Zeitschrift fir Analysis und ihre Anwendungen
Journal for Analysis and its Applications
Volume 19 (2000), No. 3, 873-887

On Ergodicity Coeflicients of Infinite Stochastic
Matrices

A. Rhodius

To Prof. T. Riedrich with appreciation on the occasion of his 65. birthday

Abstract. A class of ergodicity coefficients for infinite stochastic matrices is introduced and in-
vestigated with respect to connections to the well-known §-coefficient. The theory yields results
on the behaviour of infinite products of stochastic matrices, in particular on inhomogeneous
Markov chains and Markov systems.
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1. Introduction

Let P = (pij)i,jen be a stochastic matrix, S the set of all stochastic matrices P and Iy
the usual vector space of real sequences x = (;);en for which |z||; = Y77, |z;] < .

The set -
H:{xellz Z{EZ:O}
i=1

is a closed subspace of (I1, | |l1). We denote the unit sphere of (H, || ||1) by SM). Every
P € S defines a linear operator T : Iy — I3 by Tx = 2P (z € l;) with

1Tl = sup { Pl : @ € &y with [l =1} =1

and H is an invariant subspace of T. An important tool for the investigation of inho-
mogeneous Markov chains is the so-called d-coefficient defined by

1 o0
6(P) = 58_11132\1%1 — pjil-
“) =1

It is well known that
§(P) =sup{||lzP|ly : x € H with |||y =1} =sup {||zP|:: z € 5(1)}_

The stochastic matrix P € S is said to be
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scrambling if §(P) < 1

stable if 7(P) = 0.
Let o(P) denote the spectrum of the operator T' corresponding to P. In the cases
of finite spaces one uses other norms, and there is a lot of papers about ergodicity
coefficients with respect to arbitrary norms on R™ (see [5, 7 - 13, 16 - 19]).

Our purpose is to construct a theory of ergodicity coefficients for denumerable state
spaces, this means for infinite stochastic matrices P € S and the set 2 of all norms on
l; which are equivalent to || ||;.

Definition 1. For any norm || || € 2 we call 7 | (P) = sup{||zP| : x € H with [[z||
= 1} the ergodicity coefficient for P € S with respect to the norm || ||. Moreover, we

put C” | = Sup{TH H(P) : PeS}.

The ergodicity coefficient 7 (P) is the operator norm of the restricted operator
T|H and fulfils the following conditions:

(a) al ||(PQ) < al ||(P) al ||(Q) for P,Q € S.

(b) 7 (P) = 0 if and only if P is stable (see Theorem 1).

(C) |)\| < 7| H(P) for A\ € J(P) \ {1}
One aim of the paper is to compare different ergodicity coefficients, in particular arbi-
trary ergodicity coefficients and the coefficient . Answers to these problems are derived
using the set ExtrB(!) of all extreme points of the ball BY) = {z € H : |jz||; < 1},
a theorem of H. Schneider and W. G. Strang [15] on the quotient of norms of a linear
operator and properties of Cj | = sup{7|(P) : P € S}. Moreover, for a special class
of norms || || € 2 the set Extr {x € H : |z|| < 1} and explicit functional forms of 7 |
will be determined.

The theory yields new results on the weak ergodicity of inhomogeneous Markov
chains, the behaviour of general infinite products built by sequences of stochastic ma-
trices as well as Markov systems.

2. Ergodicity coefficients and bounds for spectral values

In the sequel o(P) means the spectrum o(7¢) of the complexification T¢ if T': I — [y
where Tx = P (x € ;). We denote

lLic= {x—l—iy: x,yell}

and put
|z +iyllc = sup |zcos® +ysinO||
0<e<2r
for x 4+ 4y € l; c. The set
He={z+iy: z,y € H}
is a closed subspace of (I; ¢, || ||c). It is well known that for the complexification T¢ of

T where Te(z +iy) = Tx +iTy (x,y € l1) the relations

1Tl = sup { ITezc s 2 € e with |lzc =1} = 1T =1
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I Te|Hell = sup { |Tezc : = € He with ||zllc = 1} = | T|H| = 7 (P)

hold.

Lemma 1. Let 0,(1¢) be the point spectrum of Tc. Then:
(1a) op(Tc) \ {1} C op(Tc|He).

(1b) o(Tc) \ (0p(Tc) U {1}) C o(Tc|He) \ 0p(Te|He).

(2) o(Tc|He) U{1} = o(Tc).

Proof.

(la) If a € o,(Tc) \ {1}, then there is a z € ;¢ with z # 0 and az = T¢z, that
means az = zP. Therefore az1” = 2P17 =" 2; and (1 — «) Y 2 = 0 follow. Thus
z € He.

(1b) In the case a € o(TIc) but a ¢ 0,(1c) and a # 1 we have (T —adc)li,c # lic,-
Let o ¢ o(Tc|He) \ 0p(Tc|Hc). Then (It — alc)He = Hc follows, and

(1,0,0,...)(P—&I) = (p11 —Oé,plg,...) ¢ H(C

would yield the contradiction (It — o)l c = lic
(2) Because of (1a), (1b) we have o(T¢) C o(Tc/Hce) U {1}.
Let be z € [ c. Then

(Tc — Ic)z=2P — z = (Zzlplj — zj)
!

JEN

and, because of Ej (>, zpi—25) =0, (Ic — Ic)z € He, that means (Tt — Ic)lhic # lic
and 1 € o(T¢).

Let us assume 1 # o € o(Tc|Hc) but a ¢ o(Tc). As a can not be an eigenvalue of
T(C|_H(C it follows (T(c — OéI(c)H(C 7é H¢. Since (T(C — Oé](c)ll,(c = ll,(C; there are z1 € He
and 2o € l1 ¢ with 2o ¢ Hc and (Tt — alc)ze = z1. Therefore

3 (=) = o <0
J ! J
and (1 —a) ), z](-z) = 0 follows, contradicting o # 1 11

Relation (2) of Lemma 1 and the formula for the spectral radius applied to Tt/ Hc
yield the following spectral estimation.

Theorem 1. Let be || | € A and P € S. Then the estimation
L
AL< [ (P (A a(P)\{1})

holds for n € N.
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3. Extreme points and explicit functional forms of ergodicity
coefficients

In this section we use [-vectors

1
€;, = (5ij)j6N and eij = =

2(61' — €j) (Z,j € N)

Let a = (a;);jen be a real bounded sequence with 0 < inf;cy a;. Further, let be

(@ _ 2

A ai+ajeij (1,7 €N) and ’lx"a:;ai‘$i| (r €1y).

Moreover, we need the ball and sphere

BYW ={zxeH: |z|. <1}
S ={xeH: |z|, =1},

respectively.
Lemma 2. ExtrB(® = {fi(;l) 21,7 € N with i # j}.
Proof. 1. Let f*) = 1z + Ly for some z,y € B@. Clearly Hf-(‘.I)H = ||z]a =
. ij 2 2 s . ’ ij lla a

Y|l = 1. Because of @) —1and
ij

1 1 1
= —(z; +y;) = —=(x; ; 1
aita; 5 (@i + i) 5 (%5 +5) (1)

it follows %(:rk + yx) = 0 and therefore xy, = —yy, for k # i, j. Defining

T =T —xe; —xj€;
Y= —yie; — Yi€;j }
we have
IZlla =) arlzrl = [§la < 1.
k#i,j
Then

" 1 1 1 N 1 N
L= 175 0 = gailas + il + Jaslas + 950 < 51 = 7]) + 51 = gll)

implies ||Z||o = ||g|la = 0. Therefore x, =y =0 (k #4,7), x; = —x; and y; = —y;
so that ]a:z-|): lz;| = aﬁl_aj and |y;| = |y;| = aHl_aj follow. Thus, with (1) we obtain

2. If we suppose = € S@ and z # fi(f) for all 4,7 € N with ¢ # j, then there are
i,7,k € N with z;,z;,z1, # 0. We may assume ¢ = 1,5 = 2,k = 3 and x12 > 0. There

, that means fi(;-l) is an extreme point of B(®).
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is a 0, # 0 such that x; =3, > 0, 25 + 3 > 0 and x5 & J3 < 0 hold for y = — %1+,

az+tas
and 03 = Zl+32 01. Let be

y=ux— (61,62,03,0,...)
Z:$+(51,52,53,0,...) .

Then

||y||a =a1x1 +asxs —asxry + - — (a151 + ag09 — a353) = ||£L’||a =1

||Z||a = a1 —|— oo — A3T3 + e + (a151 —|— GQ(SQ — a353) = ||$||a = 1

since a101 + asds — azds = 0. Because of §; + 9o + 63 = 0 it follows y,z € H. Thus
T = %y + %z with y, z € S(®), that means z is no extreme point of B(*) 1

Lemma 3. Let x € H. Then:

(a) The series , ; cxf x; e is absolutely convergent in ly.
() [[z]lz = 4Zi,j R

(c) z= )2 >i a7+93 eij for v € SW.

Proof. (a) Clearly, "z = dor; = |jz[1 and so

- _ _ 1
Z ||xj_xj eijll = Zx;r% = ij_zx] = é_le”%
4, ij ? J
(b) We put z = (21,22,...) and y =4}, . x;ij_eij. Statement (a) yields y € H.

Then
Yk :4< E z T, e + E ajz:cjekj) .
i j

For every k with zx > 0 we obtain
_ 1 _
we=a( Satayey) =45t Suy = aulelh
J J

and if zp < 0, then

_ Iy — _
yk=4(2xixkeik> =4 (= 5)ar Lot = —aillels = axllal.
; k
7

(c) Statement (c) immediately follows from (b)
Theorem 2. Let x € H. Then:

(1) (Ciah)e =3, ol ey (@i +a)) £

(a2) (3, 2f)llolla = 325 5 2 2 (ai + ay).

(b) B =conv{f\" : i,j € N with i # j}.
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Proof. (a) Since Lemma 3/(b) directly yields (a;) it is only to show (a2):

Zl‘f%(aﬂr%‘):zx‘ (azzw +Z% )
:Zm Zalm —1—2:1; Za] i
ZZIB;FHﬂ?Ha-

(b) As fi(;-l) € B(@ we have only to show that
S COHV{fi(;) : 4,5 € N with i # j}.

Because of (a1) we have

x = Za: Ty al+a])fl(f)
Zk 1 k i,j=1

for € S(®). Defining

b = Z iz (ak + ap)

k=1
y™ = Z z Ty (a; —l—aj)f(a)
1,j=1
1
2 — (n)
—pm Y

for large n (b # 0) then x(™) are convex combinations of elements fi(jq) and belong
to the ball B(® of H. Relations (as) and (a;) imply lim, .., b = > °° zF and
y™ — (3252, ) in I such that (™ — z follows. Thus, we have S(®) C conv{fi(j) :
i,j € Nwithi£;}H

Theorem 3. Let P € S. Then

7| 1. (P) = sup ||fi(;'1)P||a =sup ——— Zaklpzk — Pjkl-
2V 2,7 a;

Proof. This theorem holds since the functional z — ||zP]|, is convex, B(®) =

W{fi(]q) : 4,5 € Nwith i # j} and fi(jq) = ai'|1‘aj (e; —ej)

In investigations of Markov chains it is important to know whether for a stochastic
matrix P there exists an ergodicity coefficient 7 with 7(P) < 1.
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Example 1. We consider the stochastic matrix

1
=

R =N=R=N=R=1
o O O O OoOn O
© oo om-o
o o owv-o

o owmi-

Sl

e e N N N e el
L e L Lt Ll Ll Sl L e}

N[— .

It is easy to see that 6(P) = 1. On the other hand we obtain 7 |, (P) = 32 < 1 for the
sequence a = (a;) with a1 =2,ap =6 and a; =7 for j =3,4,5...

Example 2. Let K be a set of infinite stochastic matrices Q) = (¢;;) only consisting
of elements zero and one with the following properties:

(1) g1 =1
(2) ¢ij =0 for alle (7,j) € N x N, with ¢ # 1 and j > 1.
(3) There exists a natural number ng > 2 with ¢;; =0 for ¢ € N and j > ng.

It is easy to see that for every strictly increasing sequence a = (a;) we have 7 | (Q) < 1
for all @ € K. On the other hand, there is a lot of P € K with §(P) = 1, which demon-
strates the practical significance of other ergodicity coefficients than the d-coefficient.

4. Sup{7 |(P): P € S} and the comparison of ergodicity
coefficients

We start with some properties of linear operators acting on H and their operator norms.

Lemma 4. Let (H,|| ||) be a Banach space. Then the following assertions are
equivalent:

(a) suppegsup {||zP||: z € H with ||z| =1} < cc.

(b) The norm || || is equivalent to || ||1 on H.

Proof. We have only to prove that (a) implies (b). Let x = (2;){° be a point of
H \ {0}. Then there are i,j € N with x; > 0 and x; < 0. The stochastic matrix
P®) = (pi;) defined by pf; =1 for z; > 0 and pf, = 1 for z; < 0 fulfils

zP@®) = (Zw?,—ZwZ,0,0,0,...).
Because of ||z|; =23 2] =23 z; one has
a1 1
lzP | = S llalls - 11, -1,0,0,0,.. )]l = S ||l

with o > 0 such that o
Szl = |zP™) || < sup 7 | (P)]|z]|
PeS

holds for all x € H. Assumption (a) and the completeness of (H,| ||) and (H,| |1)
yield assertion (b) B
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Lemma 5. Let L(H) be the space of bounded linear operators acting on H. Let be
A€ L(H). If A is an operator of rank 1, then there are a stochastic matriz P € S and
k > 0 such that (Az) = k(zP) for all z € H.

Proof. Let A € L(H). For every = € l; we put

am:ZmT—Zx; and hy =x — a;(1,0,0,...).
Then z = hy + a5 (1,0,0,...) with h, € H. The operator A defined by
Az = Ahy + ,(1,0,...) (x €ly)

is a linear mapping from [; into /;. Therefore there exists (a;;); jen with sup; Z;; |aij]

< oo such that Az = x(ai)i jen for x € I;. In particular, Ah = h(a,;) for h € H,
and because of e, —e,, € H (I,m € N) and A(H) C H the sums of the rows of (a;;)

are constant. Moreover, two matrices (ag;)) and (ag)) represent the same operator A
Ejl-) — az(-?)) is a stable matrix. Now let (a;;) be a matrix representing
an operator A of rank 1. We may assume that there are real sequences (d;)ien, (Aj) jen
with 377, d; = 0, (di)ien # (0), (Aj)jen # (0) such that

0 0 0
Ady Ada  Aids
(aij) — | Aadi Aada  Aods
Azdi Azda  Asds

if and only if (a

Because of supcy |Aj| - Y2, |di] < 0o the sequences (d;), ();) are bounded. We put
—inf; \;-d; if Ajd; <0 forsome jeN
ci =
’ 0 if M\di>0 forall jeN

and have
o0 [ @]
D lesl <sup Ay [di] < oo
i=1 JeN i=1

The matrix (a;; +c¢;);,jen represents the operator A, P = %(aij +c¢;), where k = >"°2 | ¢,
is a stochastic matrix and Az = k(«P) for x € H 1

Theorem 4 (compare [15]). Let v; and ve be two equivalent norms on a vector
space E and let || - ||y and || - |2 denote the corresponding operator norms on L(E),
respectively. Moreover, let T be a subset of L(E) which contains all bounded linear
operators of rank 1. If one puts

Ry = sup va(2) and R = sup Ul(x),
0#z€E vy () 0#z€E va()
then one has
Al _ o JAL _p o
ozaer Al oraer [All2
If we put £ = H and v; = || ||1,v2 = || || € &, then Theorem 4 and Lemma 5

immediately yield the following lemma.
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Lemma 6. Let || || € A. Then

a0 _ T ®) [Edl ]|

p = su = :

Pes T | pes O(P) 0#zeH |1 0#z€H |||

Lemma 7. Let || || be a norm on H, || || ~ || |1, and SV = {z € H: ||z||; = 1}.

Then
sup{||z|| : = € S(l)}

inf{||z| : x € SM}"
Proof. We consider ExtrS of the convex set S as subset of the linear space
@ € S is an extreme point of S if and only if () has the number 1 as an element in

each of its rows. Therefore Q = (¢;;) € S belongs to ExtrS if and only if there is a
denumerable system of sets {A, },en such that:

(i) N={1,2,...} = Upen/An.
(i) A; NA; =0 for i,j € N with i # j.
(iii) ¢;; = 1 if and only if ¢ € A for i,j € N.

It follows
QI/‘Q:(ZLIIZ,Z.IZ,) (flﬁell)

1€ENA1 1EN2

Cyjyy =sup {7y (P): PeS}>

RNXN

and we obtain
Cy = sup sup  [|zQ]

QEExtrS zeH,||z||=1
(Son T e

(ISVAN] 1€EN2

> sup sup
z€H, [|z|=1 (A1,A2,...)EA

where A denotes the set of all decompositions (A1, Ag,...) satisfying (i) and (ii). For

every € > 0 there exists an z. € H, [|z.|| = 1 with [|z.|1 > sup,cp jz =1 l|zl][1 —&. Since
Ze = II;E\Il e SM we have

St =Y = &)
(S T )|

1EN 1EN2

It follows
Cy = Nzl

for all decompositions (A1, Ag,...) € A.
Because of (2) we obtain Cj | > ||z.|1]|e;|| and with e — 0

Ciy= sup (E4IR sup € |-
w€H,||z||=1 i,jeN

Since BM) = {z € H : |jz|]; < 1} = comvBExtrS™) (see Theorem 2) and | || is a
continuous convex functional on BM | it follows

Cyy> sup |z|li sup |[z]-
z€H,||z||=1 zeSM)

The observation

. —1
sup [y = (inf{]lz] : = € SV})
r€H,||z|=1

completes the proof B
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Theorem 5. Let || || be a norm on H, || || ~ || |1 and S = {2z € H: ||z||; = 1}.
Then:

sup{J|z] : = € SM}
inf{||z| : x € SM} "

(b) mf{“gy—,if); P e S with 5(P)7é0} =}
Sup{q—ll;(“—l(g)P): P e S with (5(P>7é0} :C” I

(a) Gy =sup {7 (P): PeS}t=

Proof. Putting
r=inf{|z| : z € SM
R =sup{||z| : z € S}

Lemma 6 yields
op) - T(P) 1

sup = sup =
pes T |(P)  pes O(P) r

which together with §(P) < 1 implies the inequality C | < R%. The converse inequality
C'” | = R% follows from Lemma 7 i

Corollary 1. For all norms || || € 2 one has:

(1) If Q € S is scrambling, then 7 |(Q) < C) -
(2) Any Q € S with 7 | (Q) < ﬁ is scrambling.

Proof. This corollary follows directly from Theorem 5/(b) i

Corollary 2. If || || is a norm of 2, then the following statements are equivalent:
(a) C” = 1.

(b) 7y = 9.

(c) There is a K > 0 with ||z| = K||z|1 (z € H).

Remark 1. Let 7 and 7 |, be two different ergodicity coefficients corresponding
to the norms || || and || [|. € ¥, respectively. Then there are P,Q € S with 7 |(P) <

7). (P) and 7y 1 (Q) > 7y, (Q).

Indeed, we may assume there is a P € S with 7 |(P) < 7 ||, (P). Applying Theorem
5 we obtain

Sup {TII ((P)/7.(P): PeS non—stable} > 1

which means there exists a Q € S with 7 |(Q) > 7. (Q).
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5. Applications

5.1 Inhomogeneous Markov chains. Let (X)) denote an inhomogeneous Markov
chain with denumerable infinite state space and 1-step transition matrices P, € S (n €
N). Further, let

mPY = Prg1 Pt Pk = (mpfj)i,jeN (m,k € N)

be the k-step transition matrix. The Markov chain (X,,) is said to be

weakly ergodic if §(™P*) = %supm S mpl =" pé‘ﬂ —0

strongly ergodic if there is a stable matrix @ € S with [|™P* — Ql|; — 0

for kK — oo and every m € N.

Theorem 6. Let || || be equivalent to || ||1. A Markov chain (X,,) is weakly ergodic
if and only if there exists a subdivision of the chain (7% P7=+1=Ix) gych that

7 H(jkpijrl_jk) <1 (keN) and Z (1 | H(jkpjk+1_jk)) - 0.
k=1

Proof. Let 6(™P*) — 0 for k — oo and every m € N. As 7 | (™ P*) < C| | 6("™P*)
there is a strongly increasing sequence (j) with

o , 1
1 — al H(]kp.7k+1_.7k) > 5 (k c N)
such that
Z(l_TH ||(jkij+1_jk)) = 00 and al ||(jkpjk+1_jk)§1 (k € N).
Inversely, if these conditions are satisfied, then
lim H 7| H(jkpjk"'l_jk)zo (k’oEN) (3)
n—xnk:ko
For each n € N we choose a k,, with ji, > n > ji, — 1. Then
7 ) (" PY) = 7 (Pt 1 Ptz -+« Prat) < Oy -7y (P, Pl 1 -+« Prat)-

Because of (3) for each € > 0 there is a k,, . € N such that

k'm,s
[[ 7@ tpienihof <.

k=km41
Therefore we obtain for m +1 > jyi,, .

km,a
m pl 2 i i
P <Gy IL iy e <

k:km+1

and (X,,) is weakly ergodic il
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Corollary 3 (compare [10: Theorem 2.1). A Markoc chain (X,,) is weakly ergodic
if and only if there is a subdivision (¥ Pis+173k) such that Y, (1 — §(x Pit+170%)) = oo.

Example 3. Let (X,) be an inhomogeneous Markov chain with 1-step transition
matrices P, taken from a finite subset of the set K (see Example 2). Using Theorem 6
with the trivial subdivision (P,,) one obtains directly the weak ergodicity of the chain

(Xn)-

Theorem 7. A Markov chain (X,,) is weakly ergodic if and only if there exists a
subdivision (& PIx+17Jr) such that

D (1= Cyyry FrPI7I4)) = oo,

Proof. Let §(™P*) — 0 for k — oo and every m € N. As 1 —Cy 7y |("FPy) — 1
for k — oo there exists a strongly increasing sequence (ji) with

L= Gy (F P2 2%) >

N | =

such that

(1= Gy Or PIer79%)) = oo
k

Conversely, because of Theorem 5 one has
00 = Z (1 _ CH 0TI (jlchkJrl_jk)) < Z (1 _ 5(jkpjk+1—jk))
k k
and therefore (X,,) is weakly ergodic il

5.2 General products for sequences of stochastic matrices. Let (Q)2, be
a sequence of stochastic matrices Q) € S. For each permutation m of N we define
inductively sequences (H,,) of products H,, by

cither  Hyp1 = Hy Qs
. (m € N)
or Hm—|—1 - Qm—l—le

with H, = Q, where Q) = Qr(k)(ken)- Such products are, e.g., the forward and
backward products

P, = QlQQ T melém
M, = Qm@m—l tee Q?Ql:
respectively.

Definition 2. An infinite product (H,,) is said to be weakly ergodic [stongly ergodic]
if §(H,,) — 0 for m — oo [if there exists a stable matrix @ € S with ||H,, — Q|1 — 0
for m — oo]. We say the weak [strong] ergodicity obtains for the infinite products



Ergodicity Coefficients of Matrices 885

of (Qr)3, if all products (H,,) constructed in the above described way are weakly
[strongly| ergodic.

Theorem 8. Let Q ={P €S : P = Qy for some Qi} be relatively compact in
(S, || [[1) and W be the set of all accumulation points of (Qr). If there are a natural
number { > 1 and K < 1 such that

§(PPy---P) <K

for all I-tuples (Py, Ps, ..., P)) € W', then weak ergodicity obtains for all infinite prod-
ucts of (Qr)7,-

Proof. We consider the function f on S* defined by
f(P,Pyy....,P)=0(PPy---P))
for (Py,P,,...,P) € S'. Because of
6(P\Py---P) = §(PLPy -+ P)| < |PyPy--- P = PPy By,

using the compactness of the topological product (Q U W)t it follows that f](@ U w)t
is equicontinuous.

Lete > 0and K+¢ < 1. As f|(QUuw)! is equicontinuous there is a A > 0 such that for
all (Pl, P, ... ,Pl) € W' and (R1, Rs,... ,Rl) € (WUQ)I with max;=1,...,I ”Pz_RzHl <A
the inequality §(R1Rs -+ R;) < K + € holds.

Put

UnT)={PeS: ||P-T|1 <)} (T €9).

Since W is a compact set of (S, || ||1), there exists a finite set {13, T5,...,Tx} C W with
W C UF_ UL(T;). Now, let us consider a sequence (Qr(k))- We may assume (Qrx)) =
(Qr). There exists a kg with Qx € U¥_,Ux(T;) for k > ko because otherwise a convergent
subsequence (Qy;) of (Qr), lim; oo Qk, = Q" would exist such that Qy, ¢ Uk UN(T)
for all j and therefore Q* ¢ W.

Finally, let (H,,) be an arbitrary sequence of products constructed from (Qx)2 ;.
There exists an mg such that the matrices Q)1,Q2,...Qk, are factors of the products
H,,,. Then

5(Hmg ot ) < 6(Hpy) - (K + )7
for all r > 2 and s =0,1,2,...,] which implies lim,, o 6(H,,) =0}

Corollary 4 (compare [7, 12]). Let || || € &A. If 7 (Q) < 1 for all Q € W, then
the weak ergodicity obtains for all infinite products of (Qr)7-

Proof. If 7 |(P) < 1forall P € W, then 7 |(P) < 3 < 1 for all P € W with some
B. Theorem 5 yields 6(P1P;--- Py) < C) ||5’“ for every k-tuple (Pp, Ps,...,Py) € WF,

and (PP, ---P) < C ' <1 in the case | > _loig/‘é"“ .
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Remark 2. If there exists at least one accumulation point P of (Q) with §(P) < 1,
then weak ergodicity obtains for the infinite products of (Qy).

Indeed, let 6(P) < 8 < 1 and P = lim;j_. Qk, for the subsequence (Qy,) of (Qr).
Then there exists a jo with 6(Qx;) < 3 for all j > jo. For any product sequences (H,,)
built by (Q) there is an mg such that the matrices Qkjy+15 - - - » Qk;, +r are factors of the
product H,,,. Therefore §(H,,) < " for all m > mg which implies lim,, .~ §(H,,) = 0.

5.3 Markov systems. A Markov system over the finite alphabet > is a pair (N, {P(0) :
o € Y>_}) where N is the set of states 1,2,3,... and P(0) € S represents the transition
probabilities between the states. Let >.° be the set of all words z = o109 -0}, over
> and P(x) = P(01)P(03)--- P(o%) the transition matrix associated with the word
x,l(x) = k denotes the length of the word x.

The Markov system is called weakly ergodic if there is an integer k such that the
P(x) are scrambling for all words x with [(x) = k (see [10]). Obviously, {N,{P(c0) : 0 €
>~ }} is weakly ergodic if and only if for every || | € 2 there exists an integer k with
7 (P(x)) < 1 for all words « € >.* of length I(z) = k.

The weak ergodicity of Markov systems is important in context with perturbations
of Markov systems. If (N, {P(c) : o € 3}) is weakly ergodic and (N,{P(c): 0 € 3 })
is an other Markov system over the same alphabet >, then for every € > 0 there is a
0 > 0 such that

sup ||P(0) — P(o)|l1 <6 = sup |P(z) — P(z)||; < e.
UGZ mez

Theorem 9. Let (N,{P(0):0 € > }) be a Markov system over the finite alphabet
Y. Then the following assertions are equivalent:

(1) (NJ{P(0)}:0€>]) is weakly ergodic.

(2) The backward products built by matrices from {P(0)}secx are strongly ergodic.

(8) The products built by matrices from {P(c)}secx are weakly ergodic.

Proof. (1) = (3): Let (Qx) be a sequence in {P(c) : o € Y_}. All accumulation
points of (Q) belong to {P(c) : o € Y } such that (1) and Theorem 7 yield the weak
ergodicity for all infinite products of Q.

(3) = (2) is true, since strong and weak ergodicity are equivalent for backward
products of stochastic matrices.

(2) = (1): Let (2) be true and (1) false. For each [ € N there are Pl(l), PQ(Z), . ,Pl(l)

€ {P(o)} with (5(Pl(l) : ~-P1(l)) = 1. We show that there exists an infinite backward
product built by matrices of {P(o)} which is not strongly ergodic. To prove this we
construct a directed graph, whose vertices are certain finite products of the P(o). The
root is the empty set, and there is a directed edge from ) to P(o) if §(P,) = 1. There
is a directed edge from P, P,_1...P; to QP,... P, if and only if §(QFP,---P,) = 1,
such Q € {P(0)} exists because of our assumption and as §(QF,---P;) = 1 implies
d(P,---Py) = 1. Thus, we obtain an infinite tree, which therefore has an infinite path.
This mean, there exists a not weakly ergodic backward product, which contradicts (2) i
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