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Abstract. A class of ergodicity coefficients for infinite stochastic matrices is introduced and in-
vestigated with respect to connections to the well-known δ-coefficient. The theory yields results
on the behaviour of infinite products of stochastic matrices, in particular on inhomogeneous
Markov chains and Markov systems.
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1. Introduction

Let P = (pij)i,j∈N be a stochastic matrix, S the set of all stochastic matrices P and l1
the usual vector space of real sequences x = (xi)i∈N for which ‖x‖1 =

∑∞
i=1 |xi| < ∞.

The set

H =
{

x ∈ l1 :
∞∑

i=1

xi = 0
}

is a closed subspace of (l1, ‖ ‖1). We denote the unit sphere of (H, ‖ ‖1) by S(1). Every
P ∈ S defines a linear operator T : l1 → l1 by Tx = xP (x ∈ l1) with

‖T‖1 = sup
{
‖xP‖1 : x ∈ l1 with ‖x‖1 = 1

}
= 1

and H is an invariant subspace of T . An important tool for the investigation of inho-
mogeneous Markov chains is the so-called δ-coefficient defined by

δ(P ) =
1
2

sup
i,j

∞∑

l=1

|pil − pjl|.

It is well known that

δ(P ) = sup
{‖xP‖1 : x ∈ H with ‖x‖1 = 1

}
= sup

{‖xP‖1 : x ∈ S(1)
}
.

The stochastic matrix P ∈ S is said to be
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scrambling if δ(P ) < 1
stable if τ(P ) = 0.

Let σ(P ) denote the spectrum of the operator T corresponding to P . In the cases
of finite spaces one uses other norms, and there is a lot of papers about ergodicity
coefficients with respect to arbitrary norms on Rn (see [5, 7 - 13, 16 - 19]).

Our purpose is to construct a theory of ergodicity coefficients for denumerable state
spaces, this means for infinite stochastic matrices P ∈ S and the set A of all norms on
l1 which are equivalent to ‖ ‖1.

Definition 1. For any norm ‖ ‖ ∈ A we call τ‖ ‖(P ) = sup{‖xP‖ : x ∈ H with ‖x‖
= 1} the ergodicity coefficient for P ∈ S with respect to the norm ‖ ‖. Moreover, we
put C‖ ‖ = sup{τ‖ ‖(P ) : P ∈ S}.

The ergodicity coefficient τ‖ ‖(P ) is the operator norm of the restricted operator
T |H and fulfils the following conditions:

(a) τ‖ ‖(PQ) ≤ τ‖ ‖(P ) τ‖ ‖(Q) for P, Q ∈ S.
(b) τ‖ ‖(P ) = 0 if and only if P is stable (see Theorem 1).
(c) |λ| ≤ τ‖ ‖(P ) for λ ∈ σ(P ) \ {1}.

One aim of the paper is to compare different ergodicity coefficients, in particular arbi-
trary ergodicity coefficients and the coefficient δ. Answers to these problems are derived
using the set ExtrB(1) of all extreme points of the ball B(1) = {x ∈ H : ‖x‖1 ≤ 1},
a theorem of H. Schneider and W. G. Strang [15] on the quotient of norms of a linear
operator and properties of C‖ ‖ = sup{τ‖ ‖(P ) : P ∈ S}. Moreover, for a special class
of norms ‖ ‖ ∈ A the set Extr {x ∈ H : ‖x‖ ≤ 1} and explicit functional forms of τ‖ ‖
will be determined.

The theory yields new results on the weak ergodicity of inhomogeneous Markov
chains, the behaviour of general infinite products built by sequences of stochastic ma-
trices as well as Markov systems.

2. Ergodicity coefficients and bounds for spectral values

In the sequel σ(P ) means the spectrum σ(TC) of the complexification TC if T : l1 → l1
where Tx = xP (x ∈ l1). We denote

l1,C =
{
x + iy : x, y ∈ l1

}

and put
‖x + iy‖C = sup

0≤Θ≤2π
‖x cosΘ + y sinΘ‖

for x + iy ∈ l1,C. The set
HC =

{
x + iy : x, y ∈ H}

is a closed subspace of (l1,C, ‖ ‖C). It is well known that for the complexification TC of
T where TC(x + iy) = Tx + iTy (x, y ∈ l1) the relations

‖TC‖ = sup
{
‖TCz‖C : z ∈ l1,C with ‖z‖C = 1

}
= ‖T‖ = 1
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‖TC|HC‖ = sup
{
‖TCz‖C : z ∈ HC with ‖z‖C = 1

}
= ‖T |H‖ = τ‖ ‖(P )

hold.

Lemma 1. Let σp(TC) be the point spectrum of TC. Then:
(1a) σp(TC) \ {1} ⊂ σp(TC|HC).
(1b) σ(TC) \ (σp(TC) ∪ {1}) ⊂ σ(TC|HC) \ σp(TC|HC).
(2) σ(TC|HC) ∪ {1} = σ(TC).

Proof.

(1a) If α ∈ σp(TC) \ {1}, then there is a z ∈ l1,C with z 6= 0 and αz = TCz, that
means αz = zP . Therefore αz1T = zP1T =

∑
zj and (1 − α)

∑
zl = 0 follow. Thus

z ∈ HC.
(1b) In the case α ∈ σ(TC) but α /∈ σp(TC) and α 6= 1 we have (TC−αIC)l1,C 6= l1,Ci .

Let α /∈ σ(TC|HC) \ σp(TC|HC). Then (TC − αIC)HC = HC follows, and

(1, 0, 0, . . .)(P − αI) = (p11 − α, p12, . . .) /∈ HC

would yield the contradiction (TC − αTC)l1,C = l1,C

(2) Because of (1a), (1b) we have σ(TC) ⊂ σ(TC/HC) ∪ {1}.
Let be z ∈ l1,C. Then

(TC − IC)z = zP − z =
( ∑

l

zlplj − zj

)

j∈N

and, because of
∑

j(
∑

l zlplj−zj) = 0, (TC−IC)z ∈ HC, that means (TC−IC)l1,C 6= l1,C
and 1 ∈ σ(TC).

Let us assume 1 6= α ∈ σ(TC|HC) but α /∈ σ(TC). As α can not be an eigenvalue of
TC|HC it follows (TC − αIC)HC 6= HC. Since (TC − αIC)l1,C = l1,C, there are z1 ∈ HC
and z2 ∈ l1,C with z2 /∈ HC and (TC − αIC)z2 = z1. Therefore

∑

j

( ∑

l

z
(2)
l plj − αz

(2)
j

)
=

∑

j

z
(1)
j = 0

and (1− α)
∑

j z
(2)
j = 0 follows, contradicting α 6= 1

Relation (2) of Lemma 1 and the formula for the spectral radius applied to TC/HC
yield the following spectral estimation.

Theorem 1. Let be ‖ ‖ ∈ A and P ∈ S. Then the estimation

|λ| ≤ [τ‖ ‖(Pn)]
1
n (λ ∈ σ(P ) \ {1})

holds for n ∈ N.
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3. Extreme points and explicit functional forms of ergodicity
coefficients

In this section we use l1-vectors

ei = (δij)j∈N and eij =
1
2
(ei − ej) (i, j ∈ N).

Let a = (aj)j∈N be a real bounded sequence with 0 < infj∈N aj . Further, let be

f
(a)
ij =

2
ai + aj

eij (i, j ∈ N) and ‖x‖a =
∞∑

i=1

ai|xi| (x ∈ l1).

Moreover, we need the ball and sphere

B(a) = {x ∈ H : ‖x‖a ≤ 1}
S(a) = {x ∈ H : ‖x‖a = 1},

respectively.

Lemma 2. ExtrB(a) =
{
f

(a)
ij : i, j ∈ N with i 6= j

}
.

Proof. 1. Let f
(a)
ij = 1

2x + 1
2y for some x, y ∈ B(a). Clearly, ‖f (a)

ij ‖a = ‖x‖a =

‖y‖a = 1. Because of ‖f (a)
ij ‖a = 1 and

1
ai + aj

=
1
2
(xi + yi) = −1

2
(xj + yj) (1)

it follows 1
2 (xk + yk) = 0 and therefore xk = −yk for k 6= i, j. Defining

x̃ = x− xiei − xjej

ỹ = x− yiei − yiej

}

we have
‖x̃‖a =

∑

k 6=i,j

ak|xk| = ‖ỹ‖a < 1.

Then

1 = ‖f (a)
ij ‖a =

1
2
ai|xi + yi|+ 1

2
aj |xj + yj | ≤ 1

2
(1− ‖x̃‖a) +

1
2
(1− ‖ỹ‖a)

implies ‖x̃‖a = ‖ỹ‖a = 0. Therefore xk = yk = 0 (k 6= i, j), xj = −xi and yj = −yi

so that |xi| = |xj | = 1
ai+aj

and |yi| = |yj | = 1
ai+aj

follow. Thus, with (1) we obtain

x = y = f
(a)
ij , that means f

(a)
ij is an extreme point of B(a).

2. If we suppose x ∈ S(a) and x 6= f
(a)
ij for all i, j ∈ N with i 6= j, then there are

i, j, k ∈ N with xi, xj , xk 6= 0. We may assume i = 1, j = 2, k = 3 and x1,2 > 0. There
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is a δ1 6= 0 such that x1 ± δ1 > 0, x2 ± δ2 > 0 and x2 ± δ3 < 0 hold for δ2 = −a1+a3
a2+a3

δ1

and δ3 = a1−a2
a2+a3

δ1. Let be

y = x− (δ1, δ2, δ3, 0, . . .)

z = x + (δ1, δ2, δ3, 0, . . .)

}
.

Then

‖y‖a = a1x1 + a2x2 − a3x3 + · · · − (a1δ1 + a2δ2 − a3δ3) = ‖x‖a = 1

‖z‖a = a1x1 + a2x2 − a3x3 + · · ·+ (a1δ1 + a2δ2 − a3δ3) = ‖x‖a = 1

since a1δ1 + a2δ2 − a3δ3 = 0. Because of δ1 + δ2 + δ3 = 0 it follows y, z ∈ H. Thus
x = 1

2y + 1
2z with y, z ∈ S(a), that means x is no extreme point of B(a)

Lemma 3. Let x ∈ H. Then:
(a) The series

∑
i,j x+

i x−j eij is absolutely convergent in l1.

(b) ‖x‖1x = 4
∑

i,j x+
i x−j eij.

(c) x = (
∑

ix
+
i )−2 ·∑i,j x+

i x−j eij for x ∈ S(1).

Proof. (a) Clearly,
∑

x+
i =

∑
x−j = 1

2‖x‖1 and so

∑

i,j

‖x+
i x−j eij‖1 =

∑

ij

x+
i x−j =

∑

i

x+
i

∑

j

x−j =
1
4
‖x‖21.

(b) We put x = (x1, x2, . . .) and y = 4
∑

i,j x+
i x−j eij . Statement (a) yields y ∈ H.

Then

yk = 4
( ∑

i

x+
i x−k eik +

∑

j

x+
k x−j ekj

)

k

.

For every k with xk ≥ 0 we obtain

yk = 4
( ∑

j

x+
k x−j ekj

)

k

= 4 · 1
2
x+

k

∑

j

x−j = xk‖x‖1,

and if xk < 0, then

yk = 4
( ∑

i

x+
i x−k eik

)

k

= 4 ·
(
− 1

2

)
x−k

∑
x+

i = −x−k ‖x‖1 = xk‖x‖1.

(c) Statement (c) immediately follows from (b)

Theorem 2. Let x ∈ H. Then:
(a1) (

∑
i x+

i )x =
∑

i,j x+
i x−j (ai + aj)f

(a)
ij .

(a2) (
∑

i x+
i )‖x‖a =

∑
i,j x+

i x−j (ai + aj).

(b) B(a) = conv{f (a)
ij : i, j ∈ N with i 6= j}.
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Proof. (a) Since Lemma 3/(b) directly yields (a1) it is only to show (a2):

∑

i,j

x+
i xj(ai + aj) =

∑

i

x+
i

(
ai

∑

j

x−j +
∑

j

ajx
−
j

)

=
∑

j

x−j ·
∑

i

aix
+
i +

∑

i

x+
i

∑

j

ajx
−
j

=
∑

j

x+
j ‖x‖a.

(b) As f
(a)
ij ∈ B(a) we have only to show that

S(a) ⊂ conv
{
f

(a)
ij : i, j ∈ N with i 6= j

}
.

Because of (a1) we have

x =
1∑∞

k=1 x+
k

∞∑

i,j=1

x+
i x−j (ai + aj)f

(a)
ij

for x ∈ S(a). Defining

b(n) =
n∑

k,l=1

x+
k x−l (ak + al)

y(n) =
n∑

i,j=1

x+
i x−j (ai + aj)f

(a)
ij

x(n) =
1

b(n)
y(n)

for large n (b(n) 6= 0) then x(n) are convex combinations of elements f
(a)
ij and belong

to the ball B(a) of H. Relations (a2) and (a1) imply limn→∞ b(n) =
∑∞

i=1 x+
i and

y(n) → (
∑∞

i=1 x+
i )x in l1 such that x(n) → x follows. Thus, we have S(a) ⊂ conv{f (a)

ij :
i, j ∈ N with i 6= j}

Theorem 3. Let P ∈ S. Then

τ‖ ‖a
(P ) = sup

i,j
‖f (a)

ij P‖a = sup
i,j

1
ai + aj

∑

k

ak|pik − pjk|.

Proof. This theorem holds since the functional x 7→ ‖xP‖a is convex, B(a) =
conv{f (a)

ij : i, j ∈ N with i 6= j} and f
(a)
ij = 1

ai+aj
(ei − ej)

In investigations of Markov chains it is important to know whether for a stochastic
matrix P there exists an ergodicity coefficient τ with τ(P ) < 1.
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Example 1. We consider the stochastic matrix

P =




1
2

1
2 0 0 · · ·

0 0 1
2

1
2 0 · · ·

1
4 0 0 1

4
1
2 0 · · ·

1
4 0 0 1

4 0 1
2 · · ·

1
4 0 0 1

4 0 0 1
2 · · ·

1
4 0 0 1

4 0 0 0 1
2 · · ·

1
4 0 0 1

4 0 0 0 0 1
2 · · ·




.

It is easy to see that δ(P ) = 1. On the other hand we obtain τ‖ ‖a
(P ) = 35

36 < 1 for the
sequence a = (aj) with a1 = 2, a2 = 6 and aj = 7 for j = 3, 4, 5 . . .

Example 2. Let K be a set of infinite stochastic matrices Q = (qij) only consisting
of elements zero and one with the following properties:

(1) q11 = 1.
(2) qij = 0 for alle (i, j) ∈ N × N, with i 6= 1 and j ≥ i.
(3) There exists a natural number nQ ≥ 2 with qij = 0 for i ∈ N and j ≥ nQ.

It is easy to see that for every strictly increasing sequence a = (aj) we have τ‖ ‖(Q) < 1
for all Q ∈ K. On the other hand, there is a lot of P ∈ K with δ(P ) = 1, which demon-
strates the practical significance of other ergodicity coefficients than the δ-coefficient.

4. Sup{τ‖ ‖(P ) : P ∈ S} and the comparison of ergodicity
coefficients

We start with some properties of linear operators acting on H and their operator norms.

Lemma 4. Let (H, ‖ ‖) be a Banach space. Then the following assertions are
equivalent:

(a) supP∈S sup
{‖xP‖ : x ∈ H with ‖x‖ = 1

}
< ∞.

(b) The norm ‖ ‖ is equivalent to ‖ ‖1 on H.

Proof. We have only to prove that (a) implies (b). Let x = (xi)∞1 be a point of
H \ {0}. Then there are i, j ∈ N with xi > 0 and xj < 0. The stochastic matrix
P (x) = (px

ij) defined by px
i1 = 1 for xi ≥ 0 and px

i2 = 1 for xi < 0 fulfils

xP (x) =
( ∑

x+
i ,−

∑
x−i , 0, 0, 0, . . .

)
.

Because of ‖x‖1 = 2
∑

x+
i = 2

∑
x−i one has

‖xP (x)‖ =
1
2
‖x‖1 · ‖(1,−1, 0, 0, 0, . . .)‖ =

1
2
‖x‖1α

with α > 0 such that
α

2
‖x‖1 = ‖xP (x)‖ ≤ sup

P∈S
τ‖ ‖(P )‖x‖

holds for all x ∈ H. Assumption (a) and the completeness of (H, ‖ ‖) and (H, ‖ ‖1)
yield assertion (b)
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Lemma 5. Let L(H) be the space of bounded linear operators acting on H. Let be
A ∈ L(H). If A is an operator of rank 1, then there are a stochastic matrix P ∈ S and
k > 0 such that (Ax) = k(xP ) for all x ∈ H.

Proof. Let A ∈ L(H). For every x ∈ l1 we put

αx =
∑

x+
i −

∑
x−i and hx = x− αx(1, 0, 0, . . .).

Then x = hx + αx(1, 0, 0, . . .) with hx ∈ H. The operator Ã defined by

Ãx = Ahx + αx(1, 0, . . .) (x ∈ l1)

is a linear mapping from l1 into l1. Therefore there exists (aij)i,j∈N with supi

∑∞
j=1 |aij |

< ∞ such that Ãx = x(aij)i,j∈N for x ∈ l1. In particular, Ah = h(aij) for h ∈ H,
and because of el − em ∈ H (l, m ∈ N) and A(H) ⊂ H the sums of the rows of (aij)
are constant. Moreover, two matrices (a(1)

ij ) and (a(2)
ij ) represent the same operator A

if and only if (a(1)
ij − a

(2)
ij ) is a stable matrix. Now let (aij) be a matrix representing

an operator A of rank 1. We may assume that there are real sequences (di)i∈N, (λj)j∈N
with

∑∞
i=1 di = 0, (di)i∈N 6= (0), (λj)j∈N 6= (0) such that

(aij) =




0 0 0 · · ·
λ1d1 λ1d2 λ1d3 · · ·
λ2d1 λ2d2 λ2d3 · · ·
λ3d1 λ3d2 λ3d3 · · ·

...
...

...
. . .




.

Because of supj∈N |λj | ·
∑∞

i=1 |di| < ∞ the sequences (di), (λj) are bounded. We put

ci =
{− infj λj · di if λjdi < 0 for some j ∈ N

0 if λjdi ≥ 0 for all j ∈ N
and have ∞∑

i=1

|ci| ≤ sup
j∈N

|λj | ·
∞∑

i=1

|di| < ∞.

The matrix (aij +ci)i,j∈N represents the operator A, P = 1
k (aij +ci), where k =

∑∞
i=1 ci,

is a stochastic matrix and Ax = k(xP ) for x ∈ H

Theorem 4 (compare [15]). Let v1 and v2 be two equivalent norms on a vector
space E and let ||| · |||1 and ||| · |||2 denote the corresponding operator norms on L(E),
respectively. Moreover, let T be a subset of L(E) which contains all bounded linear
operators of rank 1. If one puts

R21 = sup
0 6=x∈E

v2(x)
v1(x)

and R12 = sup
0 6=x∈E

v1(x)
v2(x)

,

then one has

sup
0 6=A∈T

|||A|||2
|||A|||1 = sup

0 6=A∈T

|||A|||1
|||A|||2 = R21R12.

If we put E = H and v1 = ‖ ‖1, v2 = ‖ ‖ ∈ A, then Theorem 4 and Lemma 5
immediately yield the following lemma.
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Lemma 6. Let ‖ ‖ ∈ A. Then

sup
P∈S

δ(P )
τ‖ ‖

= sup
P∈S

τ‖ ‖(P )
δ(P )

= sup
0 6=x∈H

‖x‖
‖x‖1 sup

0 6=x∈H

‖x‖1
‖x‖ .

Lemma 7. Let ‖ ‖ be a norm on H, ‖ ‖ ∼ ‖ ‖1, and S(1) = {x ∈ H : ‖x‖1 = 1}.
Then

C‖ ‖ = sup
{
τ‖ ‖(P ) : P ∈ S

} ≥ sup{‖x‖ : x ∈ S(1)}
inf{‖x‖ : x ∈ S(1)} .

Proof. We consider ExtrS of the convex set S as subset of the linear space RN×N.
Q ∈ S is an extreme point of S if and only if Q has the number 1 as an element in
each of its rows. Therefore Q = (qij) ∈ S belongs to ExtrS if and only if there is a
denumerable system of sets {∧n}n∈N such that:

(i) N = {1, 2, . . .} = ∪n∈N∧n.
(ii) ∧i ∩ ∧j = ∅ for i, j ∈ N with i 6= j.
(iii) qij = 1 if and only if i ∈ ∧j for i, j ∈ N.

It follows

xQ =
( ∑

i∈∧1

xi,
∑

i∈∧2

xi, . . .

)
(x ∈ l1)

and we obtain
C‖ ‖ ≥ sup

Q∈ExtrS
sup

x∈H,‖x‖=1

‖xQ‖

≥ sup
x∈H,‖x‖=1

sup
(∧1,∧2,...)∈∧

∥∥∥∥
( ∑

i∈∧1

xi,
∑

i∈∧2

xi, . . .

)∥∥∥∥

where ∧ denotes the set of all decompositions (∧1,∧2, . . .) satisfying (i) and (ii). For
every ε > 0 there exists an xε ∈ H, ‖xε‖ = 1 with ‖xε‖1 ≥ supx∈H,‖x‖=1 ‖x‖1− ε. Since
zε = xε

‖xε‖1 ∈ S(1), we have
∑

(zε)+ =
∑

(zε)−i =
1
2
. (2)

It follows

C‖ ‖ ≥ ‖xε‖1
∥∥∥∥
( ∑

i∈∧1

(zε)i,
∑

i∈∧2

(zε)i, . . .

)∥∥∥∥

for all decompositions (∧1,∧2, . . .) ∈ ∧.
Because of (2) we obtain C‖ ‖ ≥ ‖xε‖1‖eij‖ and with ε → 0

C‖ ‖ ≥ sup
x∈H,‖x‖=1

‖x‖1 sup
i,j∈N

‖eij‖.

Since B(1) = {x ∈ H : ‖x‖1 ≤ 1} = convExtrS(1) (see Theorem 2) and ‖ ‖ is a
continuous convex functional on B(1), it follows

C‖ ‖ ≥ sup
x∈H,‖x‖=1

‖x‖1 sup
x∈S(1)

‖x‖.

The observation
sup

x∈H,‖x‖=1

‖x‖1 =
(
inf{‖x‖ : x ∈ S(1)})−1

completes the proof
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Theorem 5. Let ‖ ‖ be a norm on H, ‖ ‖ ∼ ‖ ‖1 and S(1) = {x ∈ H : ‖x‖1 = 1}.
Then:

(a) C‖ ‖ = sup
{
τ‖ ‖(P ) : P ∈ S

}
=

sup{‖x‖ : x ∈ S(1)}
inf{‖x‖ : x ∈ S(1)} .

(b) inf
{

τ‖ ‖(P )

δ(P ) : P ∈ S with δ(P ) 6= 0
}

= C−1
‖ ‖

sup
{

τ‖ ‖(P )

δ(P ) : P ∈ S with δ(P ) 6= 0
}

= C‖ ‖.

Proof. Putting
r = inf{‖x‖ : x ∈ S(1)}
R = sup{‖x‖ : x ∈ S(1)}

Lemma 6 yields

sup
P∈S

δ(P )
τ‖ ‖(P )

= sup
P∈S

τ‖ ‖(P )
δ(P )

= R
1
r

which together with δ(P ) ≤ 1 implies the inequality C‖ ‖ ≤ R 1
r . The converse inequality

C‖ ‖ ≥ R 1
r follows from Lemma 7

Corollary 1. For all norms ‖ ‖ ∈ A one has:

(1) If Q ∈ S is scrambling, then τ‖ ‖(Q) < C‖ ‖.

(2) Any Q ∈ S with τ‖ ‖(Q) < 1
C‖ ‖

is scrambling.

Proof. This corollary follows directly from Theorem 5/(b)

Corollary 2. If ‖ ‖ is a norm of A, then the following statements are equivalent:

(a) C‖ ‖ = 1.

(b) τ‖ ‖ = δ.

(c) There is a K > 0 with ‖x‖ = K‖x‖1 (x ∈ H).

Remark 1. Let τ‖ ‖ and τ‖ ‖∗ be two different ergodicity coefficients corresponding
to the norms ‖ ‖ and ‖ ‖∗ ∈ A, respectively. Then there are P, Q ∈ S with τ‖ ‖(P ) <
τ‖ ‖∗(P ) and τ‖ ‖(Q) > τ‖ ‖∗(Q).

Indeed, we may assume there is a P ∈ S with τ‖ ‖(P ) < τ‖ ‖∗(P ). Applying Theorem
5 we obtain

sup
{

τ‖ ‖(P )/τ‖ ‖∗(P ) : P ∈ S non-stable
}

> 1

which means there exists a Q ∈ S with τ‖ ‖(Q) > τ‖ ‖∗(Q).
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5. Applications

5.1 Inhomogeneous Markov chains. Let (Xn) denote an inhomogeneous Markov
chain with denumerable infinite state space and 1-step transition matrices Pn ∈ S (n ∈
N). Further, let

mP k = Pm+1Pm+2 · · ·Pm+k = (mpk
ij)i,j∈N (m, k ∈ N)

be the k-step transition matrix. The Markov chain (Xn) is said to be
weakly ergodic if δ(mP k) = 1

2 supi,j

∑
l |mpk

il −m pk
jl| → 0

strongly ergodic if there is a stable matrix Q ∈ S with ‖mP k −Q‖1 → 0
for k →∞ and every m ∈ N.

Theorem 6. Let ‖ ‖ be equivalent to ‖ ‖1. A Markov chain (Xn) is weakly ergodic
if and only if there exists a subdivision of the chain (jkP jk+1−jk) such that

τ‖ ‖(jkP jk+1−jk) ≤ 1 (k ∈ N) and
∞∑

k=1

(
1− τ‖ ‖(jkP jk+1−jk)

)
= ∞.

Proof. Let δ(mP k) → 0 for k →∞ and every m ∈ N. As τ‖ ‖(mP k) ≤ C‖ ‖δ(mP k)
there is a strongly increasing sequence (jk) with

1− τ‖ ‖(jkP jk+1−jk) >
1
2

(k ∈ N)

such that
∑ (

1− τ‖ ‖(jkP jk+1−jk)
)

= ∞ and τ‖ ‖(jkP jk+1−jk) ≤ 1 (k ∈ N).

Inversely, if these conditions are satisfied, then

lim
n→∞

n∏

k=k0

τ‖ ‖(jkP jk+1−jk) = 0 (k0 ∈ N). (3)

For each n ∈ N we choose a kn with jkn ≥ n > jkn − 1. Then

τ‖ ‖(mP l) = τ‖ ‖(Pm+1Pm+2 . . . Pm+l) ≤ C‖ ‖ · τ‖ ‖(Pjkm+1
Pjkm+1 . . . Pm+l).

Because of (3) for each ε > 0 there is a km,ε ∈ N such that

km,ε∏

k=km+1

τ‖ ‖(jk−1P jk+1−jk−1)C2
‖ ‖ < ε.

Therefore we obtain for m + l ≥ jkm,ε

τ‖ ‖(mP l) ≤ C2
‖ ‖

km,ε∏

k=km+1

τ‖ ‖
(
jk−1P jk+1−jk−1

)
< ε

and (Xn) is weakly ergodic
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Corollary 3 (compare [10: Theorem 2.1). A Markoc chain (Xn) is weakly ergodic
if and only if there is a subdivision (jkP jk+1−jk) such that

∑(
1− δ(jkP jk+1−jk)

)
= ∞.

Example 3. Let (Xn) be an inhomogeneous Markov chain with 1-step transition
matrices Pn taken from a finite subset of the set K (see Example 2). Using Theorem 6
with the trivial subdivision (Pn) one obtains directly the weak ergodicity of the chain
(Xn).

Theorem 7. A Markov chain (Xn) is weakly ergodic if and only if there exists a
subdivision (jkP jk+1−jk) such that

∑

k

(
1− C‖ ‖τ‖ ‖(jkP jk+1−jk)

)
= ∞.

Proof. Let δ(mP k) → 0 for k → ∞ and every m ∈ N. As 1 − C‖ ‖τ‖ ‖(mPk) → 1
for k →∞ there exists a strongly increasing sequence (jk) with

1− C‖ ‖τ‖ ‖(jkP jk+1−jk) >
1
2

such that ∑

k

(
1− C‖ ‖τ‖ ‖(jkP jk+1−jk)

)
= ∞.

Conversely, because of Theorem 5 one has

∞ =
∑

k

(
1− C‖ ‖τ‖ ‖(jkP jk+1−jk)

)
<

∑

k

(
1− δ(jkP jk+1−jk)

)

and therefore (Xn) is weakly ergodic

5.2 General products for sequences of stochastic matrices. Let (Qk)∞k=1 be
a sequence of stochastic matrices Qk ∈ S. For each permutation π of N we define
inductively sequences (Hm) of products Hm by

either Hm+1 = HmQ̃m+1

or Hm+1 = Q̃m+1Hm

(m ∈ N)

with H1 = Q̃1 where Q̃k = Qπ(k)(k∈N). Such products are, e.g., the forward and
backward products

Pm = Q̃1Q̃2 · · · Q̃m−1Q̃m

Mm = Q̃mQ̃m−1 · · · Q̃2Q̃1,

respectively.

Definition 2. An infinite product (Hm) is said to be weakly ergodic [stongly ergodic]
if δ(Hm) → 0 for m → ∞ [if there exists a stable matrix Q ∈ S with ‖Hm −Q‖1 → 0
for m → ∞]. We say the weak [strong] ergodicity obtains for the infinite products
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of (Qk)∞k=1 if all products (Hm) constructed in the above described way are weakly
[strongly] ergodic.

Theorem 8. Let Q̂ = {P ∈ S : P = Qk for some Qk} be relatively compact in
(S, ‖ ‖1) and W be the set of all accumulation points of (Qk). If there are a natural
number l ≥ 1 and K < 1 such that

δ(P1P2 · · ·Pl) ≤ K

for all l-tuples (P1, P2, . . . , Pl) ∈ W l, then weak ergodicity obtains for all infinite prod-
ucts of (Qk)∞k=0.

Proof. We consider the function f on Sl defined by

f(P1, P2, . . . , Pl) = δ(P1P2 · · ·Pl)

for (P1, P2, . . . , Pl) ∈ Sl. Because of

∣∣δ(P1P2 · · ·Pl)− δ(P̃1P̃2 · · · P̃l)
∣∣ ≤ ∥∥P1P2 · · ·Pl − P̃1P̃2 · · · P̃l

∥∥
1
,

using the compactness of the topological product (Q̂ ∪W )l it follows that f |(Q̂ ∪W )l

is equicontinuous.

Let ε > 0 and K+ε < 1. As f |(Q̂∪w)l is equicontinuous there is a λ > 0 such that for
all (P1, P2, . . . , Pl) ∈ W l and (R1, R2, . . . , Rl) ∈ (W∪Q)l with maxi=1,...,l ‖Pi−Ri‖1 < λ
the inequality δ(R1R2 · · ·Rl) < K + ε holds.

Put
Uλ(T ) =

{
P ∈ S : ‖P − T‖1 < λ

}
(T ∈ S).

Since W is a compact set of (S, ‖ ‖1), there exists a finite set {T1, T2, . . . , Tk} ⊂ W with
W ⊂ ∪k

i=1Uλ(Ti). Now, let us consider a sequence (Qπ(k)). We may assume (Qπ(k)) =
(Qk). There exists a k0 with Qk ∈ ∪k

i=1Uλ(Ti) for k > k0 because otherwise a convergent
subsequence (Qkj ) of (Qk), limj→∞Qkj = Q∗ would exist such that Qkj /∈ ∪k

i=1Uλ(Ti)
for all j and therefore Q∗ /∈ W .

Finally, let (Hm) be an arbitrary sequence of products constructed from (Qk)∞k=1.
There exists an m0 such that the matrices Q1, Q2, . . . Qk0 are factors of the products
Hm0 . Then

δ(Hm0+rl+s) ≤ δ(Hm0) · (K + ε)r−1

for all r ≥ 2 and s = 0, 1, 2, . . . , l which implies limm→∞ δ(Hm) = 0

Corollary 4 (compare [7, 12]). Let ‖ ‖ ∈ A. If τ‖ ‖(Q) < 1 for all Q ∈ W , then
the weak ergodicity obtains for all infinite products of (Qk)∞k=0.

Proof. If τ‖ ‖(P ) < 1 for all P ∈ W , then τ‖ ‖(P ) ≤ β < 1 for all P ∈ W with some
β. Theorem 5 yields δ(P1P2 · · ·Pk) ≤ C‖ ‖βk for every k-tuple (P1, P2, . . . , Pk) ∈ W k,
and δ(P1P2 · · ·Pl) ≤ C‖ ‖βl < 1 in the case l > − log C‖ ‖

log β
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Remark 2. If there exists at least one accumulation point P of (Qk) with δ(P ) < 1,
then weak ergodicity obtains for the infinite products of (Qk).

Indeed, let δ(P ) < β < 1 and P = limj→∞Qkj
for the subsequence (Qkj

) of (Qk).
Then there exists a j0 with δ(Qkj ) < β for all j > j0. For any product sequences (Hm)
built by (Qk) there is an m0 such that the matrices Qkj0+1, . . . , Qkj0+r are factors of the
product Hm0 . Therefore δ(Hm) < βr for all m ≥ m0 which implies limm→∞ δ(Hm) = 0.

5.3 Markov systems. A Markov system over the finite alphabet
∑

is a pair (N, {P (σ) :
σ ∈ ∑}) where N is the set of states 1, 2, 3, . . . and P (σ) ∈ S represents the transition
probabilities between the states. Let

∑∗ be the set of all words x = σ1σ2 · · ·σk over∑
and P (x) = P (σ1)P (σ2) · · ·P (σk) the transition matrix associated with the word

x, l(x) = k denotes the length of the word x.
The Markov system is called weakly ergodic if there is an integer k such that the

P (x) are scrambling for all words x with l(x) = k (see [10]). Obviously, {N, {P (σ) : σ ∈∑}} is weakly ergodic if and only if for every ‖ ‖ ∈ A there exists an integer k with
τ‖ ‖(P (x)) < 1 for all words x ∈ ∑∗ of length l(x) = k.

The weak ergodicity of Markov systems is important in context with perturbations
of Markov systems. If (N, {P (σ) : σ ∈ ∑}) is weakly ergodic and (N, {P̃ (σ) : σ ∈ ∑})
is an other Markov system over the same alphabet

∑
, then for every ε > 0 there is a

δ > 0 such that

sup
σ∈

∑ ‖P (σ)− P̃ (σ)‖1 < δ =⇒ sup
x∈

∑∗
‖P (x)− P̃ (x)‖1 < ε.

Theorem 9. Let (N, {P (σ) : σ ∈ ∑}) be a Markov system over the finite alphabet∑
. Then the following assertions are equivalent:
(1) (N, {P (σ)} : σ ∈ ∑

) is weakly ergodic.
(2) The backward products built by matrices from {P (σ)}σ∈Σ are strongly ergodic.
(3) The products built by matrices from {P (σ)}σ∈Σ are weakly ergodic.

Proof. (1) =⇒ (3): Let (Qk) be a sequence in {P (σ) : σ ∈ ∑}. All accumulation
points of (Qk) belong to {P (σ) : σ ∈ ∑} such that (1) and Theorem 7 yield the weak
ergodicity for all infinite products of Qk.

(3) =⇒ (2) is true, since strong and weak ergodicity are equivalent for backward
products of stochastic matrices.

(2) =⇒ (1): Let (2) be true and (1) false. For each l ∈ N there are P
(l)
1 , P

(l)
2 , . . . , P

(l)
l

∈ {P (σ)} with δ(P (l)
l · · ·P (l)

1 ) = 1. We show that there exists an infinite backward
product built by matrices of {P (σ)} which is not strongly ergodic. To prove this we
construct a directed graph, whose vertices are certain finite products of the P (σ). The
root is the empty set, and there is a directed edge from ∅ to P (σ) if δ(Pσ) = 1. There
is a directed edge from PlPl−1 . . . P1 to QPl . . . P1 if and only if δ(QPl · · ·P1) = 1,
such Q ∈ {P (σ)} exists because of our assumption and as δ(QPl · · ·P1) = 1 implies
δ(Pl · · ·P1) = 1. Thus, we obtain an infinite tree, which therefore has an infinite path.
This mean, there exists a not weakly ergodic backward product, which contradicts (2)
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