 − u)
√

1 + (x · ν)2 dHn−1 ≤ σ

∫

∂Ω

(v − u)
√

1 + (x · ν)2 dHn−1. (27)

The function fµ(x) = κx
n+2

n −µx
n+1

n takes its strict minimum in kµ, so for the potential
energy term, ∫

Ω

fµ(v0)− fµ(u) dx <

∫

Ω

fµ(v0)− fµ(u) dx

by the assumption. Those three inequalities give Fµ(u, v0) < Fµ(u, v), which is a
contradiction to the minimizing property of (u, v). Therefore, v ≤ kµ. Now the existence
can be proved. By the a priori estimate, the solution is sought in K̃δ = {u ∈ Kδ|u ≤ kµ}.
Since Hµ(t) → ∞ for t → ∞, the functional Fµ is bounded from below on Kδ. Any
minimizing sequence (uk, vk) (k ∈ N) is bounded in (BV (Ω))2. By compactness of
the embedding BV (Ω) ↪→ L1(Ω), there is a subsequence that converges in (L1(Ω))2

to a (u, v) ∈ (L1(Ω))2. Lower semicontinuity of the functional implies that (u, v) is a
minimizer. One easily checks that (u, v) ∈ K̃δ

Theorem 6 (Monotonicity in µ). Let ∂Ω be of Lipschitz type and 0 ≤ σ ≤ 1. For
i ∈ {1, 2} and µ1 < µ2, let (ui, vi) be the solution of

Fµi(u, v) → min in Kδ.

Then v1 ≤ v2 and u1 ≥ u2 a.e.

Proof. For notational convenience, let

v0 = max(v1, v2)

u0 = min(u1, u2)

fµ(x) = κx
n+2

n − µx
n+1

n

Iµ(u) =
∫
Ω

(|Du|2 + (div (ux))2
) 1

2 − ∫
Ω

fµ(u) dx− σ
∫

∂Ω
u
√

1 + (x · ν)2 dHn−1

Jµ(v) =
∫
Ω

(|Dv|2 + (div (v x))2
) 1

2 +
∫
Ω

fµ(v) dx + σ
∫

∂Ω
v
√

1 + (x · ν)2 dHn−1.

Here, only v1 ≤ v2 will be shown. Let A = {x ∈ Ω| v1 > v2} and w0 = min(v1, v2).
Since (u1, v1) minimizes Fµ1 ,

Iµ1(u1) + Jµ1(v1) = Fµ1(u1, v1) ≤ Fµ1(u1, w0) = Iµ1(u1) + Jµ1(w0),
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hence Jµ1(v1) ≤ Jµ1(w0). Similarly, Jµ2(v2) ≤ Jµ2(v0) holds. Together, this gives

Jµ1(v1) + Jµ2(v2) ≤ Jµ1(w0) + Jµ2(v0). (28)

Using the definitions of v0 and w0 and using v0 + w0 = v1 + v2, the identity

Jµ1(w0) + Jµ2(v0) = Jµ1(v1) + Jµ2(v2)

+
∫

A

fµ1(v2) + fµ2(v1)− fµ1(v1)− fµ2(v2) dx.

can easily be derived. Simplifying the last term by using the definition of fµ and by
using v1 > v2 on A, this leads to

fµ1(v2) + fµ2(v1)− fµ1(v1)− fµ2(v2) = (µ1 − µ2)
(
v

n+1
n

1 − v
n+1

n
2

)
≤ 0

on A. Equality only holds if |A| = 0. Suppose, |A| > 0. Then, by the last estimate,

Jµ1(w0) + Jµ2(v0) < Jµ1(v1) + Jµ2(v2)

in contradiction to (28). Therefore, |A| = 0 or, equivalently, v1 ≤ v2 a.e.

For proving the following theorems, some lemmata are needed. The first one con-
cerns the domain Ω.

Lemma 4. Let ∂Ω be of class C2. Then there exists a constant Cε such that for
v, u ∈ BV (Ω) with v ≥ u ≥ ε and A = {x ∈ Ω|u(x) < v(x)}
∫

∂Ω

(v − u)
√

1 + (x · ν)2 dHn−1 (29)

≤
∫

A

(|Dv|2 + (div (v x))2
) 1

2 +
∫

A

(|Du|2 + (div (ux))2
) 1

2 + Cε

∫

A

v
n+1

n − u
n+1

n dx.

It shall be remarked that the tip of the cone is taken out of consideration by in-
troducing the level ε. Then this lemma is the non-parametric version of the following
lemma stated in [12].

Lemma 5. Let K ⊂ Rn+1 be the supergraph of some C2-function ω with bounded
mean curvature. Then there exists a constant C > 0 such that for all A ⊂ K

∫

∂K

χA dHn−1 ≤
∫

K

|DχA|+ C|A|.

Another lemma concerning level-sets will be used later to prove a priori bounds for
the solutions.

Lemma 6. Let Ω ⊂ Rn be bounded, f ∈ L1(Ω) and A(λ) = {x ∈ Rn| f(x) < λ}.
Then the non-decreasing function

y : R→ R, λ 7→
∫

A(λ)

λ− f(x) dx
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is continuous and differentiable from the left with y′−(λ) = |A(λ)|.
Proof. By definition of y(λ), one has for h > 0

y(λ)− y(λ− h)

=
∫

A(λ)

λ− f(x) dx−
∫

A(λ−h)

λ− h− f(x) dx

=
∫

A(λ−h)

λ− f(x) dx +
∫

A(λ)−A(λ−h)

λ− f(x) dx−
∫

A(λ−h)

λ− h− f(x) dx

=
∫

A(λ−h)

h dx +
∫

A(λ)−A(λ−h)

λ− f(x) dx.

Therefore, since λ− h ≤ f(x) < λ in A(λ)−A(λ− h),

|y(λ)− y(λ− h)| ≤ h|A(λ− h)|+ h|A(λ)−A(λ− h)|.

This gives the continuity of y in λ. It remains to show that y′−(λ) = |A(λ)|, which is
equivalent to

lim
h→0+

∣∣∣∣
y(λ)− y(λ− h)

h
− |A(λ)|

∣∣∣∣ = 0.

By the above calculation, one has the estimate
∣∣∣∣
y(λ)− y(λ− h)

h
− |A(λ)|

∣∣∣∣ ≤
∣∣∣ |A(λ− h)|+ |A(λ)−A(λ− h)| −A(λ)

∣∣∣

≤ 2 |A(λ)−A(λ− h)|.

The right-hand side converges to zero for h → 0+ if

χA(λ−h) → χA(λ) for h → 0+ in L1(Ω). (30)

Relation (30) can be shown by Lebesgue’s convergence theorem. Since the characteristic
function is dominated by 1, it suffices to show the pointwise convergence. Let x ∈ Ω
be given. If χA(λ)(x) = 0, then this implies χA(λ−h)(x) = 0 for all h > 0 and the
convergence is trivial. The other case is χA(λ)(x) = 1. If one had χA(λ−h)(x) = 0
for all h > 0, then this would lead to the contradiction λ − h ≤ f(x) < λ for all
h > 0. Therefore, χA(λ−h0)(x) = 1 for a h0 > 0. But then χA(λ−h)(x) = 1 holds for all
0 < h ≤ h0, again showing the convergence for h → 0+

As a last tool, the following version of a comparison theorem for ordinary differential
equations, similar to Gronwall’s lemma is stated.

Lemma 7. Let y : [a, b] → R be non-decreasing and continuous, f be non-decreasing
and Lipschitz continuous and g ≥ 0 be continuous, such that the inequality y′(x) ≥
f(y(x))g(x) holds a.e. Let ψ be the (unique) solution of the initial value problem

ψ′(x) = f(ψ(x))g(x)

ψ(a) = y(a)

}
.
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Then y(x) ≥ ψ(x) for all x ∈ [a, b].

Theorem 7. Let λ1 > 0 be given. Then under the assumptions of Theorem 4 there
exists a µ0 such that

vµ ≥ λ1 (31)

a.e. for µ ≥ µ0.

Proof. Let λ2 > λ1 and λ2 ≥ λ ≥ λ1. Define

A(λ) = {x ∈ Ω| vµ(x) < λ}
vµ,λ = max(vµ, λ)

wµ,λ = vµ,λ − vµ = max(0, λ− vµ).

Then, (uµ, vµ) being minimizer, the inequality

Fµ(uµ, vµ)−Fµ(uµ, vµ,λ) ≤ 0

holds. The last expression can be written as
∫

A(λ)

(|Dvµ|2 + (div (vµ x))2
) 1

2 − nλ|A(λ)|

+σ

∫

∂Ω

(vµ − vµ,λ)
√

1 + (x · ν)2 dHn−1

+
∫

A(λ)

κ
(
v

n+2
n

µ − λ
n+2

n

)
− µ

(
v

n+1
n

µ − λ
n+1

n

)
dx ≤ 0.

Now one can use Lemma 4, σ ≤ 1− a and the estimate

cα(λ− vµ) ≤ λα − vα
µ ≤ Cα(λ− vµ) for α > 1, λ1 ≤ λ ≤ λ2

to get the inequality

a

∫

A(λ)

(|Dvµ|2 + (div (vµ x))2
) 1

2 + a(c1µ− c2)
∫

A(λ)

vµ,λ − vµ dx ≤ 2nλ|A(λ)|

or, equivalently,
∫
|Dwµ,λ|+ (c1µ− c2)

∫

Ω

wµ,λ dx ≤ 2na−1λ|A(λ)|.

The constants c1 and c2 do not depend on µ. Multiplying both sides with an ε > 0 to
be chosen later, this gives

ε

∫
|Dwµ,λ|+ ε(c1µ− c2)

∫

Ω

wµ,λ dx ≤ 2nεa−1λ|A(λ)|. (32)

Now Ehrling’s lemma in the form

‖u‖Lp(Ω) ≤ ε‖u‖BV (Ω) + c(ε)‖u‖L1(Ω)
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(where 1 < p < n
n−1 ) can be applied. There is a µ0 such that for µ ≥ µ0 one has

ε(c1µ− c2) > c(ε). For such µ, ‖wµ,λ‖p ≤ εc3λ|A(λ)|. Hölder’s inequality leads to
∫

Ω

wµ,λ dx ≤ c3ελ|A(λ)|1+ τ
p (τ = p− 1).

Setting

y(λ) =
∫

Ω

wµ,λ dx =
∫

A(λ)

λ− vµ dx

and using y′−(λ) = |A(λ)| by Lemma 6, the last inequality can be written as

(c3ε)
p

p+τ y′−(λ) ≥ y(λ)
p

p+τ λ−
p

p+τ . (33)

Assume y(λ1) > 0, which implies y(λ) > 0 for all λ ∈ [λ1, λ2] by monotonicity of y.
Then Lemma 7 may be used to show

y(λ1)
τ

p+τ ≤ y(λ2)
τ

p+τ − (c3ε)−
p

p+τ

(
λ

τ
p+τ

2 − λ
τ

p+τ

1

)
. (34)

Independently of µ, one has y(λ2) ≤ λ2|Ω|. Since ε−
p

p+τ → ∞ for ε → 0, the last
inequality is a contradiction to the assumption y(λ1) > 0 if one has chosen ε small
enough in (32)

Theorem 8. Let 0 < λ1 < δ be given. Then under the assumptions of Theorem 4
there exists a µ0 such that for µ ≥ µ0

vµ ≤ λ1 a.e. (35)

Proof. For the proof being very similar to that of Theorem 7 only the ansatz will
be given. Let λ1 > λ0 > 0 and λ1 ≥ λ ≥ λ0. Define

A(λ) = {x ∈ Ω|uµ(x) > λ}
uµ,λ = min{uµ, λ}
wµ,λ = uµ − uµ,λ = max{0, uµ − λ}.

Now the ansatz is Fµ(uµ, vµ)−Fµ(uµ,λ, vµ) ≤ 0

Theorem 9. Let ∂Ω be of Lipschitz type and 0 < σ ≤ 1. Let

|Ω| < σ
n

∫

∂Ω

√
1 + (x · ν)2 dHn−1 (36)

and (u, v) be the solution of the problem Fµ(u, v) → min in Kδ. Then u is not identical
to zero on Ω.

Proof. Suppose u ≡ 0 on Ω. Comparing u to the constant ε gives

Fµ(u, v)−Fµ(ε, v) = −nε|Ω|+ κε
n+2

n − µε
n+1

n + σε

∫

∂Ω

√
1 + (x · ν)2 dHn−1

=
(

σ

∫

∂Ω

√
1 + (x · ν)2 dHn−1 − n|Ω|

)
ε + o(ε).

The expression in brackets is greater than zero by (36). For ε small enough, this gives
Fµ(u, v)−Fµ(ε, v) > 0 in contradiction to the minimizing property of (u, v)
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