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On More General Lipschitz Spaces

Dorothee D. Haroske

Abstract. The present paper deals with (logarithmic) Lipschitz spaces of type Lip(1,−α)
p,q (1 ≤

p ≤ ∞, 0 < q ≤ ∞, α > 1
q
). We study their properties and derive some (sharp) embedding

results. In that sense this paper can be regarded as some continuation and extension of our
papers [8, 9], but there are also connections with some recent work of Triebel concerning Hardy
inequalities and sharp embeddings. Recall that the nowadays almost ‘classical’ forerunner
of investigations of this type is the Brézis-Wainger result [6] about the ‘almost’ Lipschitz

continuity of elements of the Sobolev spaces H
1+ n

p
p (Rn) when 1 < p < ∞.
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0. Introduction

The present paper arose in connection with our recent papers [8, 9] as well as after some
discussion with H. Triebel about this subject. Concerning our joint papers [8, 9] with
D. E. Edmunds, we were mainly led by two different questions to study certain spaces
of Lipschitz type and related embeddings.

On the one hand, compact embeddings of the type

id : Bs1
p1,q1

(Ω) −→ Bs2
p2,q2

(Ω) (1)

have been investigated for a long time already. Here Ω ⊂ Rn is a bounded C∞ domain,
and Bsi

pi,qi
are the usual Besov spaces with 0 < pi, qi ≤ ∞ and si ∈ R (i = 1, 2).

Embedding (1) is compact if

0 < p1, p2 ≤ ∞, s1 − s2 > n max
(

1
p1
− 1

p2
, 0

)
, 0 < q1, q2 ≤ ∞. (2)

The question now arises what happens when (2) is replaced by

s1 − n
p1

= s2 − n
p2

, 0 < p1 ≤ p2 ≤ ∞, 0 < q1, q2 ≤ ∞,

the so-called limiting case. Clearly, embedding (1) is no longer compact. However,
modifying the setting slightly, say, enlarging the target space sufficiently carefully (where
the initial space is assumed to be fixed now), may lead to compact limiting embeddings.
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One approach was given by Edmunds and Triebel in [10: Section 3.4], changing the
integrability p2 of the target space slightly, where now spaces similar to the well-known
Lorentz-Zygmund spaces Lp(log L)a(Ω) (a ∈ R) appear. A parallel result, concerning
the (weighted) Rn-setting can be found in [ 12 , 1

3 ].
Another idea to recover compactness of (1) when s1 − n

p1
= s2 − n

p2
, is to decrease

the smoothness of the target space in such a way that the embedding becomes com-
pact again, but the smoothness s2 is preserved; i.e. we stick at the limiting situation.
In that way one quite naturally arrives at the introduction of new spaces with addi-
tional ‘logarithmic smoothness’. As an example one may consider the case s2 = 1 and
p2 = ∞. It turns out that in the case of B-spaces there is an interplay between the
(usually neglected) q-parameters and the additional logarithmic smoothness. This re-
sult is somewhat surprising in our opinion, though similar results were obtained before
(cf. [11]).

The second reason to deal with spaces of ‘logarithmic smoothness’ in more detail,
is the well-known and celebrated result of Brézis and Wainger [6] in which it was shown
that every function u in H

1+ n
p

p (Rn) is ‘almost’ Lipschitz-continuous, in the sense that,
for all x, y ∈ Rn with 0 < |x− y| < 1

2 ,

|u(x)− u(y)| ≤ c |x− y|
∣∣ log |x− y|

∣∣ 1
p′ ‖u|H1+ n

p
p (Rn)‖. (3)

Here c is a constant independent of x, y and u, and 1
p′ + 1

p = 1. Our aim in [9] was to
investigate how ‘sharp’ this result is (concerning the exponent of the log-term), as well
as to look for possible extensions to the wider scale of F -spaces and parallel results for
B-spaces. We found that the exponent 1

p′ is sharp in the F -setting, whereas in case of
B-spaces the sharp exponent turned out to be 1

q′ . As already mentioned above, this
important role played by the q-parameter is rather unusual.

Moreover, (3) also suggests some definition of ‘logarithmic’ Lipschitz spaces in the
following way: some f ∈ C(Rn) belongs to Lip(1,−α)(Rn) (α ≥ 0) if

‖f |Lip(1,−α)(Rn)‖ := ‖f |L∞(Rn)‖+ sup
0<|h|< 1

2

sup
x∈Rn

|(∆hf)(x)|
|h| | log |h| |α (4)

is finite. Here ∆h is given by (∆hf)(x) = f(x + h)− f(x) (x, h ∈ Rn), as usual. Thus
the Brézis-Wainger result (3) (together with the sharpness assertion [9: Theorem 2.1])
reads as H

1+ n
p

p (Rn) ↪→ Lip(1,−α)(Rn) if, and only if, α ≥ 1
p′ , where 1 < p < ∞ and

1
p + 1

p′ = 1. Studying (logarithmic) Lipschitz spaces in greater detail, one observes that

– simply by construction – (4) can be understood as definition for spaces Lip(1,−α) =
Lip(1,−α)

∞,∞ (α ≥ 0), whereas the more general setting leads to spaces Lip(1,−α)
p,q (1 ≤ p ≤

∞, 0 < q ≤ ∞, α > 1
q ) given by

‖f |Lip(1,−α)
p,q (Rn)‖ = ‖f |Lp(Rn)‖+





( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

if q < ∞

sup
0<t< 1

2

ω(f, t)p

t | log t|α if q = ∞





< ∞,
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where ω(f, t)p = sup|h|≤t ‖∆hf |Lp(Rn)‖ for t > 0 and f ∈ Lp(Rn). Note that in this
notation (4) can be rewritten as

‖f |Lip(1,−α)
∞,∞ (Rn)‖ ∼ ‖f |L∞(Rn)‖+ sup

0<t< 1
2

ω(f, t)∞
t | log t|α .

One may ask now which embedding results can be derived for such spaces when p <
∞, q < ∞, and compare the outcome with the case already studied, i.e. for p = q = ∞.
We will follow this question in the present paper.

It seems that there are also connections with Hardy inequalities and sharp embed-
dings as some related investigations by Triebel suggest.

Finally, let us briefly mention that these logarithmic Lipschitz spaces appear in many
more connections, e.g. when studying (generalised) moduli of smoothness and related
inequalities (see [3, 7]). Furthermore, these spaces seem involved when characterising
the regularity of solutions in stationary problems (see [17]) and when investigating
hydrodynamics in Besov spaces (cf. [20]). Thus it is not only of inner-mathematical
interest to study such spaces in greater detail, but also in view of applications. They
are, however, out of the scope of the present paper.

At first, in Section 1, we will briefly recall some fundamentals about the function
spaces in question. Next, in Section 2, we derive some results about equivalent norms for
the spaces under consideration. In Section 3 we investigate related ‘sharp’ embeddings
between different spaces. Finally, in Section 4, we will briefly compare our approach
with a few others, dealing with spaces of logarithmic smoothness, too.

Acknowledgements. It is a pleasure for me to give my thanks to Prof. Dr. H.
Triebel who gave me opportunity to discuss the problem with him several times.

1. Preliminaries

We start with recalling some definitions. All further details may be found in [8, 9].
Let Rn be Euclidean n-space. Given two (quasi-) Banach spaces X and Y , we

write X ↪→ Y if X ⊂ Y and the natural embedding of X into Y is continuous. All
unimportant positive constants will be denoted by c, occasionally with subscripts. For
some a ∈ R put a+ := max(a, 0). Moreover, for 0 < r ≤ ∞ the number r′ is given by
1
r′ := (1− 1

r )+.
Let C(Rn) be the space of all complex-valued bounded continuous functions on Rn,

equipped with the sup-norm as usual. If m ∈ N, we define

Cm(Rn) =
{
f : Dαf ∈ C(Rn) for all |α| ≤ m

}
.

Here Dα are classical derivatives and Cm(Rn) is endowed with the norm

‖f |Cm(Rn)‖ =
∑

|α|≤m

‖Dαf |L∞(Rn)‖.
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Recall the concept of the difference operator ∆m
h (m ∈ N0, h ∈ Rn): Let f be an

arbitrary function on Rn. Then

(∆1
hf)(x) = f(x + h)− f(x)

...

(∆m+1
h f)(x) = ∆1

h(∆m
h f)(x)





where x, h ∈ Rn. Moreover, for some r ∈ N and 1 ≤ p ≤ ∞, the r-th modulus of
smoothness of a function f ∈ Lp(Rn) is defined by

ωr(f, t)p = sup
|h|≤t

‖∆r
hf |Lp(Rn)‖ (t > 0)

(see [3: Chapter 5/Definition 4.2, p. 332] or [7: Chapter 2/§7, pp. 44 – 46]). Sometimes,
when there is no danger of confusion, we may write ω(f, t)p instead of ω1(f, t)p and
ωr(f, t) instead of ωr(f, t)∞.

Definition 1. Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and α > 1
q . Then Lip(1,−α)

p,q (Rn) is
defined as the set of all f ∈ Lp(Rn) such that

‖f |Lip(1,−α)
p,q (Rn)‖ := ‖f |Lp(Rn)‖+

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

(5)

(with the usual modification if q = ∞) is finite.

Remark 2. Note that Definition 1 coincides with [8: Definition 4.1] when q = ∞,
i.e. in our former notation we have Lip(1,−α)

p = Lip(1,−α)
p,∞ (α ≥ 0, 1 ≤ p ≤ ∞).

Moreover, in case of p = q = ∞, α ≥ 0 we regain the logarithmic Lipschitz spaces
Lip(1,−α) = Lip(1,−α)

∞,∞ introduced in [9], which for α = 0 collapse to the classical Lipschitz
spaces.

The restriction α > 1
q is quite natural as otherwise we have Lip(1,−α)

p,q = {0} only
(see Remark 18 below). However, when q = ∞ we may also admit α = 0.

Remark 3. The spaces Lip(1,−α)
∞,∞ (Rn) (α ≥ 0) can also be obtained as a special

case of the more general spaces C0,σ(t)(Ω) (Ω ⊆ Rn), which were introduced by Kufner,
John and Fuč́ık (see [15: Definition 7.2.12, p. 361]). Put σα(t) = t| log t|α, for small
t > 0, α ≥ 0, and σα(0) := 0. Then one easily checks that Lip(1,−α)

∞,∞ (Rn) = C0,σα(t)(Rn)
(see [15: Definition 7.2.12, p. 361] for details).

Moreover, spaces of type Lip(1,−α)
p,∞ (α = 0) were introduced as Lip(1, Lp) by DeVore

and Lorentz in [7: Chapter 2/§9, p. 51], where Rn is being replaced by some interval
[a, b] ⊂ R and 0 < p ≤ ∞.

We recall briefly the basic ingredients needed to introduce spaces of type Bs
p,q and

F s
p,q. Leopold studied in [16] spaces of type B

(s,b)
p,q (b ∈ R) which extend the scale

of usual B-spaces in terms of smoothness. In order to compare related results later
we give here the more general definition of B

(s,b)
p,q instead of Bs

p,q. The Schwartz space
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S(Rn) and its dual S′(Rn) of all complex-valued tempered distributions have their usual
meaning here. Furthermore, Lp(Rn) with 0 < p ≤ ∞ is the usual quasi-Banach space
with respect to Lebesgue measure. Let ϕ ∈ S(Rn) be such that

supp ϕ ⊂ {y ∈ Rn : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,

put ϕ0 = ϕ and for each j ∈ N let

ϕj(x) = ϕ(2−jx)− ϕ(2−j+1x).

Then since 1 =
∑∞

j=0 ϕj(x) for all x ∈ Rn, the {ϕj}∞j=0 form a a dyadic partition of
unity. Given any f ∈ S′(Rn), we denote by Ff and F−1f its Fourier transform and its
inverse Fourier transform, respectively.

Definition 4. Let s ∈ R, 0 < q ≤ ∞, and let {ϕj} be the above dyadic resolution
of unity.

(i) Let 0 < p ≤ ∞ and b ∈ R. The space B
(s,b)
p,q (Rn) is the collection of all

f ∈ S′(Rn) such that

‖f |B(s,b)
p,q (Rn)‖ =

( ∞∑

j=0

2jsq(1 + j)bq‖F−1 ϕjFf |Lp(Rn)‖q

) 1
q

(6)

(with the usual modification if q = ∞) is finite.

(ii) Let 0 < p < ∞. The space F s
p,q(Rn) is the collection of all f ∈ S′(Rn) such that

‖f |F s
p,q(Rn)‖ =

∥∥∥∥
( ∞∑

j=0

2jsq|F−1 ϕjFf(·)|q
) 1

q ∣∣∣Lp(Rn)
∥∥∥∥ (7)

(with the usual modification if q = ∞) is finite.

When b = 0, part (i) of the definition above coincides with the usual definition for
B-spaces, B

(s,0)
p,q = Bs

p,q (see [18: Definition 2.3.1/2, p. 45]).

The theory of the spaces Bs
p,q (b = 0) and F s

p,q has been developed in detail in [18,
19]. These two scales Bs

p,q and F s
p,q cover (fractional) Sobolev spaces, Hölder-Zygmund

spaces, local Hardy spaces, and classical Besov spaces – characterised via derivatives
and differences. Moreover, there are extensions to these concepts leading to spaces of
generalised smoothness. They have been studied in great detail by the Russian school,
mainly Lizorkin, Gol’dman and Kalyabin. Quite recently Leopold studied spaces of the
type B

(s,b)
p,q (b ∈ R) as defined in (6) (see [16]).
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2. Equivalent norms

We consider spaces of the type Lip(1,−α)
p,q and B

(s,b)
p,q (see Definitions 1 and 4) and give

some equivalent characterisations which will be more convenient to handle in the sequel.
Let all spaces be defined on Rn unless otherwise stated. Recall that we have in B-spaces
the equivalent norm

‖f |Bs
p,q‖ ∼ ‖f |Lp‖+

( ∫ 1/2

0

[
ωr(f, t)p

ts

]q
dt

t

) 1
q

(8)

(with the usual modification if q = ∞). Here r ∈ N is such that r > s (see [3: Chapter
5/Definition 4.3, p. 332], [7: Chapter 2/§10, pp. 54-56] (where the Besov spaces are
defined in that way) and [18: Theorem 2.5.12, p. 110] for what concerns the equivalence
result).

The following extrapolation type result for spaces Lip(1,−α)
p,∞ is known.

Proposition 5. Let 1 ≤ p ≤ ∞ and α > 0. Then f ∈ Lip(1,−α)
p,∞ if, and only if, f

belongs to Lp and there is some c > 0 such that for all λ with 0 < λ < 1

sup
0<t< 1

2

ω(f, t)p

t1−λ
≤ c λ−α.

Moreover, we obtain as an equivalent norm in Lip(1,−α)
p,∞

‖f |Lip(1,−α)
p,∞ ‖ ∼ ‖f |Lp‖+ sup

0<λ<1
λα sup

0<t< 1
2

ω(f, t)p

t1−λ
. (9)

Remark 6. Proposition 5 and its proof can be found in [8: Proposition 4.2/(i)].
Note that when p = ∞ it coincides with the result of Krbec and Schmeisser in [14:
Proposition 2.5].

We want to mention some apparently elegant, but dangerous notation replacing (9).
In view of (8) with r = 1 and s = 1− λ, q = ∞, i.e

‖f |B1−λ
p,∞ ‖ ∼ ‖f |Lp‖+ sup

0<t< 1
2

ω(f, t)p

t1−λ
, (10)

one might be tempted to shorten (9) by

‖f |Lip(1,−α)
p,∞ ‖ ∼ sup

0<λ<1
λα ‖f |B1−λ

p,∞ ‖. (11)

However, the (hidden) equivalence constants in (10) depend upon λ, especially for λ ↓ 0,
thus one either has to calculate this dependence explicitly, or has to note that the B-
spaces in (11) are defined via first differences only (in contrast to the usual Fourier-
analytical approach). Hence we prefer the slightly more complicated but correct formu-
lation of the equivalence (9) not to be misled.

We give the natural counterpart of (9) when dealing with spaces Lip(1,−α)
p,q (1 ≤

p ≤ ∞, 0 < q < ∞, α > 1
q ).



On More General Lipschitz Spaces 787

Proposition 7. Let 1 ≤ p ≤ ∞, 0 < q < ∞ and α > 1
q . Then f ∈ Lip(1,−α)

p,q if,
and only if, f belongs to Lp and there is some c > 0 such that

∫ 1

0

λαq

∫ 1/2

0

[
ω(f, t)p

t1−λ

]q
dt

t

dλ

λ
≤ c.

Moreover,

‖f |Lip(1,−α)
p,q ‖ ∼ ‖f |Lp‖+

( ∫ 1

0

λαq

∫ 1/2

0

[
ω(f, t)p

t1−λ

]q
dt

t

dλ

λ

) 1
q

. (12)

Note that the results (9) and (12) as well as the proof below resemble in some
sense the argument given in [10: Section 2.6.2, pp. 69-71] concerning the spaces
Lp(log L)a (1 < p < ∞, a ∈ R). Furthermore, in the sense of the above Remark 6
it seems an obvious but dangerous notation in our opinion to replace (12) by

‖f |Lip(1,−α)
p,q ‖ ∼

(∫ 1

0

λαq‖f |B1−λ
p,q ‖q dλ

λ

) 1
q

.

Strictly spoken, the problems with this notation are the same as described in Remark
6 above (for q = ∞), we thus stick at (12).

Proof of Proposition 7. In view of (5) it is sufficient to verify that
∫ 1

0

λαq

∫ 1/2

0

[
ω(f, t)p

t1−λ

]q
dt

t

dλ

λ
∼

∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t
.

Furthermore, by Fubini’s theorem this reduces to showing that
∫ 1

0

λαq−1tλqdλ ∼ | log t|−αq. (13)

Using the substitution µ = λq| log t| we arrive at
∫ 1

0

λαq−1tλqdλ = q−αq| log t|−αq

∫ q| log t|

0

µαq−1e−µdµ. (14)

The last term in (14) tends to Γ(αq) when t ↓ 0. Thus (13) is shown (recall 0 < t < 1
2 )

We come to some counterpart of (8) when dealing with spaces of type B
(s,b)
p,q (b ∈ R).

Proposition 8. Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and b ≥ 0. Then

‖f |B(1,−b)
p,q ‖ ∼ ‖f |Lp‖+

( ∫ 1/2

0

[
ω2(f, t)p

t | log t|b
]q

dt

t

) 1
q

(15)

(with the usual modification for q = ∞).

Proof. Note that (15) coincides with (8) for b = 0, s = 1 and r = 2. The proof
consists of suitable adaptions of the related proofs for b = 0 in [18], that is Theorem
2.5.12/(i) in [18: pp. 110/111], and subsequently [18: Theorem 2.3.6/(i), p.56] and [18:
Theorem 2.5.3/(i), pp. 80 – 83]. The necessary modifications are obvious
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Remark 9. In view of [18: Theorem 2.5.12/(i)] one can extend (15) to spaces B
(s,b)
p,q

with 0 < p ≤ ∞, s > n( 1
p−1)+, b ∈ R and 0 < q ≤ ∞, where ω2(f, t)p has to be replaced

by ωr(f, t)p with r > s (r ∈ N),

‖f |B(s,−b)
p,q ‖ ∼ ‖f |Lp‖+

( ∫ 1/2

0

[
ωr(f, t)p

ts | log t|b
]q

dt

t

) 1
q

< ∞.

In particular, for p = q = ∞ we arrive at spaces of Zygmund type, C(s,−α) = B
(s,−α)
∞,∞

(s > 0, α ∈ R),

‖f |C(s,−α)‖ = ‖f |L∞‖+ sup
0<t< 1

2

ωr(f, t)
ts | log t|α , (16)

where r ∈ N with r > s.

3. Embeddings

Recall that all spaces are defined on Rn unless otherwise stated.
3.1 Embeddings into spaces of Lipschitz type. In [8: Proposition 4.2/(ii)] we

achieved the following result.

Proposition 10. Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and α > 0. Then

B1
p,q ↪→ Lip(1,−α)

p,∞ if α ≥ 1
q′

. (17)

Note that in the case of p = ∞ one recovers in that way (a weaker version of) the
embedding theorem [9: Theorem 2.1/(ii)]. The counterpart of (17) for spaces Lip(1,−α)

p,q

reads as follows.

Proposition 11. Let 1 ≤ p ≤ ∞, 0 < q, v ≤ ∞ and α > 1
v . Then

B1
p,q ↪→ Lip(1,−α)

p,v if

{
α ≥ 1

q′ and v = ∞
α > 1

v + 1
q′ and v < ∞.

(18)

Proof. The upper line in (18) is covered by (17), thus we assume v < ∞. In view
of (5) and (8) it is sufficient to show that

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]v

dt

t

) 1
v

≤ c ‖f |B1
p,q‖

if α > 1
v + 1

q′ . But obviously

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]v

dt

t

) 1
v

≤ sup
0<t< 1

2

ω(f, t)p

t | log t| 1
q′

( ∫ 1/2

0

| log t|−(α− 1
q′ )v

dt

t

) 1
v

≤ c ‖f |Lip(1,−α)
p,∞ ‖

≤ c′‖f |B1
p,q‖ ,

where we used (5) and α − 1
q′ > 1

v in the penultimate inequality. The last estimate is
covered by (17). This ends the proof of Proposition 11
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Remark 12. In view of the above proof it is clear that the ‘critical case’, that is,
α = 1

q′ + 1
v , cannot be handled in the same way, because

∫ 1/2

0

| log t|−(α− 1
q′ )v

dt

t

fails to converge then and the whole argument breaks down. However, there is some
reason to believe that embedding (18) holds for α = 1

q′ + 1
v , too, at least when 1 ≤

v, q ≤ ∞: On the one hand, there is the case v = ∞ (see (17)) which supports this
conjecture. On the other hand, there is a corresponding limiting result by Triebel when
1 < v = q ≤ ∞ and α ≥ 1 (see Remark 14 below).

Note that Proposition 11 can also be proved directly, that is without application of
Proposition 10, by application of Marchaud’s inequality (see (32) below). We do not
know so far whether the ‘critical case’ α = 1

q′ +
1
v in (17) can be obtained by a (refined)

version or application of Marchaud’s inequality. Some ‘weak’ point in an argument of
that type is always the application of Hölder’s inequality where one might lose sharper
results already (see Proposition 16 and its proof (especially Step 3) below). So one has
probably to strengthen different techniques, like atomic decompositions, say, in order
to prove (17) when α = 1

q′ + 1
v . Note that our original proof of (17) (with p = ∞) in [9]

is based on an atomic decomposition, too.
Let us finally mention that, at least for p = ∞, it is easy to see that α = 1

q′ + 1
v

is in fact the best, that is the smallest possible log-exponent in (17). In other words,
the embedding fails when α < 1

q′ + 1
v . This becomes evident in particular in the next

section, we thus postpone the argument to Remark 19 below.

The most interesting result is certainly the case v = q and p = ∞ in (18). Ad-
ditionally, involving some elementary embeddings for Bs

p,q spaces we have proved the
following.

Corollary 13. Let 0 < p ≤ ∞, 0 < q ≤ ∞ and α > 1
q . Then

B
1+ n

p
p,q ↪→ Lip(1,−α)

∞,q if
{

α ≥ 1 and q = ∞,
α > max(1, 1

q ) and 0 < q < ∞. (19)

Remark 14. Triebel proved in some so far unpublished notes that (19) holds with
α = 1 when 1 < q ≤ ∞ and 0 < p < ∞, using different techniques (involving non-
increasing rearrangement, Hardy inequalities and atomic decompositions).

We briefly turn to F -spaces. Recall the following result first.

Proposition 15. Let 0 < p < ∞, 0 < q ≤ ∞ and α ≥ 0. Then

F
1+ n

p
p,q ↪→ Lip(1,−α)

∞,∞ if α ≥ 1
p′

. (20)

We proved this assertion in [9: Theorem 2.1/(i)]. Moreover, the exponent α = 1
p′ ,

when 1 < p < ∞, is sharp. Note that in the case of 1 < p < ∞ and q = 2 (20)
reproduces the famous Brézis-Wainger result [6].
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There is also an extension of Proposition 15 to spaces Lip(1,−α)
p,q , but is is more

convenient for us to postpone this result to Corollary 20 below.

3.2 Embeddings of purely Lipschitzian type. We study embeddings now where
the initial space as well as the target one is of type Lip(1,−α)

p,q .

Proposition 16. Let 1 ≤ p ≤ ∞, 0 < q, v ≤ ∞ and α > 1
q , β > 1

v . Then

Lip(1,−α)
p,q ↪→ Lip(1,−β)

p,v if, and only if,

{
β − 1

v ≥ α− 1
q and v ≥ q,

β − 1
v > α− 1

q and v < q.
(21)

Proof. Note that the upper line in (21) is somehow surprising, as it means that
some space Lip(1,−α)

p,q can be continuously embedded into Lip(1,−β)
p,v even if β < α. At

first glance this seems impossible: having ‘less’ (logarithmic) smoothness (−α) in the
original space than in the target one (−β); but it turns out that this fact simply refers
back to the influence of q in Definition 1. The argument to prove it is indeed a tricky
one and due to Bennett and Rudnick in [2] (as far as we know) - what they call some
‘diagonal’ result. But we return to this point later in the proof.

Step 1. We first prove the necessity of the assumptions on the parameters in (21).
Let fκ,µ ∈ Lp be such that

ω(fκ,µ, t)p ∼ t | log t|κ
∣∣ log | log t|

∣∣−µ (22)

for small t > 0 and κ, µ ∈ R. Note that fκ,0 ∈ Lip(1,−α)
p,q if, and only if, κ < α− 1

q . Thus,
assuming β− 1

v < α− 1
q and 0 < q, v ≤ ∞, we may choose κ such that β− 1

v ≤ κ < α− 1
q

and hence fκ,0 ∈ Lip(1,−α)
p,q \Lip(1,−β)

p,v . Now let β− 1
v = α− 1

q =: κ. Then fκ,µ ∈ Lip(1,−α)
p,q

if, and only if, µ > 1
q . Consequently, fκ,µ ∈ Lip(1,−α)

p,q \ Lip(1,−β)
p,v if κ = β − 1

v = α − 1
q

and 1
q < µ ≤ 1

v , that is, when β − 1
v = α− 1

q and v < q.

Step 2. We prove the sufficiency in (21) in case of v < q. In view of (5) we have to
show that ( ∫ 1/2

0

[
ω(f, t)p

t | log t|β
]v

dt

t

) 1
v

≤ c

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

.

By Hölder’s inequality we get

( ∫ 1/2

0

[
ω(f, t)p

t | log t|β
]v

dt

t

) 1
v

≤ c

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q
( ∫ 1/2

0

| log t|− β−α
1/v−1/q

dt

t

) 1
v− 1

q

≤ c′
( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

,

where the last estimate is correct for β − α > 1
v − 1

q . This gives the lower line in (21).
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Step 3. It remains to verify the upper line in (21). By the obvious monotonicity
argument it is sufficient to prove

Lip(1,−α)
p,q ↪→ Lip(1,−β)

p,v if β − 1
v

= α− 1
q
, v ≥ q. (23)

As already mentioned we make use of a clever trick which can be found in [2: Theorem
9.5, p. 33]. Recall α > 1

q . Obviously,

[| log t|−(αq−1)]′ =
αq − 1

t | log t|αq
(t > 0)

implies

| log t|−(αq−1) = c

∫ t

0

dτ

τ | log τ |αq
. (24)

Bennett and Rudnick in [2: Theorem 9.5] then gained from the fact that for some
function f its rearrangement f∗ is decreasing (by definition). In our case we may
replace this argument in the following way : by [7: Chapter 2/§6, p. 41 – 42] one has
that t−1 ω(f, t)p is – roughly speaking – decreasing in t > 0 (up to constants), such that
(24) (after multiplying both sides by [t−1 ω(f, t)p]q and involving the above-described
monotonicity) results for 0 < t < 1

2 in

ω(f, t)p

t | log t|α− 1
q

≤ c

(∫ t

0

[
ω(f, τ)p

τ | log τ |α
]q

dτ

τ

) 1
q

. (25)

Using the decomposition

[
ω(f, t)p

t | log t|β
]v

=
[

ω(f, t)p

t | log t|α
]q [

ω(f, t)p

t | log t|α−1/q

]v−q

(26)

we apply (25) to the last term on the right-hand side of (26) and recall (23). Thus

( ∫ 1/2

0

[
ω(f, t)p

t | log t|β
]v

dt

t

) 1
v

≤ c

{ ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q ( ∫ 1/2

0

[
ω(f, τ)p

τ | log τ |α
]q

dτ

τ

) v−q
q dt

t

} 1
v

= c

( ∫ 1/2

0

[
ω(f, τ)p

τ | log τ |α
]q

dτ

τ

) v−q
vq

{ ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

} 1
v

= c

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

.

This gives (23)
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Remark 17. One recognises that our result (21) resembles the outcome [2: The-
orems 9.3 and 9.5] by Bennett and Rudnick when in their setting p = ∞. We already
mentioned the somehow astonishing result that concerning the embedding Lip(1,−α)

p,q

into Lip(1,−β)
p,v one can ‘compensate’ some gain of logarithmic smoothness −β > −α by

‘paying’ with the additional index q, that is, as long as (−β)− (−α) ≤ 1
q − 1

v , v ≥ q.
This situation is essentially different from the related one when dealing with spaces

B
(s,b)
p,q , but we postpone a discussion of this phenomenon to Section 4.

Remark 18. We used in Step 3 of the above proof that t−1 ω(f, t)p (1 ≤ p ≤ ∞)
is (more or less) decreasing in t > 0. This fact immediately implies that Lip(1,−α)

p,q with
0 < q < ∞ and α ≤ 1

q is a very poor space (see Remark 2). For assuming that there is
some c > 0 such that

ω(f, t)p

t
≥ c > 0

for small t > 0, one can estimate

‖f |Lip(1,−α)
p,q ‖ ≥ C

( ∫ 1/2

0

1
| log t|αq

dt

t

) 1
q

but the right-hand side diverges for α ≤ 1
q . Thus, conversely, for a function f ∈

Lip(1,−α)
p,q (0 < q < ∞, α ≤ 1

q ) we have to assume ω(f, t)p = 0 for small t > 0 – and the
only constant belonging to Lp is the null function.

Remark 19. We show that the embedding B1
p,q ↪→ Lip(1,−α)

p,v fails for α < 1
q′ + 1

v .
For convenience, let p = ∞; but an adapted argument should work for p < ∞, too.
Assume that B1

∞,q ↪→ Lip(1,−α)
∞,v for some α < 1

q′ + 1
v . Then by (21) we may continue

B1
∞,q ↪→ Lip(1,−α)

∞,v ↪→ Lip(1,−β)
∞,∞

(
β = α− 1

v < ( 1
q′ + 1

v )− 1
v = 1

q′
)
.

However, this contradicts the sharpness assertion in [9: Theorem 2.1/(ii)] stating that
B1
∞,q ↪→ Lip(1,−β)

∞,∞ if, and only if, β ≥ 1
q′ . Hence B1

p,q ↪→ Lip(1,−α)
p,v implies α ≥ 1

q′ + 1
v ,

at least for p = ∞. In particular, when 1 ≤ q = v ≤ ∞, we necessarily have α ≥ 1 (see
(19)).

We now give the promised extension of Proposition 15. Obviously, Proposition 16
and (20) imply the following.

Corollary 20. Let 0 < p < ∞, 0 < q, v ≤ ∞ and α > 1
v . Then

F
1+ n

p
p,q ↪→ Lip(1,−α)

∞,v if

{
α ≥ 1

p′ and v = ∞
α > 1

v + 1
p′ and v < ∞.

In particular,

F
1+ n

p
p,q ↪→ Lip(1,−α)

∞,p if α > max(1, 1
p ). (27)
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Remark 21. Parallel to Remark 14 we mention that Triebel obtained instead of
(27) a sharper assertion with α = 1, when 1 < p < ∞. Note that by a similar argument,
i.e. combination of (17) and (21), we get an alternative proof of Proposition 11.

3.3 Embeddings between ‘logarithmically smooth’ spaces. In Section 4 we
intend to compare spaces of the types B

(s,b)
p,q and Lip(1,−α)

p,q in some detail. Thus it is of
particular interest to derive a few more, rather elementary embeddings between both
scales of spaces. We studied this question for p = q = ∞ in [9: Proposition 4.2] and
obtained the following.

Proposition 22. Let α ≥ 0. Then

B
(1,−α)
∞,1 ↪→ Lip(1,−α)

∞,∞ ↪→ B(1,−α)
∞,∞ .

Moreover, we proved in [9: Proposition 4.4] that

B(1,−α)
∞,q ↪→ Lip(1,−α)

∞,∞ if, and only if, 0 < q ≤ 1.

In view of characterisation (15) and Marchaud’s inequality we may extend Proposition
22 to spaces Lip(1,−α)

p,q .

Corollary 23. Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and α > 1
q .

(i) Then

B
(1,−β)
p,1 ↪→ Lip(1,−α)

p,q if
{

β < α− 1
q and 0 < q < ∞

β ≤ α and q = ∞.
(28)

Moreover,

B
(1,−(α− 1

q ))

p,min(q,1) ↪→ Lip(1,−α)
p,q . (29)

(ii) Then

Lip(1,−α)
p,q ↪→ B

(1,−(α− 1
q ))

p,∞ . (30)

Proof.
Step 1. We deal with (28). Note that for q ≥ 1 (28) is a consequence of (29), but

we will prove both assertions separately. In view of (15) and (5) it is sufficient to show
that ( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

≤ c

{
‖f |Lp‖+

∫ 1/2

0

ω2(f, t)p

t | log t|β
dt

t

}
, (31)

where β < α − 1
q and 0 < q < ∞ (the modifications for q = ∞ will be clear from the

argument below). Furthermore, without restriction of generality we can assume that 0 ≤
β < α− 1

q , the rest is done by the monotonicity of B
(s,b)
p,q spaces. We apply Marchaud’s

inequality (see [3: Chapter 5/Formula (4.11), p. 334] or [7: Chapter 2/Theorem 8.1, p.
47]) which states the following : let f ∈ Lp (1 ≤ p ≤ ∞), t > 0 and k ∈ N. Then

ωk(f, t)p ≤ k

log 2
tk

∫ ∞

t

ωk+1(f, u)p

uk

du

u
. (32)
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In particular, assuming k = 1, then (32) implies that there is some c > 0 such that

ω(f, t)p ≤ ct

∫ ∞

t

ω2(f, u)p

u

du

u

for all f ∈ Lp and t > 0. We thus may conclude that
( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

=
( ∫ 1/2

0

1
| log t|αq

[
ω(f, t)p

t

]q
dt

t

) 1
q

≤ c

{
‖f |Lp‖+

( ∫ 1/2

0

1
| log t|αq

[ ∫ 1/2

t

ω2(f, u)p

u

du

u

]q
dt

t

) 1
q
}

.

(33)

By the monotonicity of the log-function we have
∫ 1/2

t

ω2(f, u)p

u

du

u
≤ c | log t|β

∫ 1/2

t

ω2(f, u)p

u | log u|β
du

u
≤ c | log t|β

∫ 1/2

0

ω2(f, u)p

u | log u|β
du

u

for any t with 0 < t < 1
2 ; recall β ≥ 0. Thus (33) implies

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

≤ c

{
‖f |Lp‖+

( ∫ 1/2

0

1
| log t|(α−β)q

dt

t

) 1
q
[ ∫ 1/2

0

ω2(f, u)p

u | log u|β
du

u

]}

≤ c′‖f |B(1,−β)
p,1 ‖ ,

where the last inequality is correct for β < α− 1
q . In case of q = ∞ one has to modify

the above argument in an obvious manner. Hence (28) is shown.
Step 2. We prove (29). Let first 0 < q ≤ 1. Then (31) has to be replaced by
( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

≤ c

{
‖f |Lp‖+

( ∫ 1/2

0

[
ω2(f, t)p

t | log t|α− 1
q

]q
dt

t

) 1
q
}

. (34)

Recall 0 < q ≤ 1, thus (33) and Fubini’s theorem yield
( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

≤ c

{
‖f |Lp‖+

( ∫ 1/2

0

1
| log t|αq

∫ 1/2

t

[
ω2(f, u)p

u

]q
du

u

dt

t

) 1
q
}

= c

{
‖f |Lp‖+

( ∫ 1/2

0

[
ω2(f, u)p

u

]q ∫ u

0

1
| log t|αq

dt

t

du

u

) 1
q
}

≤ c′
{
‖f |Lp‖+

( ∫ 1/2

0

[
ω2(f, u)p

u | log u|α− 1
q

]q
du

u

) 1
q
}

,
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where we also used α > 1
q . This gives (34), i.e. (29) for 0 < q ≤ 1. Assume now

1 ≤ q ≤ ∞. Put β := 1 + (α − 1
q ) > 1, i.e. α − 1

q = β − 1. The just proved result (29)
with q = 1 implies

B
(1,−(α− 1

q ))

p,1 = B
(1,−(β−1))
p,1 ↪→ Lip(1,−β)

p,1 . (35)

Moreover, (21) provides Lip(1,−β)
p,1 ↪→ Lip(1,−α)

p,q because q ≥ 1 and β − 1 = α− 1
q . Thus

we can continue (35) to the desired result (29), now for 1 ≤ q ≤ ∞.
Step 3. It remains to show (30). We gain from Proposition 16 in the following way:

by (21) we have Lip(1,−α)
p,q ↪→ Lip

(1,−(α− 1
q ))

p,∞ and can thus reduce (30) to the verification

of Lip(1,−γ)
p,∞ ↪→ B

(1,−γ)
p,∞ for some γ > 0 and 1 ≤ p ≤ ∞. But this is obvious by (15), (5)

and ω2(f, t)p ≤ c ω(f, t)p

Remark 24. Note that for p = q = ∞ assertions (28) - (30) coincide with [9:
Proposition 4.2].

Moreover, by Step 3 of the above proof (in particular, Lip(1,−β)
p,v ↪→ B

(1,−β)
p,v for

β > 1
v ) in connection with Proposition 16 we immediately obtain the following extension

of (30).

Corollary 25. Let 1 ≤ p ≤ ∞, 0 < q, v ≤ ∞ and α > 1
q , β > 1

v . Then

Lip(1,−α)
p,q ↪→ B(1,−β)

p,v if

{
β − 1

v ≥ α− 1
q and v ≥ q,

β − 1
v > α− 1

q and v < q.
(36)

On the other hand, we may also complement (29) by a similar assertion.

Corollary 26. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and α > 1. Then

B(1,−(α−1))
p,q ↪→ Lip(1,−α)

p,q . (37)

Proof. We proceed similarly to the proof of Corollary 23. Now (31) has to be
replaced by

( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

≤ c

{
‖f |Lp‖+

( ∫ 1/2

0

[
ω2(f, t)p

t | log t|α−1

]q
dt

t

) 1
q
}

. (38)

Recall q ≥ 1, thus (33) together with Hölder’s inequality and Fubini’s theorem imply
( ∫ 1/2

0

[
ω(f, t)p

t | log t|α
]q

dt

t

) 1
q

≤ c

{
‖f |Lp‖+

( ∫ 1/2

0

1

| log t|q(α− 1
q′ )

∫ 1/2

t

[
ω2(f, u)p

u

]q
du

u

dt

t

) 1
q
}

= c

{
‖f |Lp‖+

( ∫ 1/2

0

[
ω2(f, u)p

u

]q ∫ u

0

1

| log t|q(α− 1
q′ )

dt

t

du

u

) 1
q
}

≤ c′
{
‖f |Lp‖+

( ∫ 1/2

0

[
ω2(f, u)p

u | log u|α−1

]q
du

u

) 1
q
}

because α > 1. Hence (38) is verified
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Recall the notation for spaces C(1,−α) (α ≥ 0), see (16) with s = 1 and r = 2. We
proved in [8: Proposition 2.7] that

Lip(1,−α)
∞,∞ ↪→ C(1,−β) ↪→ Lip(1,−γ)

∞,∞ (39)

if, and only if,
β ≥ α and γ ≥ β + 1.

Hence (37) coincides with the right-hand embedding in (39) when p = q = ∞.

4. Some discussion

We compare ‘logarithmically smooth’ Besov spaces B
(s,b)
p,q , introduced by Leopold in [16],

and ‘logarithmic’ Lipschitz spaces Lip(1,−α)
p,q . From the point of dealing with these spaces

in view of atomic decompositions etc., it is essential that the logarithmic B-spaces, that
is B

(s,b)
p,q arise by a Fourier-analytical approach (like the usual spaces Bs

p,q; see (6)),
whereas the logarithmic Lipschitz spaces Lip(1,−α)

p,q , defined via first differences (see
(5)), remain as ‘Fourier-unfriendly’ as were their classical forerunners (with p = q = ∞
and α = 0). In fact, the almost inconspicuous modification in (5) compared with (15),
namely the substitution of ω2(f, t)p by ω1(f, t)p, causes a striking difference in the
features of the corresponding spaces (as it does for α = b = 0).

We return to Proposition 16. The counterpart for spaces B
(s,b)
p,q , obtained by Leopold

in [16: Theorem 1], reads as follows :

Let s ∈ R, b1, b2 ∈ R, 0 < p ≤ ∞ and 0 < q1, q2 ≤ ∞. Then

B(s,b1)
p,q1

↪→ B(s,b2)
p,q2

if, and only if,
{

b1 − b2 ≥ 0 and q1 ≤ q2,
b1 − b2 > 1

q2
− 1

q1
and q1 > q2. (40)

It is obvious, that – though (21) and (40) appear related somehow – the role played
by the parameter q in either case is obviously different. The ‘diagonal argument’ (es-
sentially used in Step 3 of the proof of Proposition 16 and borrowed from Bennett and
Rudnick) does not apply in that case. In other words, the parallel notation (taking
the same parameter q) in both cases B

(s,b)
p,q and Lip(1,−α)

p,q , respectively, is a danger-
ous one (though suggestive in either case), possibly pretending at first glance that the
construction involving q might be the same; however, it is not. On the other hand,
it is nevertheless surprising that the ‘fine index’ q in these limiting cases becomes so
important.

Furthermore, we study the question now ‘where’ the Lipschitz spaces Lip(1,−α)
p,q can

be found within the scale of Besov spaces B
(s,b)
p,q . Let 1 ≤ p ≤ ∞ and 0 < q ≤ ∞.

Concerning the scale of logarithmic Besov spaces B
(1,b)
p,q for fixed p and q, but arbitrary

b ∈ R, we may locate the Lipschitz spaces Lip(1,−α)
p,q as follows. Denote by q∗ := min(q, 1)

and assume α > 1
q∗ . Then

B
(1,−(α− 1

q∗ ))
p,q ↪→ Lip(1,−α)

p,q ↪→ B(1,−α)
p,q (41)
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(see (29), (36) and (37)). Insisting, however, on the same (logarithmic) smoothness in
both nestling spaces of type B

(1,b)
p,q , that is, for fixed p and b but varying q, we found

B
(1,−(α− 1

q ))

p,q∗ ↪→ Lip(1,−α)
p,q ↪→ B

(1,−(α− 1
q ))

p,∞ (42)

(recall (29) and (30)). Note, finally, that for 1 < q < ∞ the respective initial spaces and
endpoint spaces in (41) and (42) are incomparable in the sense that neither of them is

contained in the corresponding other one; this refers to B
(1,−(α− 1

q∗ ))
p,q and B

(1,−(α− 1
q ))

p,q∗ as

well as to B
(1,−α)
p,q and B

(1,−(α− 1
q ))

p,∞ , respectively. Obviously they coincide, respectively,
when 0 < q ≤ 1 (in the case of the initial spaces) and when q = ∞ (concerning the
endpoint spaces). Thus we have the general situation that

Recall that we have the same diagram with Lip(1,−α)
p,q replaced by B

(1,−(α− 1
q ))

p,q . These
spaces, however, are not comparable (in the above sense) when 1 < q < ∞. On the one
hand, one might strengthen structural arguments to disprove this assumption, but on the

other hand it can also be seen as follows. Assume that Lip(1,−α)
p,q ↪→ B

(1,−(α− 1
q ))

p,q for some

q < ∞. But functions of the type fκ,0 given by (22) belong to Lip(1,−α)
p,q \ B

(1,−(α− 1
q ))

p,q

choosing κ such that (α− 1
q )− 1

q < κ < (α− 1
q ). Conversely, assume that B

(1,−(α− 1
q ))

p,q ↪→
Lip(1,−α)

p,q for some q > 1. Then one can easily disprove this assertion for p = ∞ by the
following argument: choose u > q, thus (40) and (21) imply that

B1
∞,u ↪→ B

(1,−(α− 1
q ))

∞,q ↪→ Lip(1,−α)
∞,q ↪→ Lip

(1,−(α− 1
q ))

∞,∞

for α− 1
q > 1

q− 1
u . However, studying the embedding B1

∞,u ↪→ Lip
(1,−(α− 1

q ))
∞,∞ we obtained

in [9: Theorem 2.1/(ii)] that the exponent α − 1
q = 1 − 1

u is sharp (see also (17)); but

1− 1
u > 1

q − 1
u for q > 1. Thus B

(1,−(α− 1
q ))

p,q cannot be contained in Lip(1,−α)
p,q for q > 1 (at

least when p = ∞, but there should be a similar counter-argument when 1 ≤ p < ∞).
Hence the above diagram (43) looks in general like

where the left part of (44) collapses to one space for 0 < q ≤ 1 and likewise the right
one when q = ∞.

There are a lot of further related approaches to spaces of Lipschitz type (recall
Remark 3). Let us finally mention only a few, more recent papers: Aksoy and Ma-
ligranda (see [1]) studied descriptions of spaces of Lipschitz-Orlicz type Lip(α, LM ) and
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Zyg(α,LM ) in terms of Poisson integrals; Brandolini [5] introduced generalised Lipschitz
spaces, i.e. spaces of the type Λα

X(Rn), α > 0 and X being either Lp,∞(Rn) or Lp(Rn),
given by

‖f |Λα
X(Rn)‖ = ‖f |X‖+ sup

δ>0

ωk(f, δ)X

tα
.

In other words, for X = Lp(Rn) and α = 1 these are the above spaces Lip(1,0)
p,∞ ; the

modification for X = Lp,∞(Rn) and arbitrary α > 0 are clear.
Finally, the closest approach we found in the literature so far – really dealing with

logarithmic or similar modifications of the usual Lipschitz spaces – is given in the paper
[4] by Bloom and De Souza. They concentrated on weighted Lipschitz spaces of the
type Lip %, where % : [0, 2π] → [0,∞) is a non-decreasing weight function with %(0) = 0.
With a slight modification we may regard %α(t) ∼ t | log t|α (t > 0 small) as such a
weight, belonging to their classes bp for p > 1, but %α 6∈ b1 (see [4: Definition 1]). Here
some weight % is in the class bp (p ≥ 1) if

∫ 2π

h

%(t)
tp+1

dt ≤ C
%(h)
hp

.

Moreover, %α is Dini, as
∫ h

0
%(t)

t dt ≤ c %(h) for each h > 0. In their notation we obtain
that Lip %α = Lip(1,−α)

∞,∞ and for the Zygmund spaces Λ(%α) = C(1,−α). Recall that
similar spaces of the type C0,σ(t)(Ω) (Ω ⊆ Rn) were introduced by Kufner, John and
Fuč́ık in [15: Definition 7.2.12, p. 361] (see Remark 3).
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