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Fractional Derivatives
Non-Symmetric and Time-Dependent Dirichlet

Forms and the Drift Form

N. Jacob and R. L. Schilling

Abstract. Using fractional derivatives we show that the drift form
R∞
−∞ u(x) dv(x)

dx
dx can be

approximated by non-symmetric Dirichlet forms. A similar result holds for the drift form in Rn

with variable coefficients if the coefficient functions satisfy certain regularity and commutator
conditions. Since time-dependent Dirichlet forms (in the sense of Y. Oshima) can be interpreted
as sums of a drift form (in τ -direction) and a mixture of τ -parametrized Dirichlet forms over Rn,
our results show that time-dependent Dirichlet forms arise as limits of ordinary non-symmetric
Dirichlet forms in R×Rn-space. An abstract result on fractional powers of Markov generators
allows to extend this observation to generalized Dirichlet forms. Another consequence is that
the bilinear form induced by an arbitrary Lévy process is the limit of non-symmetric Dirichlet
forms.

Keywords: Non-symmetric Dirichlet forms, time-dependent Dirichlet forms, fractional deriv-
atives, drift forms, fractional powers, Lévy processes
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0. Introduction

It is well-known that a Lévy process {Xt}t≥0 with values in Rn can be completely
described by its characteristic exponent. This is a negative definite function ψ : Rn → C
that is determined by the relation

Ex
(
ei(Xt−x)ξ

)
= e−tψ(ξ). (0.1)

If ψ is real-valued, then {Xt}t≥0 is associated to the symmetric Dirichlet form

Bψ(u, v) =
∫ n

R
ψ(ξ)û(ξ)v̂(ξ) dξ (0.2)

where û denotes the Fourier transform of u (see [6: pp. 29 - 31]). The case of general
ψ was considered by C. Berg and G. Forst [2]. They showed that the bilinear form
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Bψ(·, ·) for a complex-valued ψ extends to a non-symmetric Dirichlet form if and only
if ψ satisfies the sector condition, that is, if

|Imψ(ξ)| ≤ c Reψ(ξ) (0.3)

is valid for some constant c > 0. Clearly, the corresponding stochastic processes are
again Lévy processes.

Let us briefly recall the definition of a non-symmetric Dirichlet form:

Definition. A closed, densely defined bilinear form
(
E(·, ·),D(E)

)
on L2(Rn,R) is

called non-symmetric Dirichlet form if it satisfies the following properties:

(DF.1) E(u, u) ≥ 0.

(DF.2) |E(u, v)| ≤ K
√

E(u, u) + 〈u, u〉0
√

E(v, v) + 〈v, v〉0 (weak sector condition)
for some constant K > 0.

(DF.3) u+ ∧ 1 ∈ D(E) for all u ∈ D(E).
(DF.4) E(u + u+ ∧ 1, u− u+ ∧ 1) ≥ 0 and E(u− u+ ∧ 1, u + u+ ∧ 1) ≥ 0.

(DF.5) D(E) is complete under Ẽ1(u, v) = E(u, v) + E(v, u) + 〈u, v〉0.
That we can associate a Markov process to any non-symmetric Dirichlet form was shown
by C. Carillo-Menendez [5]. Standard introductory texts to the theory of non-symmetric
Dirichlet forms are the lecture notes of Y. Oshima [19, 22] and the textbook [17] by
Z.-M. Ma and M. Röckner.

The continuous negative definite function R 3 ξ 7→ −ibξ (b ∈ R) clearly corresponds
to a Lévy process – the (deterministic) drift process of speed −b – but it does not satisfy
(0.3) and it is not possible to associate the drift process with a non-symmetric Dirichlet
form. We can, however, associate with −ibξ a bilinear form that we will call drift form,

∫

R
(−ibξ)û(ξ)v̂(ξ) dξ = b

∫

R
u(x)

dv(x)
dx

dx. (0.4)

The usual way to estimate this form is an application of the Cauchy-Schwarz inequality
to the right-hand side,

∣∣∣∣b
∫

R
u(x)

dv(x)
dx

dx

∣∣∣∣ ≤ |b| ‖u‖0
∥∥∥dv

dx

∥∥∥
0
≤ |b| ‖u‖0 ‖v‖H1(R)

where ‖ · ‖0 denotes the L2-norm and Hs(R) (s ∈ R) is the usual L2-Sobolev space.
Already in [9], however, it was pointed out that the estimate

∣∣∣∣b
∫

R
u(x)

dv(x)
dx

dx

∣∣∣∣ ≤
∫

R
|bξ| |û(ξ)| |v̂(ξ)| dξ ≤ |b| ‖u‖

H
1
2 (R)

‖v‖
H

1
2 (R)

can be advantageous and that the drift form should be considered as a continuous
bilinear form over H

1
2 (R)×H

1
2 (R) (which is clearly different from L2(R)×H1(R)).

Observe that for any 0 < α < 1 the function ξ 7→ (−ibξ)α is again continuous
negative definite. Moreover, it satisfies (0.3) since

Im(−iξ)α = |ξ|α sin
απ

2
= tan

απ

2
|ξ|α cos

απ

2
= cα Re(−iξ)α.
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Thus, ∫

R
(−iξ)αû(ξ)v̂(ξ) dξ

is a non-symmetric Dirichlet form with domain H
α
2 (R). Using fractional derivatives we

can rewrite this form as
∫

R
(−iξ)αû(ξ)v̂(ξ) dξ =

∫

R
D

α
2−u(x)D

α
2
+ v(x) dx (0.5)

and, at least formally, the limit

lim
α↑1

∫

R
D

α
2−u(x)D

α
2
+ v(x) dx =

∫

R
u(x)

dv(x)
dx

dx (0.6)

should exist for suitable functions u and v. This shows that the drift form, although it is
itself not a Dirichlet form, can be obtained as a limit of non-symmetric Dirichlet forms.
Note that the Lévy process associated with the characteristic exponent ξ 7→ (iξ)α is a
(non-symmetric) stable process of order α (see J. Bertoin [4: Chapter VIII.1]).

In this paper we will systematically investigate the observations made above and
examine certain types of Dirichlet forms. In Section 1 we collect the material needed
from the theory of fractional integrals and derivatives. The above considerations for one-
dimensional drift forms will be made rigorous in Section 2. Exploiting the properties of
fractional powers of (continuous) negative definite functions we show in Section 3 that
any Lévy process with state space Rn is described by a bilinear form which is obtained
as a limit of non-symmetric Dirichlet forms.

There are several generalizations of the notion of Dirichlet forms:

(1) Semi-Dirichlet forms (cf. Z.-M. Ma, L. Overbeck and M. Röckner [16].

(2) Stimulated by results of M. Pierre [23, 24], Y. Oshima [20 - 22] introduced
time-dependent or parabolic Dirichlet forms.

(3) W. Stannat [29, 30] introduced generalized Dirichlet forms.

In Section 4 we consider the time-dependent forms of Y. Oshima which have the
structure ∫

R
E(τ)(u(τ, ·), v(τ, ·)) dτ +

∫

R

∫

Rn

∂u(τ, x)
∂τ

v(τ, x) dxdτ (0.7)

where {E(τ)}τ∈R is a one-parameter family of Dirichlet forms on D(E(τ)) = D(E(0)) ⊂
L2(Rn). The second term in (0.7) is a kind of drift form. We prove that for 0 < α < 1
the form

∫

R
E(τ)(u(τ, ·), v(τ, ·)) dτ +

∫

R

∫

Rn

D
α
2−,τu(τ, x)D

α
2
+,τv(τ, x) dxdτ (0.8)

is a non-symmetric Dirichlet form (in R×Rn-space) and that (0.7) is obtained as a limit
of (0.8) for α → 1. (It is an interesting open question whether the theory of fractional
diffusions of W. R. Schneider and W. Wyss [28] can be treated within this framework.)
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Section 5 is devoted to higher-dimensional drift forms with variable coefficients,

D(u, v) =
n∑

j=1

∫

Rn

bj(x)u(x)
∂v(x)
dxj

dx. (0.9)

In order to get analoguous results to the (one-dimensional) constant coefficient case of
Section 2, we need to establish commutator estimates for partial fractional derivatives
Dα
−,j in direction xj . For bj ∈ C1

b (Rn) we get as above

|D(u, v)| ≤ c ‖u‖
H

1
2 (Rn)

‖v‖
H

1
2 (Rn)

.

The bilinear forms D(α)(·, ·),

D(α)(u, v) =
n∑

j=1

∫

Rn

bj(x)u(x)Dα
+,jv(x) dx (0 < α < 1)

can be extended to Dirichlet forms if the coefficient functions satisfy the additional
conditions

n∑

j=1

Dα
−,jbj ≥ 0 and

n∑

j=1

(
Dα

j,Im(bju)− bjD
α
j,Imu− uDα

j,Imbj

)
= 0

with Dα
j,Im := 1

2 (Dα
−,j −Dα

+,j). This is, for example, the case if bj(x1, . . . , xn) is inde-
pendent of xj .

The final section is in a more abstract and general setting. In Theorem 6.2 we
discuss in the context of this paper a result known for α = 1

2 (see T. Kato [13]): we
show that for the generator of a Markov semigroup (A,D(A)) on a complex Hilbert
space the fractional powers (−A)α (0 < α < 1) are sectorial operators. This enables us
to deduce that the form 〈−Au, v〉 is the limit of sectorial forms (in fact, non-symmetric
Dirichlet forms) 〈(−A)αu, v〉 as α → 1. This observation suggests that the results of
Section 4 carry over to generalized Dirichlet forms in the sense of Stannat. It seems
to be reasonable to conjecture that many notions form potential theory as well as the
Markov processes – considered by Y. Oshima in the theory of time-dependent Dirichlet
forms and by W. Stannat in the theory of generalized Dirichlet forms – can be obtained
in the limit from the corresponding objects given by the approximating non-symmetric
Dirichlet forms.

Finally, let us mention that recently several authors started to investigate relations
of fractional derivatives with Markov processes, for example R. Gorenflo and F. Mainardi
[7, 8] or A. Krägeloh [14].

Acknowledgement. The authors benefitted a lot from lecture courses by and
stimulating discussions with our colleagues from Japan, Professor M. Fukushima and
Professor Y. Oshima.

Part of this work was done while the second-named author was research associate
at the Max-Planck-Institute for Mathematics in the Sciences, Leipzig (Germany).
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1. Fractional integrals and derivatives

In the following sections we will need several results from the theory of fractional in-
tegrals and derivatives which we collect here. Most of the material is taken from the
monograph [26] by S. G. Samko et al., another standard reference is the book [25] by
B. Rubin.

Definition 1.1. For 0 < α < 1 the fractional integrals Iα
+φ and Iα

−φ are given by

Iα
+φ(x) = 1

Γ(α)

∫ x

−∞

φ(t)
(x− t)1−α

dt (1.1)

Iα
−φ(x) = 1

Γ(α)

∫ ∞

x

φ(t)
(t− x)1−α

dt. (1.2)

If we denote
t+ = 1(0,∞)(t)t

t− = 1(−∞,0)(t)|t|
we find that

Iα
±φ(x) = 1

Γ(α)

∫

R
tα−1
± φ(x− t) dt = 1

Γ(α)

∫

R+

tα−1 φ(x∓ t) dt, (1.3)

i.e. fractional integrals are in fact convolution operators. Splitting the integration into
two parts

Iα
±φ(x) = 1

Γ(α)

∫ 1

0

tα−1φ(x∓ t) dt + 1
Γ(α)

∫ ∞

1

tα−1φ(x∓ t) dt

and applying the Minkowski integral inequality to the first term, the Hölder inequality
to the second term, immediately shows that Iα

±φ is (for almost every x ∈ R) well-defined
for any φ ∈ Lp(R) with 1 ≤ p < 1

α and 0 < α < 1. In particular, Iα
±φ is defined for all

φ ∈ S(R), i.e. the Schwartz space of rapidly decreasing functions on R.

Definition 1.2. For 0 < α < 1 the fractional derivatives Dα
+ and Dα

− are defined
by

Dα
+φ(x) = 1

Γ(1−α)

d

dx

∫ x

−∞

φ(t)
(x− t)α

dt (1.4)

Dα
−φ(x) = − 1

Γ(1−α)

d

dx

∫ ∞

x

φ(t)
(t− x)α

dt. (1.5)

For α ≥ 1 we set n = [α] + 1 and

Dα
±φ(x) = (±1)n

Γ(n−1)

dn

dxn

∫

R+

tn−α−1 φ(x∓ t) dt. (1.6)

It is not hard to see that Dα
±φ is well-defined for all φ ∈ S(R). Moreover, the

following Marchaud representation holds.
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Lemma 1.3. Let 0 < α < 1. Then the operators

Dα
±φ(x) = α

Γ(1−α)

∫

R+

φ(x)− φ(x∓ t)
t1+α

dt (1.7)

are well-defined for φ ∈ S(R) and satisfy Dα
±φ = Dα

±φ for all φ ∈ S(R).

Note that the (maximal) domains of the operators Dα
± and Dα

± do not coincide. The
convergence of the integral in (1.7) depends on a Hölder condition for φ at 0, whereas
(1.4) and (1.5) require certain growth conditions of φ at infinity. For our purposes (1.7)
seems to be slightly more general, and we will therefore take Dα

± as fractional derivative.
In particular, the operators Dα

± are well-defined for constant functions f(x) ≡ c, and
(1.7) gives in this case Dα

±f(x) ≡ 0.
For φ ∈ S(R) we have always

Dα
±Iα
±φ = Iα

±Dα
±φ = φ. (1.8)

Theorem 1.4. For φ ∈ S(R) and 0 < α < 1 the Fourier transforms of Iα
±φ and

Dα
±φ are

Îα±φ(ξ) =
1

(±iξ)α
φ̂(ξ) (1.9)

D̂α±φ(ξ) = (±iξ)α φ̂(ξ). (1.10)

By (1.10) and Plancherel’s theorem we get
∫

R
u(x)Dα

+v(x) dx =
∫

R
v(x)Dα

−u(x) dx (u, v ∈ S(R)). (1.11)

Since |(±iξ)α| ≤ |ξ|α, Theorem 1.4 implies that Dα
±|S(R) can be extended onto the

Sobolev space Hα(R) such that the mapping Dα
± : Hα(R) → L2(R) is continuous.

2. Fractional powers of the translation invariant drift form
in one dimension

The bilinear form

b

∫

R
u(x)

dv(x)
dx

dx (b ∈ R \ {0}) (2.1)

defined on S(R) is called translation invariant drift form. Integration by parts yields

b

∫

R
u(x)

dv(x)
dx

dx = −b

∫

R

du(x)
dx

v(x) dx (2.2)

which means that the drift form is completely antisymmetric. Therefore, setting v = u
in (2.2) shows

b

∫

R
u(x)

du(x)
dx

dx = 0.
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An application of Plancherel’s theorem gives

b

∫

R
u(x)

dv(x)
dx

dx = b

∫

R
û(ξ)

( d

dx
v
)
̂(ξ) dξ,

and this implies

b

∫

R
u(x)

dv(x)
dx

dx = b

∫

R
û(ξ) iξ v̂(ξ) dξ =

∫

R
(−ibξ)û(ξ) v̂(ξ) dξ. (2.3)

It is well-known that ξ 7→ −ibξ (b ∈ R) is a continuous negative definite function,
but since Re(−ibξ) ≡ 0, the associated bilinear form is no translation invariant (non-
symmetric) Dirichlet form. (By definition, a Dirichlet form (B(·, ·),D(B)) on L2(Rn)
is translation invariant, if for all translations τa (a ∈ Rn) and all u, v ∈ D(B) one
has B(τau, τav) = B(u, v).) This follows from a result due to C. Berg and G. Forst
[2: Theorem 3.7] where it is shown that for a continuous negative definite function
ψ : Rn → C the associated bilinear form

Bψ(u, v) =
∫ n

R
ψ(ξ)û(ξ)v̂(ξ) dξ (u, v ∈ S(Rn)) (2.4)

extends to a non-symmetric Dirichlet form if and only if

|Imψ(ξ)| ≤ c Reψ(ξ) (ξ ∈ Rn) (2.5)

holds for some constant c > 0. Recall that a function ψ : Rn → C is said to be negative
definite, if ψ(0) ≥ 0 and if ξ 7→ e−tψ(ξ) is for all t > 0 positive definite in the usual
sense. In this case, the domain of the Dirichlet form turns out to be

D(Bψ) =
{

u ∈ L2(Rn) :
√

Reψ û ∈ L2(Rn)
}

.

A standard way to construct new continuous negative definite functions from a
given one is the composition with Bernstein functions: for any Bernstein function f and
any (continuous) negative definite function ψ the function f ◦ ψ is again (continuous)
negative definite (cf. C. Berg and G. Forst [3: p. 69]).

We are interested in the special Bernstein functions fα(x) = xα (0 < α < 1).
Because of the Lévy-Khinchin representation

xα = α
Γ(1−α)

∫

R+

(1− e−sx) s−α−1 ds

we find for a continuous negative definite function ψ : R→ C that

ψ(ξ)α = (fα ◦ ψ)(ξ) = α
Γ(1−α)

∫

R+

(
1− e−sψ(ξ)

)
s−α−1 ds.
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We get, in particular, for the function ψ(ξ) = −iξ

(−iξ)α = α
Γ(1−α)

∫

R+

(
1− cos(ξs)

) ds

sα+1
+ iα

Γ(1−α)

∫

R+

sin(ξs)
ds

sα+1

= |ξ|α cos
(απ

2
sgn ξ

)
− i|ξ|α sin

(απ

2
sgn ξ

)
.

(2.6)

Since 0 < α < 1, we see

|ξ|α cos
(απ

2
sgn ξ

)
= |ξ|α cos

(απ

2

)

and
|ξ|α sin

(απ

2
sgn ξ

)
= sgn ξ |ξ|α sin

(απ

2

)

and this implies, in turn,

|Im(−iξ)α| = |ξ|α sin
(απ

2

)
= tan

(απ

2

)
|ξ|α cos

(απ

2

)
= cα Re(−iξ)α

with the constant cα = tan απ
2 < ∞ since α < 1. Thus, the continuous negative definite

function (−iξ)α fulfills (2.5), and – by the general theorem of Berg and Forst – the
associated bilinear form

∫

R
(−ibξ)α û(ξ)v̂(ξ) dξ (b ∈ R \ {0}) (2.7)

extends to a non-symmetric translation invariant Dirichlet form.
We want to give a different representation of form (2.7). Without loss of generality

we will assume from now on that b = 1. By (2.6) we find for u, v ∈ S(R)

∫

R
(−iξ)α û(ξ)v̂(ξ) dξ = α

Γ(1−α)

( ∫

R

∫

R+

(1− cos(sξ))û(ξ)v̂(ξ)
ds

sα+1
dξ

+ i

∫

R

∫

R+

sin(sξ) û(ξ)v̂(ξ)
ds

sα+1
dξ

)
.

Observe that for u ∈ S(R)

eiyξ û(ξ) = ̂u(y + ·)(ξ) = τ̂−yu(ξ) (y, ξ ∈ R)

holds and that we have the identities

1− cos(sξ) = Re
(
1− e−isξ

)
= 1

2

(
1− e−isξ

)(
1− e−isξ

)

respectively

sin(sξ) = 1
2i

(
eisξ − e−isξ

)
= 1

2i

(
ei s

2 ξ − e−i s
2 ξ

)(
ei s

2 ξ + e−i s
2 ξ

)
.
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Using (several times) Plancherel’s theorem and Fubini’s theorem, we get for u, v ∈ S(R)
∫

R

∫

R+

(1− cos(sξ)) û(ξ)v̂(ξ)
ds

sα+1
dξ

= 1
2

∫

R+

∫

R
(u− τsu)̂(ξ)(v − τsv)̂(ξ) dξ

ds

sα+1

= 1
2

∫

R+

∫

R
(u(x)− u(x− s))(v(x)− v(x− s)) dx

ds

sα+1

= 1
4

∫

R

∫

R

(u(x− y)− u(x))(v(x− y)− v(x))
|y|α+1

dxdy

and, in a similar way,

i

∫

R

∫

R+

sin(sξ) û(ξ)v̂(ξ)
ds

sα+1
dξ

= 1
2

∫

R+

∫

R
(τ− s

2
u− τ s

2
u)̂(ξ)(τ− s

2
v + τ s

2
v)̂(ξ) dξ

ds

sα+1

= 1
2

∫

R+

∫

R

(
u(x + s

2 )− u(x− s
2 )

)(
v(x + s

2 ) + v(x− s
2 )

)
dx

ds

sα+1

= 1
2α+1

∫

R+

∫

R

(
u(x + t)− u(x− t)

)(
v(x + t) + v(x− t)

)
dx

dt

tα+1
.

This is almost the proof of our next theorem.

Theorem 2.1. For any 0 < α < 1 the bilinear form

E(α)(u, v)

=
∫

R
(−iξ)α û(ξ)v̂(ξ) dξ

=
α

4Γ(1− α)

∫

R

∫

R

(u(x− y)− u(x))(v(x− y)− v(x))
|y|α+1

dxdy

+
α

2α+1Γ(1− α)

∫

R

∫

R+

(u(x + y)− u(x− y))(v(x + y) + v(x− y))
yα+1

dydx

(2.8)

is a non-symmetric translation invariant Dirichlet form with domain Hα/2(R).

Proof. Identity (2.8) follows from the calculations preceding the theorem. That
the bilinear form is indeed a non-symmetric Dirichlet form can be either concluded from
the general theory by C. Berg and G. Forst [2] or directly verified using the right-hand
side of (2.8): bilinearity, closedness, properties (DF.1) and (DF.2) are obvious, H

α
2 (R)

is a Hilbert space (with respect to the symmetric part of E(α)(·, ·)) which is invariant
under Lipschitz maps, and the contraction property (DF.4) is easily (although tediously)
checked by a direct computation

Using the results on fractional derivatives summarized in Section 1 we can rewrite
(2.8) in the following form.
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Theorem 2.2. For 0 < α < 1 and u, v ∈ S(R) we have∫

R
v(x)Dα

−u(x) dx =
∫

R
D

α
2−u(x)D

α
2
+ v(x) dx =

∫

R
(−iξ)α û(ξ)v̂(ξ) dξ (2.9)

where the second equality holds even for u, v ∈ Hα/2(R).

Proof. Since we know that∫

R
(−iξ)α û(ξ)v̂(ξ) dξ =

∫

R
(−iξ)

α
2 û(ξ) (iξ)

α
2 v̂(ξ) dξ

the assertion follows from (1.10) and Plancherel’s theorem

Note that Theorem 2.2 remains valid if α = 1. This follows essentially form (2.3).

Corollary 2.3. For all u, v ∈ S(R) or u, v ∈ H
1
2 (R) we have∫

R
u(x)

dv(x)
dx

dx =
∫

R
D

1
2−u(x)D1/2

+ v(x) dx. (2.10)

Observe that (2.10) implies, in particular, for all b ∈ R∣∣∣∣b
∫

R
u(x)

dv(x)
dx

dx

∣∣∣∣ ≤ |b| ‖u‖
H

1
2 (R)

‖v‖
H

1
2 (R)

.

Moreover, the following convergence result holds true.

Theorem 2.4. For all u, v ∈ S(R) or u, v ∈ H
1
2 (R) we have

lim
α→1

∫

R
D

α
2−u(x)D

α
2
+ v(x) dx =

∫

R
D

1
2−u(x)D

1
2
+v(x) dx. (2.11)

Proof. Since for all ξ ∈ R∣∣∣(−iξ)αû(ξ)v̂(ξ)
∣∣∣ ≤ |ξ|α |û(ξ)| |v̂(ξ)| ≤ (1 + |ξ|) |û(ξ)| |v̂(ξ)|

we can apply the dominated convergence theorem and conclude

lim
α→1

∫

R
D

α
2−u(x)D

α
2
+ v(x) dx = lim

α→1

∫

R
(−iξ)α û(ξ)v̂(ξ) dξ

=
∫

R
(−iξ)û(ξ)v̂(ξ) dξ

=
∫

R
D

1
2−u(x)D

1
2
+v(x) dx

for all u, v ∈ H
1
2 (R)

Corollary 2.5. For all u ∈ H
1
2 (R) and v ∈ H1(R) we have

lim
α→1

∫

R
D

α
2−u(x)D

α
2
+ v(x) dx =

∫

R
u(x)

dv(x)
dx

dx. (2.12)

We have thus found that the translation invariant drift form is the pointwise limit
of non-symmetric translation invariant Dirichlet forms.

Obviously, the generator of the Dirichlet form 〈Dα/2
− ·, Dα/2

+ ·〉0 is the operator −Dα
−

with domain Hα(R). A calculation similar to that in the proof of Theorem 2.4 shows
again that for all u ∈ H1(R)

lim
α↑1

Dα
−u = − d

dx
u strongly in H1(R).
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3. A remark on the closure of the set of translation invariant
non-symmetric Dirichlet forms

Let ψ : Rn → C be a continuous negative definite function. It is well known that one
can associate with every such ψ a uniquely determined Lévy process {Xψ

t }t≥0 with state
space Rn. If ψ is real-valued, the process {Xψ

t }t≥0 is also associated to the symmetric
Dirichlet form ∫

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ

with domain Hψ,1(Rn) which is given by

Hψ,1(Rn) =
{
u ∈ L2(Rn) : ‖u‖Hψ,1(Rn) < ∞}

(3.1)

where
‖u‖2Hψ,1(Rn) =

∫

Rn

(1 + ψ(ξ))|û(ξ)|2 dξ (3.2)

(see [3: p. 92]). For an arbitrary continuous negative definite function ψ : Rn → C we
introduce the spaces Hψ,s(Rn) (s ∈ R) as in (3.1) but with norm

‖u‖Hψ,s(Rn) =
∥∥(1 + |ψ|) s

2 û
∥∥

0
. (3.3)

This scale of anisotropic Sobolev spaces is studied in [11] and [12: Chapter III.10].

Suppose now that ψ : Rn → C satisfies also (2.5). Since the real part Reψ is itself
a continuous negative definite function, the result of C. Berg and G. Forst [2] combined
with the theory of non-symmetric Dirichlet forms (cf. [17]) imply that also in this case
the Lévy process {Xψ

t }t≥0 is associated to the non-symmetric Dirichlet form

Bψ(u, v) =
∫

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ

with domain Hψ,1(Rn) = HReψ,1(Rn).

Assume for the moment that ψ : Rn → C is an arbitrary continuous negative
definite function and define the form Bψ(·, ·) for this ψ as above. From the estimate

∣∣∣∣
∫

Rn

ψ(ξ)û(ξ)v̂(ξ) dξ

∣∣∣∣ ≤
( ∫

Rn

|ψ(ξ)| |û(ξ)|2dξ

) 1
2
( ∫

Rn

|ψ(ξ)| |v̂(ξ)|2dξ

) 1
2

where u, v ∈ S(Rn) we easily deduce

|Bψ(u, v)| ≤ ‖u‖Hψ,1(Rn)‖v‖Hψ,1(Rn)

for all u, v ∈ Hψ,1(Rn). Observe now that for any 0 < α < 1 and z = x + iy ∈ C we
have

zα = |z|αeiα arg z = |z|α(
cos(α arg z) + i sin(α arg z)

)
.
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If x = Rez ≥ 0, then arg z ∈ [−π
2 , π

2 ], hence

|Imzα| = tan(α arg z)Rezα ≤ tan
(απ

2

)
Rezα.

In particular, for any continuous negative definite function ψ : Rn → C the function
ψα : Rn → C (0 < α < 1) is again continuous negative definite (see, e.g., [3: p. 45])
and, since Reψ ≥ 0, we have

|Imψα(ξ)| ≤ tan
(απ

2

)
Reψα(ξ) (0 < α < 1). (3.4)

Thus the fractional power ψα (0 < α < 1) of an arbitrary continuous negative definite
function satisfies automatically condition (2.5). Moreover, there exists a Lévy process
{Xψα

t }t≥0 associated with the non-symmetric translation invariant Dirichlet form

∫

Rn

ψα(ξ)û(ξ)v̂(ξ) dξ

with domain Hψα,1(Rn) = HReψα,1(Rn). It is worth being noticed that the process
{Xψα

t }t≥0 has a realization as the process subordinate (in the sense of Bochner) to
{Xψ

t }t≥0 with respect to the one-sided α-stable subordinator {τt}t≥0 which is by def-
inition an independent increasing Lévy process with the Bernstein function s 7→ sα as
characteristic exponent (see [4] or [27] for details).

The elementary estimate

1 + Reψα(ξ) ≤ 1 + |ψ(ξ)|α ≤ 2(1 + |ψ(ξ)|)α ≤ 2(1 + |ψ(ξ)|)

implies that Hψ,1(Rn) ⊂ Hψα,1(Rn) for all 0 < α ≤ 1. Since for all u, v ∈ Hψ,1(Rn)

|ψα(ξ)| |û(ξ)| |v̂(ξ)| ≤ (1 + |ψ(ξ)|)|û(ξ)| |v̂(ξ)|,

we get, as in Theorem 2.4, by dominated convergence

lim
α→1

∫

Rn

ψα(ξ)û(ξ)v̂(ξ) dξ = Bψ(u, v) (u, v ∈ Hψ,1(Rn)). (3.5)

We have thus shown that for any Lévy process {Xψ
t }t≥0 there exists a bilinear form

(Bψ(·, ·),Hψ,1(Rn)) that can be obtained as a pointwise limit in Hψ,1(Rn) of the non-
symmetric translation invariant Dirichlet forms

(
Bψα

(·, ·),Hψα,1(Rn)
)

(0 < α < 1).
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4. Time-dependent and generalized Dirichlet forms

Building on results by J. L. Lions and E. Magenes [15], M. Pierre introduced in [23,
24] parabolic or time-dependent Dirichlet spaces, and in [20, 21] Y. Oshima was able to
construct a Markov process associated with a time-dependent Dirichlet space. Oshima’s
considerations were taken up by W. Stannat [29, 30] who followed the work by Lions and
Magenes closer than Pierre and Oshima did and who introduced generalized Dirichlet
forms and the associated stochastic processes.

We want to show how fractional derivatives enter naturally in the characterization of
time-dependent Dirichlet spaces. Moreover, we will show that time-dependent Dirichlet
forms arise as limits of certain non-symmetric Dirichlet forms. Similar statements hold
also for generalized Dirichlet forms. Our presentation here follows, to some extent, the
paper [10].

Let us briefly recall the notion of time-dependent Dirichlet forms. Let V ⊂ L2(Rn)
be a dense subspace such that (V, ‖ · ‖V ) is a Hilbert space and assume that the test
functions C∞c (Rn) ⊂ V are a dense subset. Assume, moreover, that ‖u‖0 ≤ c‖u‖V for
all u ∈ V and some constant c > 0. As usual, we identify L2(Rn) with its topological
dual and we get

V ↪→ L2(Rn) ↪→ V ′

where “↪→” stands for dense and continuous embedding. As usual, we have

‖u‖V ′ = sup
0 6=v∈V

|〈u, v〉0|
‖v‖V

.

Assume, furthermore, that V is stable under normal contractions, i.e. u+ ∧ 1 ∈ V for
all u ∈ V . For τ ∈ R let E(τ) : V × V → R be symmetric bilinear forms satisfying the
following conditions:

(D.1) For all u, v ∈ V the real-valued function τ 7→ E(τ)(u, v) is measurable.

(D.2) The bilinear form E
(τ)
λ (u, v) = E(τ)(u, v) + λ 〈u, v〉0 is uniformly continuous on

V × V with respect to τ , that is, there is a constant Mλ > 0 such that

|E(τ)
λ (u, v)| ≤ Mλ‖u‖V ‖v‖V

for all u, v ∈ V and τ ∈ R.
(D.3) There exist two constants λ1 ≥ 0 and γ0 > 0 such that

E(τ)(u, u) ≥ γ0‖u‖2V − λ1‖u‖20
for all u ∈ V and τ ∈ R.

(D.4) For all u ∈ V and τ ∈ R we have E(τ)(u+ ∧ 1, u+ ∧ 1) ≤ E(τ)(u, u).

Define on R× Rn the function spaces

H = L2(R; L2(Rn)) ' L2(R)⊗ L2(Rn)

V = L2(R; V ) ' L2(R)⊗ V

V ′ = L2(R; V ′) ' L2(R)⊗ V ′
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which are equipped with their natural norms

‖u‖2H =
∫

R
‖u(τ, ·)‖20 dτ

‖u‖2V =
∫

R
‖u(τ, ·)‖2V dτ

‖u‖′2V =
∫

R
‖u(τ, ·)‖2V ′ dτ.

The next definition is due to Y. Oshima [20].

Definition 4.1. Let E(τ)(·, ·) be as above such that conditions (D.1) - (D.4) are
satisfied. The time-dependent Dirichlet space (E(·, ·),F) associated with the family
{E(τ)(·, ·)}τ∈R is given by

F =
{

u ∈ V :
∂u

∂τ
∈ V ′

}
, ‖u‖2F = ‖u‖2V +

∥∥∥∂u

∂τ

∥∥∥
′2

V

and, for u ∈ F and v ∈ V,

E(u, v) :=
∫

R
E(τ)

(
u(τ, ·), v(τ, ·)) dτ −

∫

R

〈∂u(τ, ·)
∂τ

, v(τ, ·)
〉

0
dτ

while for u ∈ V and v ∈ F

E(u, v) :=
∫

R
E(τ)

(
u(τ, ·), v(τ, ·)) dτ +

∫

R

〈∂v(τ, ·)
∂τ

, u(τ, ·)
〉

0
dτ.

We are interested in the case where V = Hψ,1(Rn) for a fixed continuous negative
definite function ψ : Rn → R. Let us therefore assume that a family of symmetric
Dirichlet forms {E(τ)(·, ·),Hψ,1(Rn)}τ∈R is given such that:

(D.1′) τ 7→ E(τ)(u, v) is measurable for all u, v ∈ Hψ,1(Rn).
(D.2′) |E(τ)(u, v)| ≤ M‖uHψ,1(Rn)‖v‖Hψ,1(Rn) with M independent of τ .

(D.3′) E(τ)(u, u) ≥ γ0‖u‖2Hψ,1(Rn) − λ1‖u‖0 with γ0, λ1 independent of τ .

Accordingly, the spaces H,V, V ′ become

H = L2
(
R; L2(Rn)

)

V = L2
(
R; Hψ,1(Rn)

)

V ′ = L2
(
R; Hψ,−1(Rn)

)

and with

F =
{

u ∈ L2
(
R;Hψ,1(Rn)

)
:

∂u

∂τ
∈ L2(R; Hψ,−1(Rn))

}

we get the time-dependent Dirichlet form

E(u, v) =
∫

R
E(τ)

(
u(τ, ·), v(τ, ·)) dτ −

∫

R

〈∂u

∂τ
(τ, ·), v(τ, ·)

〉
0
dτ (4.1)
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whenever u ∈ F and v ∈ V; if u ∈ V and v ∈ F we set

E(u, v) =
∫

R
E(τ)

(
u(τ, ·), v(τ, ·)) dτ +

∫

R

〈∂v

∂τ
(τ, ·), u(τ, ·)

〉
0
dτ. (4.2)

For (further) concrete examples we refer to the paper [10]. We want to get hold on the
terms ∫

R

〈∂u

∂τ
(τ, ·), v(τ, ·)

〉
0
dτ and

∫

R

〈∂v

∂τ
(τ, ·), u(τ, ·)

〉
0
dτ.

In order to do so we consider the anisotropic Sobolev spaces

Hρα,s(R× Rn), ρα(σ, ξ) := |σ|α + ψ(ξ) (0 < α ≤ 1, s ∈ R) (4.3)

with norm given by

‖u‖2Hρα,s(R×Rn) =
∫

R

∫

Rn

(
1 + ρα(σ, ξ)

)s|û(σ, ξ)|2dξdσ. (4.4)

Note that ρα is again a continuous negative definite function on R × Rn. Denote by
ũ(σ, x) the partial Fourier transform in the first variable,

ũ(σ, x) = 1√
2π

∫

R
e−iστu(τ, x) dτ (4.5)

whereas û(σ, ξ) denotes the (full) Fourier transform in the R×Rn-space. It is not hard
to see that

‖u‖2F =
∫

R

∫

Rn

(
1 + ψ(ξ)

)|û(σ, ξ)|2dξdσ +
∫

R

∫

Rn

(
1 + ψ(ξ)

)−1|σ|2|û(σ, ξ)|2dξdσ.

Therefore, we have Hρ1,2(R×Rn) ⊂ F , and for u, v ∈ Hρ1,2(R×Rn) we find using the
Plancherel theorem

E(u, v) =
∫

R
E(τ)

(
u(τ, ·), v(τ, ·)) dτ −

∫

R

〈∂u

∂τ
(τ, ·), v(τ, ·)

〉
0
dτ

=
∫

R
E(τ)

(
u(τ, ·), v(τ, ·)) dτ +

∫

R

∫

Rn

(−iσ)ũ(σ, x) ṽ(σ, x) dxdσ

=
∫

R
E(τ)

(
u(τ, ·), v(τ, ·)) dτ +

∫

R

∫

Rn

D
1
2−,τu(τ, x) D

1
2
+,τv(τ, x) dxdτ.

Moreover, if u, v ∈ Hρ1,1(R× Rn), we find by a density argument

|E(u, v)| ≤ M

∫

R
‖u(τ, ·)‖Hψ,1(Rn)‖v(τ, ·)‖Hψ,1(Rn) dτ

+ ‖D
1
2−,τu‖L2(R×Rn)‖D

1
2
+,τv‖L2(R×Rn).

Since L2
(
R,Hψ,1(Rn)

) ' L2(R) ⊗ Hψ,1(Rn), an application of the Cauchy-Schwarz
inequality yields

|E(u, v)| ≤ M‖u‖Hρ1,1(R×Rn)‖v‖Hρ1,1(R×Rn)

+ ‖D
1
2−,τu‖L2(R×Rn)‖D

1
2
+,τv‖L2(R×Rn).

(4.6)

On the other hand,

‖D
1
2∓u‖2L2(R×Rn) ≤

∫

R

∫

Rn

|σ| |û(σ, ξ)|2dξdσ ≤ ‖u‖2Hρ1,1(R×Rn). (4.7)

Together, (4.6) and (4.7) prove our next theorem.



816 N. Jacob and R. L. Schilling

Theorem 4.2. Let
{
E(τ)(·, ·),Hψ,1(Rn)

}
τ≥0

, (E(·, ·),F), and ψ : Rn → R be as
above. Then the estimate

|E(u, v)| ≤ c‖u‖Hρ1,1(R×Rn)‖v‖Hρ1,1(R×Rn) (4.8)

is valid for all u, v ∈ Hρ1,1(R× Rn) with ρ1(σ, ξ) = |σ|+ ψ(ξ).

As in the case of the translation invariant drift form considered in Section 2 above,
the form

(
E,Hρ1,1(R × Rn)

)
does not satisfy the sector condition on Hρ1,1(R × Rn)

since the term
〈
D

1
2−,τu,D

1
2
+,τv

〉
L2(R×Rn)

does neither satisfy the sector condition nor can

it be controlled by the expression
∫
RE(τ)

(
u(τ, ·), v(τ, ·)) dτ . However, as in Section 2,

we get the following assertion.

Theorem 4.3. For every 0 < α < 1 the bilinear form

E(α)(u, v) =
∫

R
E(τ)

(
u(τ, ·), v(τ, ·))dτ +

∫

R

∫

Rn

D
α
2−,τu(τ, x) D

α
2
+,τv(τ, x) dxdτ (4.9)

satisfies on Hρα,1(R× Rn) the sector condition, i.e.

|E(α)(u, v)| ≤ cα ‖u‖Hρα,1(R×Rn)‖v‖Hρα,1(R×Rn) (4.10)

for all u, v ∈ Hρα,1(R × Rn). In particular,
(
E(α)(·, ·),Hρα,1(R × Rn)

)
is a non-

symmetric Dirichlet form.

Proof. It is enough to control the antisymmetric part of (4.9) by its symmetric
part. Since by our assumptions

∫
RE(τ)

(
u(τ, ·), v(τ, ·)) dτ is symmetric, we only have to

estimate the antisymmetric part of
〈
D

α
2−,τu,D

α
2
+,τv

〉
L2(R×Rn)

in terms of its symmetric
part. But this is done by exactly the same calculations as for the subordinated drift
form (cf. Section 2).

The proof of (4.10) is an obvious adaptation of the proof of Theorem 4.2. That(
E(α)(·, ·),Hρα,1(R× Rn)

)
is indeed an ordinary non-symmetric Dirichlet form follows

easily: bilinearity and closedness of the form are clear, the sector condition has just
been established, and (DF.1), (DF.3) - (DF.5) can be seen just as in Theorem 2.1

With the same methods as in Section 2 get again an approximation result:

Corollary 4.4. In the situation of Theorem 4.3 we have

lim
α↑1

E(α)(u, v) = E(u, v) (4.11)

for all u, v ∈ Hρ1,1(R× Rn).

In the case of generalized Dirichlet forms (see W. Stannat [29, 30]) the operator
∂
∂τ in the definition of E(·, ·) is replaced by the generator Λτ of any sub-Markovian
semigroup on L2(R). If the operator Λτ is of the type

Λτu(τ, x) = 1√
2π

∫

R
eiστθ(σ)ũ(σ, x) dσ

with some continuous negative definite function θ : R → C, we may almost literally
apply the considerations made before for time-dependent Dirichlet forms. More general
situations will be treated in Section 6 below.
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5. The drift form in Rn

We will now consider the bilinear form

D(u, v) =
n∑

j=1

∫

Rn

bj(x)u(x)
∂v(x)
∂xj

dx. (5.1)

By Dα
±,j we denote the partial fractional derivative of order α (0 < α ≤ 1) in direction

xj (1 ≤ j ≤ n) given by the analogue of (1.7). If the coefficient functions bj are smooth
enough, we find

n∑

j=1

∫

Rn

bj(x)u(x)(D
1
2
−,j D

1
2
−,jv)(x) dx

=
n∑

j=1

∫

Rn

bj(x)D
1
2
+,ju(x) ·D

1
2
−,jv(x) dx +

n∑

j=1

∫

Rn

u(x)[bj ; D
1
2
−,j ]D

1
2
−,jv(x) dx.

By [bj ; D
1
2
−,j ] we denote the commutator:

[bj ; D
1
2
−,j ]u = bj(x)D

1
2
−,ju(x)−D

1
2
−,j(bju)(x).

We will see below for which bj these formal manipulations can be justified. If bj ∈
L∞(Rn), we have the obvious estimate

∣∣∣∣
n∑

j=1

∫

Rn

bj(x)D
1
2
+,ju(x) ·D

1
2
−,jv(x) dx

∣∣∣∣

≤
n∑

j=1

‖bj‖∞‖D
1
2
+,ju‖0 ‖D

1
2
−,jv‖0

≤
n∑

j=1

‖bj‖∞‖u‖
H

1
2 (Rn)

‖v‖
H

1
2 (Rn)

.

In order to estimate the second term in the first calculation above we need the following
commutator estimate.

Proposition 5.1. Let b ∈ C1
b (Rn). Then we have for all 0 < α ≤ 1 and 1 < p < ∞

the estimate ∥∥[Dα
−,j ; b]u

∥∥
Lp(Rn)

≤ cα,p‖b‖C1
b
(Rn)‖u‖Lp(Rn) (5.2)

where [Dα
−,j ; b]u = Dα

−,j(bu)− bDα
−,ju stands for the commutator of Dα

−,j and b.

Proof. For notational convenience, we write (x̂, xj) instead of (x1, . . . , xj , . . . , xn);
this abuse of notation should not cause any problems. Since

Dα
−,jv(x) = α

Γ(1−α)

∫

R+

(
v(x̂, xj)− v(x̂, xj + t)

)
t−α−1dt
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we find

[Dα
−,j ; b]u(x̂, xj) =

∫

R+

b(x̂, xj)− b(x̂, xj + t)
tα+1

u(x̂, xj + t) dt

=
∫ 1

0

(
b(x̂, xj)− b(x̂, xj + t)

)

tα+1−λ

u(x̂, xj + t)
tλ

dt

+
∫ ∞

1

(
b(x̂, xj)− b(x̂, xj + t)

)

tα+1−µ

u(x̂, xj + t)
tµ

dt

with parameters λ, µ satisfying α − 1 + 1
p < λ < 1

p < µ < α + 1
p . If q is such that

1
p + 1

q = 1, we get by the Hölder inequality

∣∣[Dα
−,j ; b]u(x̂, xj)

∣∣

≤
( ∫ 1

0

|b(x̂, xj)− b(x̂, xj + t)|q
t(α+1−λ)q

dt

) 1
q
(∫ 1

0

|u(x̂, xj + t)|p
tλp

dt

) 1
p

+

( ∫ ∞

1

|b(x̂, xj)− b(x̂, xj + t)|q
t(α+1−µ)q

dt

) 1
q
( ∫ ∞

1

|u(x̂, xj + t)|p
tµp

dt

) 1
p

≡ I1(x) + I2(x).

Taking the Lp(Rn)-norm we find

‖I1‖Lp(Rn)

≤ sup
x∈Rn

(∫ 1

0

|b(x̂, xj)− b(x̂, xj + t)|q
t(α+1−λ)q

dt

) 1
q
( ∫

Rn

∫ 1

0

|u(x̂, xj + t)|p
tλp

dt dx

) 1
p

= sup
x∈Rn

(∫ 1

0

|b(x̂, xj)− b(x̂, xj + t)|q
t(α+1−λ)q

dt

) 1
q
( ∫ 1

0

dt

tλp

)1/p

‖u‖Lp(Rn).

Observing that

sup
x∈Rn

(∫ 1

0

|b(x̂, xj)− b(x̂, xj + t)|q
t(α+1−λ)q

dt

) 1
q

≤
∥∥∥ ∂b

∂xj

∥∥∥
∞

( ∫ 1

0

dt

t(α−λ)q

) 1
q

and that, by our choice of λ, q(α− λ) < 1, we get

‖I1‖Lp(Rn) ≤ c1

∥∥∥ ∂b

∂xj

∥∥∥
∞
‖u‖Lp(Rn).
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By a similar calculation,

‖I2‖Lp(Rn)

≤ sup
x∈Rn

( ∫ ∞

1

|b(x̂, xj)− b(x̂, xj + t)|q
t(α+1−µ)q

dt

) 1
q
( ∫

Rn

∫ ∞

1

|u(x̂, xj + t)|p
tµp

dtdx

) 1
p

≤
( ∫ ∞

1

‖b(x̂, xj)− b(x̂, xj + t)‖q
∞

t(α+1−µ)q
dt

) 1
q
(∫ ∞

1

dt

tµp

) 1
p

‖u‖Lp(Rn)

≤ 21− 1
q ‖b‖∞

(∫ ∞

1

dt

t(α+1−µ)q

) 1
q

( ∫ ∞

1

dt

tµp

) 1
p

‖u‖Lp(Rn)

implying – by our choice of λ and µ – that

‖I2‖Lp(Rn) ≤ c2‖b‖∞ ‖u‖Lp(Rn)

and the assertion follows

The next theorem shows, in particular, for which bj the formal calculations of the
first paragraph in this section can be justified.

Theorem 5.2. Let D(u, v) be given by (5.1). For bj ∈ C1
b (Rn) the estimate

|D(u, v)| ≤ c ‖u‖
H

1
2 (Rn)

‖v‖
H

1
2 (Rn)

(5.3)

holds for all u, v ∈ H
1
2 (Rn).

Proof. Let u, v ∈ H
1
2 (Rn). Then

|D(u, v)| ≤
n∑

j=1

‖bj‖∞‖u‖
H

1
2 (Rn)

‖v‖
H

1
2 (Rn)

+
n∑

j=1

∣∣∣∣
∫

Rn

u(x)[bj ; D
1
2
−,j ]D

1
2
−,jv(x) dx

∣∣∣∣

≤
n∑

j=1

‖bj‖∞‖u‖
H

1
2 (Rn)

‖v‖
H

1
2 (Rn)

+
n∑

j=1

cj‖bj‖C1
b
(Rn) ‖u‖0‖D

1
2
−,jv‖0

≤ c

n∑

j=1

‖bj‖C1
b
(Rn)‖u‖H

1
2 (Rn)

‖v‖
H

1
2 (Rn)

and we are done

Remark 5.3. For u ∈ H1(Rn) we get

D(u, u) = 1
2

n∑

j=1

∫

Rn

bj(x)
∂u2(x)

∂xj
dx = − 1

2

∫

Rn

( n∑

j=1

∂bj(x)
∂xj

)
u2(x) dx.

Thus,
∑n

j=1
∂bj(x)

∂xj
≤ 0 implies D(u, u) ≥ 0. By Theorem 5.2 we get even D(u, u) ≥ 0

for u ∈ H
1
2 (Rn).
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Let 0 < α < 1 and bj ∈ C1
b (Rn). We consider the form

D(α)(u, v) :=
n∑

j=1

∫

Rn

bj(x)v(x)Dα
−,ju(x) dx

=
n∑

j=1

∫

Rn

bj(x)D
α
2
+,jv(x) ·D

α
2
−,ju(x) dx

+
n∑

j=1

∫

Rn

v(x)[bj ; D
α
2
−,j ] D

α
2
−,ju(x) dx.

(5.4)

From Proposition 5.1 we know that this form is well-defined and we immediately get
the following analogue to Theorem 5.2.

Theorem 5.4. Let 0 < α < 1 and D(α)(u, v) be given by (5.4). For bj ∈ C1
b (Rn)

the estimate
|D(α)(u, v)| ≤ c ‖u‖

H
α
2 (Rn)

‖v‖
H

α
2 (Rn)

(5.5)

holds for all u, v ∈ H
α
2 (Rn). Moreover, we have

lim
α↑1

D(α)(u, v) = D(u, v) (5.6)

for all u, v ∈ H
1
2 (Rn).

Proof. Since (5.5) follows just as (5.3), we will only check (5.6). Using (5.4) we
get

D(α)(u, v) =
n∑

j=1

∫

Rn

bj(x)D
α
2
+,jv(x) ·D

α
2
−,ju(x) dx

+
n∑

j=1

∫

Rn

[D
α
2
+,j ; bj ]v(x) ·D

α
2
−,ju(x) dx.

For u, v ∈ H
1
2 (Rn) and bj ∈ C1

b (Rn) the limits

lim
α↑1

D
α
2
−,ju = D

1
2
−,ju and lim

α↑1
[D

α
2
+,j ; bj ]v = [D

1
2
+,j ; bj ]v

exist strongly in L2(Rn) and the assertion follows

In order to examine the form D(α)(·, ·) in greater detail, we note that we can rewrite
(5.4) as

D(α)(u, v) =
n∑

j=1

E(α)(u, bjv)

where E(α)(·, ·) is the higher-dimensional counterpart of the form introduced in (2.8).
Set γα = α

Γ(1−α) . Applying Theorem 2.1 to each of the terms E(α)(u, bjv) (j = 1, . . . , n)
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we find

E(α)(u, bjv)

=
∫

Rn

bj(x)v(x)Dα
−,ju(x) dx

= γα

4

∫

Rn

∫

R

(
u(x̂, xj − t)− u(x̂, xj)

)(
(bjv)(x̂, xj − t)− (bjv)(x̂, xj)

)

|t|α+1
dtdx

+ γα

2α+1

∫

Rn

∫

R+

(
u(x̂, xj + t)− u(x̂, xj − t)

)(
(bjv)(x̂, xj + t) + (bjv)(x̂, xj − t)

)

tα+1
dtdx

≡ 1
4 Ij

1 + 1
2α+1 Ij

2 .

Elementary but rather lengthy calculations yield

Ij
1 = γα

∫

Rn

∫

R
bj(x̂, xj)

(
u(x̂, xj + t)− u(x̂, xj)

)(
v(x̂, xj + t)− v(x̂, xj)

)

|t|α+1
dtdx

−
∫

Rn

v(x)[Dα
+,j + Dα

−,j ; bj ]u(x) dx +
∫

Rn

v(x)u(x)(Dα
+,j + Dα

−,j)bj(x) dx

and

Ij
2 =

γα

∫

Rn

∫

R+

bj(x̂, xj + t)

(
u(x̂, xj + t)− u(x̂, xj − t)

)(
v(x̂, xj + t) + v(x̂, xj − t)

)

tα+1
dtdx

+ 2α

∫

Rn

v(x)[Dα
+,j ; bj ]u(x) dx− 2α

∫

Rn

v(x)u(x)Dα
+,jbj(x) dx.

This proves our next theorem.

Theorem 5.5. Let D(α)(u, v) denote the bilinear form given by (5.4). If bj ∈
C1

b (Rn), we have the alternative representation

D(α)(u, v) =
n∑

j=1

(
γα

4

∫

Rn

∫

R
bj(x̂, xj)

×
(
u(x̂, xj + t)− u(x̂, xj)

)(
v(x̂, xj + t)− v(x̂, xj)

)

|t|α+1
dtdx

+ γα

2α+1

∫

Rn

∫

R+

bj(x̂, xj + t)

×
(
u(x̂, xj + t)− u(x̂, xj − t)

)(
v(x̂, xj + t) + v(x̂, xj − t)

)

tα+1
dtdx

)

+
1
2

R(α)(u, v)

(5.7)

where γα = α
Γ(1−α) and

R(α)(u, v) =

1
2

n∑

j=1

∫

Rn

v(x)
(
[Dα

+,j −Dα
−,j ; bj ]u(x)− u(x)(Dα

+,j −Dα
−,j)bj(x)

)
dx

(5.8)
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for all u, v ∈ H
α
2 (Rn).

Corollary 5.6. Define Dα
j,Im = 1

2 (Dα
−,j −Dα

+,j). In the situation of Theorem 5.5
we find for u ∈ Hα(Rn) that

R(α)(u, v) = −
n∑

j=1

∫

Rn

v(x)
(
Dα

j,Im(bju)(x)− bj(x)Dα
j,Imu(x)− u(x)Dα

j,Imbj(x)
)
dx.

If, in particular, for all u ∈ Hα(Rn)
n∑

j=1

(
Dα

j,Im(bju)(x)− bj(x)Dα
j,Imu(x)− u(x)Dα

j,Imbj(x)
)

= 0 (5.9)

is satisfied, we have

D(α)(u, v) =
n∑

j=1

(
γα

4

∫

Rn

∫

R
bj(x̂, xj)

×
(
u(x̂, xj + t)− u(x̂, xj)

)(
v(x̂, xj + t)− v(x̂, xj)

)

|t|α+1
dtdx

+ γα

2α+1

∫

Rn

∫

R+

bj(x̂, xj + t)

×
(
u(x̂, xj + t)− u(x̂, xj − t)

)(
v(x̂, xj + t) + v(x̂, xj − t)

)

tα+1
dtdx

)

with γα = α
Γ(1−α) . Under the additional assumptions

bj ≥ 0 (1 ≤ j ≤ n) and
n∑

j=1

Dα
−,jbj ≥ 0 (5.10)

the bilinear form D(α)(·, ·) is positive definite in the sense that D(α)(u, u) ≥ 0 for all
u ∈ H

α
2 (Rn).

Proof. It remains to show the positive definiteness of the form. Let u ∈ H
α
2 (Rn).

Then

D(α)(u, u) = α
4Γ(1−α)

n∑

j=1

∫

Rn

∫

R
bj(x̂, xj)

(
u(x̂, xj + t)− u(x̂, xj)

)2

|t|α+1
dtdx

+ α
2α+1Γ(1−α)

n∑

j=1

∫

Rn

∫

R+

bj(x̂, xj)
u2(x̂, xj)− u2(x̂, xj − 2t)

tα+1
dtdx

and
α

2α+1Γ(1−α)

∫

Rn

∫

R+

bj(x̂, xj)
u2(x̂, xj)− u2(x̂, xj − 2t)

tα+1
dtdx

= 1
2

∫

Rn

bj(x)Dα
+,j(u

2)(x) dx

= 1
2

∫

Rn

Dα
−,jbj(x) · u2(x) dx.

Summation over j = 1, . . . , n proves the assertion
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Note that – by the remark following Lemma 1.3 at the end of Section 1 – (5.9) is
automatically fulfilled if each bj is independent of xj , i.e. if bj(x̂, xj) ≡ bj(x̂) (1 ≤ j ≤ n)
where we used our shorthand (x̂, xj) for x.

Corollary 5.7. Suppose, in addition to the assumptions made in Theorem 5.5,
that bj(x) ≥ κ > 0 and that bj is independent of xj, i.e. bj(x̂, xj) = bj(x̂). Then(
D(α)(·, ·),H α

2 (Rn)
)

is a (non-symmetric) Dirichlet form.

Proof. Observe that, under our assumptions, (5.9) and (5.10) hold. From Theorem
5.5 we deduce that D(α)(·, ·) takes the form

D(α)(u, v) =
n∑

j=1

(
γα

4

∫

Rn−1
bj(x̂)

×
∫

R

∫

R

(
u(x̂, xj + t)− u(x̂, xj)

)(
v(x̂, xj + t)− v(x̂, xj)

)

|t|α+1
dtdxjdx̂

+ γα

2α+1

∫

Rn−1
bj(x̂)

×
∫

R

∫

R+

(
u(x̂, xj + t)− u(x̂, xj − t)

)(
v(x̂, xj + t) + v(x̂, xj − t)

)

tα+1
dtdxjdx̂

)

with γα = α
Γ(1−α) . This implies the contraction property (DF.4) for D(α)(·, ·), just as

in the setting disscussed in Section 2. It remains to prove that
(
D(α)(·, ·),H α

2 (Rn)
)

is
closed. By Theorem 5.4 we know already that

D(α)
1 (u, u) := D(α)(u, u) + 〈u, u〉0 ≤ c ‖u‖2

H
α
2 (Rn)

.

It is therefore enough to show

‖u‖2
H

α
2 (Rn)

≤ c̃D(α)
1 (u, u)

for some constant c̃ > 0. Using the lower bound of the coefficient functions we find

D(α)(u, u) =
n∑

j=1

γα

4

∫

Rn−1
b(x̂)

∫

R

∫

R

(
u(x̂, xj + t)− u(x̂, xj)

)2

|t|α+1
dtdxjdx̂

≥ κ

n∑

j=1

γα

4

∫

Rn−1

∫

R

∫

R

(
u(x̂, xj + t)− u(x̂, xj)

)2

|t|α+1
dtdxjdx̂

≥ c(α, κ)
n∑

j=1

∫

Rn

|ξj |α|û(ξ)|2 dξ

≥ c̃(α, κ, n)
∫

Rn

( n∑

j=1

|ξj |2
)α

2

|û(ξ)|2dξ

where we used very much the same calculation that led to Theorem 2.1
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Remark 5.8. The most general conditions such that D(α)(·, ·) given by (5.4) ex-
tends to a non-symmetric Dirichlet form are yet unknown. In particular, the closedness
of D(α)(·, ·) and the contraction property are difficult to prove.

On the other hand, the condition that the coefficients bj(x̂, xj) = bj(x̂) are inde-
pendent of xj seems not to be too restrictive. Note that [Dα

±,j ; bj ] ≡ 0 already implies
Dα
∓,jbj(x) = 0 for Lebesgue-almost every x. This, in turn, gives bj(x̂, xj) = bj(x̂)

whenever bj is smooth enough.

6. Fractional powers of dissipative operators

We will now consider arbitrary closed dissipative operators and, in particular, in-
finitesimal generators of arbitrary strongly continuous contraction semigroups. Assume
throughout this section that (A,D(A)) is a closed operator on the complex Hilbert space
H with inner product 〈·, ·〉 and norm ‖ · ‖. The operator is dissipative, that is

‖λu−Au‖ ≥ Reλ‖u‖ (u ∈ D(A)).

Clearly, this implies that such operators are non-positive in the sense that Re〈Au, u〉 ≤ 0,
but A is not necessarily sectorial. Fractional powers of a closed dissipative operator can
be defined by

(−A)αu = sin(απ)
π

∫

R+

(−A)(s−A)−1u
ds

s1−α
(u ∈ D(A), 0 < α < 1) (6.1)

where D(A) is a core for
(
(−A)α,D((−A)α

)
(see, e.g., Yosida [31: Section IX.11] or [1,

18, 27]).

We want to show that (−A)α is always sectorial, that is to say that

〈(−A)αu, u〉 ∈ Sαπ
2

:=
{
z ∈ C : | arg z| ≤ απ

2

}
(6.2)

(arg z takes values in (−π, π]). Let us start with some preparations.

Lemma 6.1. Let (A,D(A)) be a closed dissipative operator on a complex Hilbert
space. Then its fractional power has the representation

e−iαϑ(−A)αu =
sin(απ)

π

∫

R+

(−A)(seiϑ −A)−1u
ds

s1−α
(u ∈ D(A)) (6.3)

with 0 < α < 1 and any −π
2 < ϑ < π

2 .

Proof. It is sufficient to consider the case where 0 < ϑ < π
2 , since we may always

change from ϑ to −ϑ, and ϑ = 0 is just (6.1). The resolvent z 7→ (z−A)−1 is an analytic
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function in the right half-plane {z ∈ C : Rez > 0}, so we may integrate along the paths

and obtain
∫

Γ′
(−A)(z −A)−1u

dz

z1−α
=

∫

Γε∪Γ∪Γn

(−A)(z −A)−1u
dz

z1−α
.

Parametrizing the curves and changing variables gives

∫

Γ′
(−A)(z −A)−1u

dz

z1−α
= eiαϑ

∫ n

ε

(−A)(seiϑ −A)−1 ds

s1−α

∫

Γ

(−A)(z −A)−1u
dz

z1−α
=

∫ n

ε

(−A)(s−A)−1 ds

s1−α
.

Note that for u ∈ D(A) we have

‖(−A)(z −A)−1u‖ ≤ 2‖u‖ and ‖(−A)(z −A)−1u‖ ≤ (Rez)−1‖Au‖.

Therefore,
∥∥∥∥

∫ ∞

n

(−A)(s−A)−1u
ds

s1−α

∥∥∥∥ ≤
∫ ∞

n

ds

s2−α
‖Au‖ =

nα−1

1− α
‖Au‖

and ∥∥∥∥
∫ ε

0

(−A)(s−A)−1u
ds

s1−α

∥∥∥∥ ≤ 2
∫ ε

0

ds

s1−α
‖u‖ =

εα

α
‖u‖,

and this implies that the strong limit limn,ε

∫ n

ε
(−A)(s − A)−1usα−1ds exists (at least

for u ∈ D(A)) and equals (−A)αu. The assertion thus follows once we have shown that
on D(A)

lim
ε→0

∥∥∥∥
∫

Γε

(−A)(z −A)−1u
dz

z1−α

∥∥∥∥ = 0 (6.4)

lim
n→∞

∥∥∥∥
∫

Γn

(−A)(z −A)−1u
dz

z1−α

∥∥∥∥ = 0. (6.5)
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Again parametrizing the arcs and changing variables we arrive at

∥∥∥∥
∫

Γε

(−A)(z −A)−1u
dz

z1−α

∥∥∥∥ ≤ εα

∫ ϑ

0

∥∥(−A)(εei(ϑ−φ) −A)−1u
∥∥ dφ

≤ εα

∫ ϑ

0

(
1 +

1
cos(ϑ− φ)

)
‖u‖ dφ

where we used the fact that for u ∈ H

∥∥(−A)(εei(ϑ−φ) −A)−1u
∥∥ ≤ ‖u‖+ ε

∥∥(εei(ϑ−φ) −A)−1u
∥∥ ≤

(
1 +

ε

Reεei(ϑ−φ)

)
‖u‖.

Since ϑ < π
2 , the above integral is finite, and (6.4) follows. The limit (6.5) can be seen

in a similar way using the estimate ‖(−A)(neiφ −A)−1u‖ ≤ (Reneiφ)−1‖Au‖
We are now ready for the main theorem of this section. For α = 1

2 and a different
representation of the square-root of a dissipative operator this result can be found in
Kato’s book [13: p. 281]. For the readers’ convenience, we give here a somewhat
different proof that is adapted to our situation and holds for an arbitrary 0 < α < 1.

Theorem 6.2. Let (A,D(A)) be a closed dissipative operator on the complex Hilbert
space H. Then its fractional power (−A)α is sectorial, i.e. 〈(−A)αu, u〉 ∈ Sαπ

2
holds for

all u ∈ D((−A)α) and 0 < α < 1.

Proof. Fix some δ > 0, 0 < ϑ < π
2 and apply Lemma 6.1 to the operator Aδ :=

A− δ id to find

e−iαϑ(−Aδ)αu = sin(απ)
π

∫

R+

(−Aδ)(seiϑ −Aδ)−1u
ds

s1−α

(
u ∈ D(Aδ) = D(A)

)
.

Let u ∈ D(A) and set v = −Aδu. Then

(−Aδ)α−1v = (−Aδ)α−1(−Aδ)u = (−Aδ)αu
(
v ∈ D((−Aδ)α−1)

)

and we find

e−iαϑ
〈
(−Aδ)α−1v, v

〉
= sin(απ)

π

∫

R+

〈
(seiϑ −Aδ)−1v, v

〉 ds

s1−α
.

Substituting w = (seiϑ −Aδ)−1v, we see that for the above integrand

Re
〈
(seiϑ −Aδ)−1v, v

〉
= Re

〈
w, (seiϑ −Aδ)w

〉

= s cos ϑ ‖w‖2 + δ‖w‖2 + Re〈w,−Aw〉
≥ 0

by our assumptions on ϑ and A. Thus,

Re
(
e−iαϑ

〈
(−Aδ)α−1v, v

〉) ≥ 0 (6.6)
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for all v = −Aδu and u ∈ D(A). Since multiplication by e−iαϑ is a rotation of angle
αϑ, (6.6) implies 〈

(δ −A)α−1v, v
〉 ∈ Sπ

2−αϑ. (6.7)

Writing w := (−Aδ)α−1v = (−Aδ)αu for u ∈ D(A), we observe because of the identities

(−Aδ)α(−Aδ)1−α = (−Aδ)1−α(−Aδ)α = −Aδ

(in the sense of closed operators; see, e.g., [18, 27]) that D((−Aδ)1−α) = (−Aδ)α[D(Aδ)].
Since ϑ ∈ (0, π

2 ) was arbitrary, we may let ϑ → π
2 and (6.7) becomes

〈w, (δ −A)1−αw〉 ∈ S(1−α) π
2

(
w ∈ D((−Aδ)1−α)

)
.

Since D((−Aδ)α) = D((−A)α) is independent of δ for all 0 ≤ α ≤ 1 and since
limδ→0 Aδu = Au strongly, and the Theorem is established as δ → 0

Corollary 6.3. In the situation of Theorem 6.2 we have
∣∣Im〈(−A)αu, u〉

∣∣ ≤ tan
(

απ
2

)
Re〈(−A)αu, u〉

for all u ∈ D((−A)α).

Corollary 6.4. Let (A, D(A)) be the generator of any strongly continuous contrac-
tion semigroup on the real Hilbert space H. Then every fractional power (−A)α (0 <
α < 1) satisfies the sector condition (DF.2). In fact, we even have

∣∣〈(−A)αu, v〉∣∣ ≤ cα

√
〈(−A)αu, u〉

√
〈(−A)αv, v〉

for all u, v ∈ D((−A)α).

Proof. Denote by AC the complexification of A with natural domain D(A) +
iD(A) ⊂ HC. Since

[(−A)(s−A)−1]C = (−AC)(s−AC)−1 (s > 0)

we get from formula (6.1) that [(−A)α]C = (−AC)α and that D(A) + iD(A) is a core
for [(−A)α]C. The assertion now follows from Theorem 6.2 by standard results from
abstract functional analysis (see, e.g., Ma and Röckner [17: Proposition 2.17])

For our next result we need a generalization of non-symmetric Dirichlet forms that
can also be found in [17]. A closed bilinear form satisfying the conditions (DF.1) -
(DF.3) and (DF.5), but only one alternative in (DF.4) is called semi-Dirichlet form.

Observe that −(−A)α generates a strongly continuous contraction semigroup when-
ever −A does (see [31: Section IX.11]).

Corollary 6.5. Let (A,D(A)) be the generator of a strongly continuous sub-Mar-
kovian contraction semigroup on the real Hilbert spcae H. Then E(α)(u, v) := 〈(−A)αu,
v〉 (u, v ∈ D((−A)α)) extends to a semi-Dirichlet form. The domain D(E(α)) is the
completion of D(A) with respect to the scalar product

〈〈u, v〉〉α = 〈(−A)αu, v〉+ 〈(−A)αv, u〉+ 〈u, v〉.
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If the adjoint semigroup is also sub-Markovian, E(α)(·, ·) extends to a non-symmetric
Dirichlet form. Moreover, we have

lim
α↑1
〈(−A)αu, v〉 = 〈(−A)u, v〉 (6.8)

for all u, v ∈ D(A).

Proof. As generator of a semigroup −(−A)α is a maximal dissipative operator.
Since it also satisfies the sector condition (DF.2), the form E(α)(u, v) := 〈(−A)αu, v〉
extends to a semi-Dirichlet form (see [17: p. 39]).

On a Hilbert space, the adjoint operator of a maximal dissipative operator is again
maximal dissipative. Clearly, (−A∗)α = (−A)α ∗, and applying Corollary 6.4 to the op-
erator (−A∗) shows that (−A)α ∗ is sectorial. If {T ∗t }t≥0 is sub-Markovian, we conclude
as above that the form

F(α)(u, v) := 〈(−A)α ∗u, v〉 = 〈u, (−A)αv〉 = E(α)(v, u)

extends to a semi-Dirichlet form; this shows that E(α)(·, ·) satisfies both conditions in
(DF.4), i.e. it has an extension to a non-symmetric Dirichlet form.

The general theory shows that D(E(α)) is obtained as completion of D((−A)α) with
respect to 〈〈·, ·〉〉α. Since D(A) is an operator core for ((−A)α,D((−A)α)) – that is to say
that every u ∈ D((−A)α) can be approximated in graph-norm by a sequence contained
in D(A) – it is obvious that D(E(α)) arises also as completion of D(A) with respect to
〈〈·, ·〉〉α.

Statement (6.8) can be rephrased as

lim
α↑1

(−A)αu = (−A)u weakly in the space H.

This, however, follows from the known left-continuity (in the strong topology) of the
map (0, 1] 3 α 7→ (−A)αu (u ∈ D(A)) (see Nollau [18: Folgerung 2] or Balakrishnan
[1: Lemma 2.3]; the latter proves only left-continuity at α = 1 which is but sufficient)
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