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A Multiplicity Fixed Point Theorem
in Fréchet Spaces

D. O’Regan

Abstract. A new multiplicity result is presented for maps between Fréchet spaces. Our ar-
gument relies on fixed point results in Banach spaces together with a result on hemicompact
maps. An application is also given to illustrate how the theory can be applied in practice.
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1. Introduction

This paper is concerned with the existence of multiple fixed points to multi-valued
maps between Fréchet spaces. The paper is divided into two main sections. In Section
2 the existence of multiple fixed points is established by means of a “diagonal type”
process together with a result on hemicompact [1, 8] maps. It is worth remarking here
that the theory presented in this paper to guarantee the existence of one or more fixed
points is more general, and in particular more applicable, than the theory presented
in the literature [3, 6, 9]. To illustrate the generality of the fixed point theorem from
Section 2, we establish in Section 3 a new result which guarantees the existence of twin
non-negative solutions to a very general integral equation on the semi-infinite interval.

For the remainder of this section we gather together some definitions and known
results. Let (X, d) be a metric space and ΩX the system of all bounded subsets of X.
The Kuratowski measure of non-compactness is the map α : ΩX → [0,∞] defined by

α(B) = inf
{

r > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ r

}
(B ∈ ΩX).

Let S be a non-empty subset of X. For each x ∈ X, define d(x, S) = infy∈S d(x, y).
Now suppose G : S → 2X ; here 2X denotes the family of non-empty subsets of X.
Then:

(i) G : S → 2X is k-set contractive (here k ≥ 0) if α(G(W )) ≤ k α(W ) for all
non-empty, bounded sets W of S.

(ii) G : S → 2X is condensing if G is 1-set contractive and α(G(W )) < α(W ) for
all bounded sets W of S with α(W ) 6= 0.
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(iii) G : S → 2X is hemicompact if each sequence (xn)∞n=1 in S has a convergent
subsequence whenever d(xn, Gxn) → 0 as n →∞.

We now state three results from the literature which will be used in Section 2.

Theorem 1.1 (see [8]). Let (X, d) be a metric space, D a non-empty, complete
subset of X, and G : D → 2X a condensing map with G(D) bounded. Then G is
hemicompact.

Theorem 1.2 (see [2, 5, 7]). Let C be a closed, convex subset of a Banach space
with U an open subset of C and 0 ∈ U . Suppose F : U → CK(C) is an upper semi-
continuous, k-set contractive (here 0 ≤ k < 1) map with F (U) bounded; here CK(C)
denotes the family of non-empty, compact, convex subsets of C. Then either

(A1) there exists x ∈ U with x ∈ F (x)

or

(A2) there exists u ∈ ∂CU and λ ∈ (0, 1) with u ∈ λF (u).

Let E = (E, ‖ · ‖) and, for ρ > 0,

Ωρ =
{
x ∈ E : ‖x‖ < ρ

}
.

Theorem 1.3 (see [2, 7]). Let E = (E, ‖ · ‖) be a Banach space, C ⊆ E a cone and
let ‖ · ‖ be increasing with respect to C. Also, r and R are constants with 0 < r < R.
Suppose F : ΩR ∩ C → CK(C) is an upper semicontinuous, k-set contractive (here
0 ≤ k < 1) map and assume the conditions

‖y‖ ≥ ‖x‖ for all y ∈ F (x) and x ∈ ∂EΩR ∩ C (1.1)
‖y‖ ≤ ‖x‖ for all y ∈ F (x) and x ∈ ∂EΩr ∩ C (1.2)

hold. Then F has a fixed point in C ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.

2. Fixed point theory

Let N = {1, 2, ...}. In this section we assume E is a Fréchet space endowed with a family
of seminorms {| · |n}n∈N with

|x|1 ≤ |x|2 ≤ . . . for all x ∈ E.

Also, assume for each n ∈ N that (En, | · |n) is a Banach space and suppose

E1 ⊇ E2 ⊇ . . .

with E = ∩∞n=1En and |x|n ≤ |x|n+1 for all x ∈ En+1. For each n ∈ N let Cn be a cone
in En and assume | · |n is increasing with respect to Cn. In addition, assume

C1 ⊇ C2 ⊇ . . . .
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For ρ > 0 and n ∈ N let

Un,ρ = {x ∈ En : |x|n < ρ} and Ωn,ρ = Un,ρ ∩ Cn.

Notice
∂Cn

Ωn,ρ = ∂En
Un,ρ ∩ Cn and Ωn,ρ = Un,ρ ∩ Cn

(the first closure is with respect to Cn whereas the second is with respect to En). In
addition, notice since |x|n ≤ |x|n+1 for all x ∈ En+1 that

Ω1,ρ ⊇ Ω2,ρ ⊇ . . . and Ω1,ρ ⊇ Ω2,ρ ⊇ . . . .

We now establish a general result which guarantees that the inclusion

y ∈ Fy (2.1)

has two solutions in E.
The main points needed to establish the existence of solutions to (2.1) are the

following:
(1) The existence of upper semicontinuous maps Fn : Un,R ∩ Cn → CK(Cn).
(2) The sequence of maps {Fn} has the property that a convergent sequence of fixed

points {yn} of {Fn} converges to a fixed point of F .
(3) The assumptions on Fn are such that the Krasnoselskii-Petryshyn theorem [2,

7] in a Banach space can be applied.
We note here that Fn need not be the restriction of F to En (see Section 3).

Definition 2.1. Fix k ∈ N. If x, y ∈ Ek, then we say x = y in Ek if |x − y|k = 0
(i.e. if x− y = 0; here 0 is the zero in Ek).

Definition 2.2. If x, y ∈ E, then we say x = y in E if x = y in Ek for each k ∈ N.

Definition 2.3. Fix k ∈ N. We say x ∈ Fy in Ek if there exists w ∈ Fy with
x = w in Ek.

Theorem 2.1. Let L, γ, r,R be constants with 0 < L < γ < r < R. Assume the
following conditions are satisfied for each n ∈ N:

Fn : Un,R ∩ Cn → CK(Cn) is an upper semicontinuous map (2.2)

|y|n ≤ |x|n for all y ∈ Fn(x) and x ∈ ∂EnUn,L ∩ Cn (2.3)

|y|n ≤ |x|n for all y ∈ Fn(x) and x ∈ ∂EnUn,r ∩ Cn (2.4)

|y|n ≥ |x|n for all y ∈ Fn(x) and x ∈ ∂EnUn,R ∩ Cn. (2.5)

Further, assume the following:

{
For each n ∈ N, the map Kn : Un,R ∩ Cn → 2Cn given by

Kny = ∪∞m=nFmy is k-set contractive (here 0 ≤ k < 1)

}
. (2.6)
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{
For every k ∈ N and any subsequence A ⊆ {k, k + 1, . . .},
if x ∈ Cn (n ∈ A) is such that R ≥ |x|n ≥ r, then |x|k ≥ γ

}
. (2.7)





If there exists a v ∈ E and a sequence {un}n∈N with

un ∈ Un,L ∩ Cn and un ∈ Fnun in En such that for every

k ∈ N there exists a subsequence S ⊆ {k + 1, k + 2, . . .} of N

with un → v in Ek as n →∞ in S, then v ∈ Fv in E





. (2.8)





If there exists a z ∈ E and a sequence {wn}n∈N with

wn ∈ (Un,L \ Un,r) ∩ Cn and wn ∈ Fnwn in En such that for

every k ∈ N there exists a subsequence P ⊆ {k + 1, k + 2, . . .}
of N with wn → z in Ek as n →∞ in P, then z ∈ Fz in E





. (2.9)

Then (2.1) has at least two solutions x0 and x1 with

x0 ∈ ∩∞n=1(Un,L ∩ Cn) and x1 ∈ ∩∞n=1

(
(Un,R\Un,γ) ∩ Cn

)
.

Remark. The definition of Kn in (2.6) is as follows. If y ∈ Un,R ∩ Cn and y /∈
Un+1,R ∩Cn+1, then Kny = Fny, whereas if y ∈ Un+1,R ∩Cn+1 and y /∈ Un+2,R ∩Cn+2,
then Kny = Fny ∪ Fn+1y, and so on.

Remark. If F is defined on E1 and Fn = F |En for each n ∈ N, then (2.8) and (2.9)
are automatically satisfied.

Proof of Theorem 2.1. Fix n ∈ N. Note (2.3) implies x /∈ λFn(x) for all λ ∈ (0, 1)
and x ∈ ∂EnUn,L ∩Cn. To see this suppose there exist x ∈ ∂EnUn,L ∩Cn and λ ∈ (0, 1)
with x ∈ λFn(x). Then there exists y ∈ Fn(x) with x = λy and so L = |x|n = |λ| |y|n <
|y|n ≤ |x|n = L which is a contradiction. Theorem 1.2 guarantees that y ∈ Fny has
a fixed point un ∈ Un,L ∩ Cn. In particular, |un|n ≤ L. Theorem 1.3 (note (2.4) and
(2.5)) guarantees that y ∈ Fny has a fixed point wn ∈ (Un,R\Un,r) ∩ Cn. In particular,
r ≤ |wn|n ≤ R.

Let us look at {un}n∈N. Note un ∈ U1,L for each n ∈ N. To see this notice |un|n ≤ L
and |x|1 ≤ |x|n for all x ∈ En implies |un|1 ≤ L. Now Theorem 1.1 (with X = E1,
G = K1, D = U1,L ∩ C1 and note d1(un,K1un) = 0 for each n ∈ N since |x|1 ≤ |x|n for
all x ∈ En and un ∈ Fnun in En; here d1(x, S) = infy∈S |x − y|1 if S is a non-empty
subset of X) guarantees that there exists a subsequence N?

1 of N and v1 ∈ U1,L∩C1 with
un → v1 in E1 as n → ∞ in N?

1 . Notice in particular that |v1|1 ≤ L. Let us now look
at {wn}n∈N. Note wn ∈ U1,R\U1,γ for each n ∈ N. To see this notice |wn|n ≤ R and
|x|1 ≤ |x|n for all x ∈ En implies |wn|1 ≤ R. Thus wn ∈ U1,R for each n0 ∈ N. On the
other hand, |wn|n ≥ r and wn ∈ Cn together with (2.7) imply |wn|1 ≥ γ. Now Theorem
1.1 (with X = E1, G = K1, D = (U1,R\U1,γ) ∩ C1 and note d1(un,K1un) = 0 for each
n ∈ N) guarantees that there exists a subsequence P ?

1 of N and z1 ∈ (U1,R\U1,γ) ∩ C1

with wn → z1 in E1 as n →∞ in P ?
1 . Notice in particular that γ ≤ |z1|1 ≤ R.

Let N1 = N?
1 \{1} and P1 = P ?

1 \{1}. Look at {un}n∈N1 . Notice un ∈ U2,L for
each n ∈ N1. Now Theorem 1.1 with X = E2, G = K2, D = U2,L ∩ C2 and note
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d2(un,K2un) = 0 for each n ∈ N1; here d2(x, S) = infy∈S |x − y|2 if S is a non-empty
subset of X) guarantees that there exist a subsequence N?

2 of N1 and v2 ∈ U2,L ∩ C2

with un → v2 in E2 as n → ∞ in N?
2 . Notice in particular that |v2|2 ≤ L. Note

|v2 − v1|0 = 0 since N?
2 ⊆ N1 and E1 ⊇ E2. Thus v2 = v1 in E1. Let us now look at

{wn}n∈P1 . Notice it is easy to see using r ≤ |wn|n ≤ R and (2.7) that wn ∈ U2,R\U2,γ

for each n ∈ P1. Now Theorem 1.1 (with X = E2, G = K2, D = (U2,R\U2,γ) ∩ C2 and
note d2(un,K2un) = 0 for each n ∈ P1) guarantees that there exist a subsequence P ?

2 of
P1 and z2 ∈ (U2,R\U2,γ)∩C2 with wn → z2 in E2 as n →∞ in P ?

2 . Notice in particular
that γ ≤ |z2|2 ≤ R and z2 = z1 in E1.

Let N2 = N?
2 \{2} and P2 = P ?

2 \{2}. Proceed inductively to obtain subsequences
of integers

N?
1 ⊇ N?

2 ⊇ . . . , N?
k ⊆ {k, k + 1, . . .}

P ?
1 ⊇ P ?

2 ⊇ . . . , P ?
k ⊆ {k, k + 1, . . .}

and vk ∈ Uk,L ∩ Ck, zk ∈ (Uk,R\Uk,γ) ∩ Ck with un → vk in Ek as n → ∞ in N?
k and

wn → zk in Ek as n →∞ in P ?
k . Note vk+1 = vk in Ek and zk+1 = zk in Ek for k ∈ N.

Also, let Nk = N?
k\{k} and Pk = P ?

k \{k}.
Let y1 = vk in Ek and y2 = zk in Ek. Notice y1 and y2 are well defined and

y1, y2 ∈ Ek for each k ∈ N. Fix k ∈ N. Now un ∈ Fnun in En for n ∈ Nk and un → y1

in Ek as n →∞ in Nk (since y1 = vk in Ek). This together with (2.8) implies y1 ∈ Fy1.
Similarly, wn ∈ Fnwn in En for n ∈ Nk and wn → y2 in Ek as n → ∞ in Pk together
with (2.9) imply y2 ∈ Fy2

Remark. It is also possible to use Theorem 1.3 and [2: Theorem 2.4] or [7: Theo-
rem 3] together with the ideas in Theorem 2.1 to obtain other multiplicity results.

3. Integral equations on the semi-infinite interval

In this section the results of Section 2 are used to establish the existence of twin solutions
to the integral equation

y(t) =
∫ ∞

0

K(t, s)f(s, y(s)) ds for t ∈ [0,∞). (3.1)

Theorem 3.1. Suppose the following conditions are satisfied:

For each t ∈ [0,∞), the map s 7→ K(t, s) is measurable. (3.2)

sup
t∈[0,∞)

∫ ∞

0

|K(t, s)| ds < ∞. (3.3)

∫ ∞

0

|K(t′, s)−K(t, s)| ds → 0 as t → t′, for each t′ ∈ [0,∞). (3.4)





f : [0,∞)× R→ R is a continuous function and

for each b > 0 there exists Mb > 0 such that

|y| ≤ b implies |f(s, y)| ≤ Mb for all s ∈ [0,∞)





. (3.5)
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For each t ∈ [0, T ],K(t, s) ≥ 0 for a.e. s ∈ [0, t]. (3.6)

f : [0,∞)× R→ [0,∞) with f(s, u) > 0 for (s, u) ∈ [0,∞)× (0,∞). (3.7)
{

There exists g : [0,∞) → (0,∞) with g ∈ L1
loc[0,∞)

and with K(t, s) ≤ g(s) for t ∈ [0,∞)

}
. (3.8)

{
There exists δ, ε, 0 ≤ δ < ε ≤ 1 and M, 0 < M < 1,

with K(t, s) ≥ Mg(s) for t ∈ [δ, ε]

}
. (3.9)

{
f(s, y) ≤ w(y) for a.e. t ∈ [0,∞) and all y ∈ [0,∞);

here w ≥ 0 is continuous and non-decreasing on (0,∞)

}
. (3.10)

There exists r > 0 with
r

w(r) supt∈[0,∞)

∫∞
0

K(t, s)ds
> 1. (3.11)

There exists L, 0 < L < r, with
L

w(L) supt∈[0,∞)

∫∞
0

K(t, s)ds
> 1. (3.12)

{
There exists τ ∈ C[δ, ε] with τ > 0 on [δ, ε] and

with f(s, y) ≥ τ(s)w(y) on [δ, ε]× (0,∞)

}
. (3.13)

There exists R > r with
x

w(x)
≤ M

∫ ε

δ

τ(s)K(σ, s) ds for x ∈ [MR, R]. (3.14)

Mr > L. (3.15)




There exists σ, 0 ≤ σ < ∞, with
∫ ε

δ

τ(s)K(σ, s) ds = sup
t∈[0,∞)

∫ ε

δ

τ(s)K(t, s) ds





. (3.16)

Then equation (3.1) has two solutions y1, y2 ∈ C[0,∞) with y1, y2 ≥ 0 on [0,∞) and
with |y1|n ≤ L < |y2|n ≤ R for each n ∈ N large enough (here |u|n = supt∈[0,n] |u(t)| for
each n ∈ N).

Remark. In (3.7) one could replace f : [0,∞) × R → [0,∞) with f : [0,∞) ×
[0,∞) → [0,∞).

Proof of Theorem 3.1. Let n ∈ N and

Fny(t) =
∫ n

0

K(t, s)f(s, y(s)) ds for t ∈ [0, n]. (3.17)

To show the existence of solutions y1 and y2 we will apply Theorem 2.1 with E =
C[0,∞). Before we apply Theorem 2.1 let us look at σ ∈ [0,∞) defined in (3.16). We
will assume without loss of generality that σ ∈ [0, 1] (otherwise σ ∈ (m,m + 1] for some
m ∈ N and then we would apply Theorem 2.1 with Fn+m instead of Fn). Fix n ∈ N
and let En = C[0, n] and

Cn =
{

y ∈ C[0, n] : y(t) ≥ 0 for t ∈ [0, n] and min
t∈[δ,ε]

y(t) ≥ M |y|n
}

;
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here δ, ε, M are as in (3.9). Also, from (3.15) let γ, L < γ < r, be chosen so that

Mr ≥ γ. (3.18)

For ρ = L, ρ = r or ρ = R let

Un,ρ =
{
x ∈ C[0, n] : |u|n < ρ

}
.

We first show Fn : Cn → Cn. To see this let y ∈ Cn. Then (3.6) - (3.7) imply Fny(t) ≥ 0
for t ∈ [0, n]. Also, (3.8) implies

|Fny(t)| ≤
∫ n

0

g(s)f(s, y(s)) ds for t ∈ [0, n]

and so
|Fny|n ≤

∫ n

0

g(s)f(s, y(s)) ds. (3.19)

On the other hand, (3.9) and (3.19) imply

min
t∈[δ,ε]

Fny(t) = min
t∈[δ,ε]

∫ n

0

K(t, s)f(s, y(s)) ds

≥ M

∫ n

0

g(s)f(s, y(s)) ds

≥ M |Fny|n.

As a result, Fn : Cn → Cn. In addition, Fn : Un,R ∩ Cn → Cn is a continuous map
(see [4: p. 70]). Thus (2.2) holds. Next we show (2.3) is satisfied. To see this let
u ∈ ∂EnUn,L ∩ Cn. Then |u|n = L and u(t) ≥ 0 for t ∈ [0, n], and so u(t) ≤ L for
t ∈ [0, n]. Now (3.10) implies

|Fnu(t)| ≤
∫ n

0

K(t, s)w(u(s)) ds for t ∈ [0, n]. (3.20)

In addition, (3.12) implies

w(u(s)) ≤ w(L) <
L

supt∈[0,∞)

∫∞
0

K(t, s) ds

and this together with (3.20) yields

|Fnu(t)| ≤ L

supt∈[0,∞)

∫∞
0

K(t, s) ds

∫ n

0

K(t, s) ds ≤ L = |u|n

for t ∈ [0, n]. Consequently, |Fnu|n ≤ |u|n for u ∈ ∂EnUn,L ∩ Cn and so (2.3) holds.
Essentially the same argument shows (2.4) is satisfied. We next show (2.5) holds. To
see this let u ∈ ∂EnUn,R ∩ Cn. Then |u|n = R and mint∈[δ,ε] u(t) ≥ M |u|n ≥ MR (in
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particular, u(t) ∈ [MR, R] for t ∈ [δ, ε]). Now (3.13) - (3.14) imply (here σ is as in
(3.16) and also note we assumed at the beginning of the proof that σ ∈ [0, 1])

Fnu(σ) =
∫ n

0

K(σ, s)f(s, u(s)) ds

≥
∫ ε

δ

K(σ, s)f(s, u(s)) ds

≥
∫ ε

δ

K(σ, s)τ(s)w(u(s)) ds

≥ 1
M

∫ ε

δ
K(σ, s)τ(s)ds

∫ ε

δ

K(σ, s)τ(s)u(s) ds

≥ MR

M

= R

= |u|n.

Thus |Fnu|n ≥ |u|n for u ∈ ∂EnUn,R ∩ Cn and so (2.5) holds. The argument in [4: p.
70] immediately guarantees that (2.6) is satisfied. Thus we have shown for each n ∈ N
that (2.2) - (2.6) hold.

To show (2.7) fix k ∈ N and take any subsequence A ⊆ {k, k + 1, . . .}. Now if
x ∈ Cn (n ∈ A) is such that R ≥ |x|n ≥ r, then mint∈[δ,ε] x(t) ≥ M |x|n ≥ Mr, and this
together with (3.18) give mint∈[δ,ε] x(t) ≥ γ. Thus |x|k = supt∈[0,k] |x(t)| ≥ γ and so
(2.7) holds.

Next we show (2.8) is satisfied. Suppose there exists a v ∈ C[0,∞) and a sequence
{un}n∈N with un ∈ Un,L∩Cn and un(t) = Fnun(t) (t ∈ [0, n]) such that for every k ∈ N
there exists a subsequence S ⊆ {k + 1, k + 2, . . .} of N with un → v in C[0, k] as n →∞
in S. If we show

v(t) =
∫ ∞

0

K(t, s)f(s, v(s)) ds for t ∈ [0,∞), (3.21)

then (2.8) holds. Fix t ∈ [0,∞). Consider k ≥ t and n ∈ S (as described above). Then
un(t) = Fnun(t) for n ∈ S and so

un(t)−
∫ k

0

K(t, s)f(s, un(s)) ds =
∫ n

k

K(t, s)f(s, un(s)) ds.

From (3.5) there exists ML such that |f(s, un(s))| ≤ ML for all s ∈ [0, n] and so
∣∣∣∣∣un(t)−

∫ k

0

K(t, s)f(s, un(s)) ds

∣∣∣∣∣ ≤
∫ n

k

MLK(t, s) ds ≤ ML

∫ ∞

k

K(t, s) ds. (3.22)

Let n →∞ through S in (3.22), and use the Lebesgue Dominated Convergence Theorem
to obtain ∣∣∣∣∣v(t)−

∫ k

0

K(t, s)f(s, v(s)) ds

∣∣∣∣∣ ≤ ML

∫ ∞

k

K(t, s) ds
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since un → v in C[0, k]. Finally, let k →∞ (note (3.3)) to conclude

v(t)−
∫ ∞

0

K(t, s)f(s, v(s)) ds = 0.

Thus (3.21) holds and so (2.8) is satisfied. A similar argument shows (2.9) holds.
Theorem 2.1 now guarantees the result

Remark. It is easy to see that (3.14) could be replaced by

R

w(MR)
≤ sup

t∈[0,∞)

∫ ε

δ

τ(s)K(t, s) ds. (3.14)?

The only change in the proof of Theorem 3.1 occurs when we show (2.5). In this case
we have

Fnu(σ) ≥
∫ ε

δ

K(σ, s)τ(s)w(u(s)) ds ≥ w(MR)
∫ ε

δ

K(σ, s)τ(s) ds ≥ R = |u|n.

Example. Consider

y(t) =
∫ ∞

0

e−10(t+s)
(|y(s)|α + y2(s) + 1

)
ds (t ∈ [0,∞)) (3.23)

with 0 < α < 1. Then (3.23) has two solutions y1, y2 ∈ C[0,∞) with y1, y2 ≥ 0 on
[0,∞) and with 0 < |y1|n ≤ 1 < |y2|n for each n ∈ N.

This follows from Theorem 3.1. Let K(t, s) = e−10(t+s), f(s, y) = |y|α + y2 + 1,
w(y) = yα + y2 + 1, g(s) = e−10s and τ = 1. Notice (3.2) - (3.8) and (3.10) are clearly
satisfied. In addition (3.11) - (3.12) hold with L = 1 and r = 2 since

x

w(x) supt∈[0,∞)

∫∞
0

K(t, s) ds
=

10x

xα + x2 + 1
.

Let δ = 0 and ε = ln 2
20 . Notice (3.9) is true with M = e−10ε = 1√

2
and (3.15) is also

true since Mr = 2√
2

> L = 1. In addition, (3.13) is satisfied and (3.16) is true with
σ = 0. Next notice

x

w(x)
=

x

xα + x2 + 1
→ 0 as x →∞,

so it is easy to see that there exists R > r = 2 such that (3.14) holds. Theorem 3.1
implies that there exist solutions y1, y2 ∈ C[0,∞) of (3.23) with y1, y2 ≥ 0 on [0,∞)
and with 0 < |y1|n ≤ 1 < |y2|n for each n ∈ N.
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