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Some Oscillation and Non-Oscillation Theorems
for

Fourth Order Difference Equations

E. Thandapani and I. M. Arockiasamy

Abstract. Sufficient conditions are established for oscillation of all solutions of the fourth
order difference equation

∆
�
an∆(bn∆(cn∆yn))

�
+ qnf(yn+1) = hn (n ∈ N0)

where ∆ is the forward difference operator ∆yn = yn+1 − yn, {an}, {bn}, {cn}, {qn}, {hn}
are real sequences, and f is a real-valued continuous function. Also, sufficient conditions
are provided which ensure that all non-oscillatory solutions of the equation approach zero as
n →∞. Examples are inserted to illustrate the results.
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1. Introduction

In the past two decades there has been an increasing interest in studying the oscillatory
and non-oscillatory behavior of solutions of difference equations. However, most of the
work on the subject has been restricted to first and second order equations (see [1] and
the references cited therein). It should be noted that almost all the results concerning the
oscillatory behavior of difference equations are obtained as discrete analogues of those
for differential equations. The ideas behind the analogues are similar but different due
to the discrete nature. Motivation of the present study also stems from the works of
Lovelady [8] and Kusano and Onose [6] who considered the differential equations

(
p3(p2(p1u

′)′)′
)′ + qu = 0 (E1)(

p3(p2(p1u
′)′)′

)′ + qf(u) = b(t) (E2)

and obtained conditions for oscillation of all solutions of equation (E1) and for non-
oscillatory solutions of equation (E2) to tend to zero as t →∞, respectively.

In this paper we consider the fourth order difference equation

∆
(
an∆(bn∆(cn∆yn))

)
+ qnf(yn+1) = hn (n ∈ N0) (1)
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where ∆ is the forward difference operator defined as ∆yn = yn+1−yn, {an}, {bn}, {cn},
{qn}, {hn} are sequences of real numbers and f : R → R is a continuous function with
uf(u) > 0 for u 6= 0. By a solution of equation (1) we mean a real sequence {yn}
satisfying equation (1) so that supn≥m |yn| > 0 for any m ∈ N0. We always assume that
such solutions exist. A solution of equation (1) is called oscillatory if there is no end of
n1 and n2 (n1 < n2) in N such that yn1yn2 ≤ 0; otherwise it is called non-oscillatory.
Clearly, a non-oscillatory solution of equation (1) must be eventually of one sign.

Our purpose in this paper is to obtain conditions for oscillation of all solutions of
equation (1), and for non-oscillatory solutions of equation (1) to tend to zero as n →∞.
In Section 2 we obtain conditions for oscillation of all solutions of equation (1) when
hn ≡ 0 and Section 3 contains sufficient conditions which ensure that all non-oscillatory
solutions of equation (1) tend to zero as n →∞. For more results regarding oscillation
and asymptotic behavior of fourth order difference equations we refer, in particular, to
[3 - 5, 9 - 14]. Further, our equation is quite general and therefore the results of this
paper even in some special cases complement and generalize some of the results in the
literature [3, 4, 9, 14, 16].

2. Oscillation results

In this section we study the oscillatory behavior of equation (1) under the following
additional conditions:

(c1) hn ≡ 0.
(c2) {an}, {bn}, {cn}, {qn} are real positive sequences such that

∑∞
n=0

1
an

=
∑∞

n=0
1
bn

=
∑∞

n=0
1
cn

= ∞.

(c3) f is non-decreasing and f(u)
u ≥ M > 0 for u 6= 0.

Theorem 1. Let conditions (c1) - (c3) hold and suppose that each of the following
hypotheses (H1) - (H3) is true:

(H1)
∑∞

n=0

(∑n−1
s=0

(
1
as

∑s−1
t=0

(
1
bt

∑t−1
r=0

1
cr

)))
qn = ∞.

(H2) If
∑∞

n=0 qn < ∞ and
∑∞

n=0

(
1

an

∑∞
s=n qs

)
< ∞, then

∑∞
n=0

(
1
bn

∑∞
s=n

(
1
as

∑∞
t=s

qt

))
= ∞.

(H3)
∑∞

n=0

(∑n−1
s=0

(
1
cs

∑s−1
t=0

1
bt

))
qn = ∞.

Then every solution of equation (1) is oscillatory.

Proof. Let {yn} be a non-oscillatory solution of equation (1). Without loss of
generality we may assume that {yn} is eventually positive since the proof is similar
when {yn} is eventually negative. Therefore there is an integer n0 ∈ N0 such that
yn > 0 for all n ≥ n0. For n ≥ n0, let

un = yn

vn = cn∆un

wn = bn∆vn

zn = an∆wn





.
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Now the system
∆un =

vn

cn

∆vn =
wn

bn

∆wn =
zn

an

∆zn = −qnf(un+1)





(2)

is satisfied. Clearly, {zn} is non-increasing. If there is an integer n1 ≥ n0 such that
zn1 < 0, then

wn = wn0 +
n−1∑
s=n0

zs

as

vn = vn0 +
n−1∑
s=n0

ws

bs

un = un0 +
n−1∑
s=n0

vs

cs





(3)

and from condition (c2) we have that

wn

vn

un





→ −∞ (n → −∞)

which is a contradiction. Thus zn ≥ 0 for all n ≥ n0, so limn→∞ zn = z∞ exists and
z∞ ≥ 0. Also, zn1 > 0 if n1 > n0. Then zn = 0 whenever n ≥ n1. Thus, from (2),
∆zn = 0 and qn = 0 whenever n ≥ n1. But this contradicts hypothesis (H1), so zn > 0
for n ≥ n0. Thus {zn} is increasing for n ≥ n0.

Now we take different cases.
Suppose wn < 0 for n ≥ n0. Now w∞ ≤ 0, and if w∞ < 0, then (3) again gives a

contradiction, so w∞ = 0. Now vn is decreasing for n ≥ n0, and v∞ < 0 is impossible,
so v∞ ≥ 0. If j ≥ n ≥ n0, then zj − zn = −∑j−1

s=n qsf(us+1), so

z∞ − zn = −
∞∑

s=n

qsf(us+1) or zn ≥
∞∑

s=n

qsf(us+1) ≥
∞∑

s=n

qsf(us).

Since vn > 0, un is increasing, so zn ≥ f(un0)
∑∞

s=n qs for n ≥ n0. If
∑∞

n=0 qn < ∞
fails in Hypothesis (H2), this is a contradiction, hence assume

∑∞
n=0 qn < ∞ holds.

Since w∞ = 0, we have wn = −∑∞
s=n

zs

as
for n ≥ n0. But the last inequality says that

if
∑∞

n=0

(
1

an

∑∞
s=n qs

)
< ∞ in hypothesis (H2) fails, this is a contradiction, so assume∑∞

n=0

(
1

an

∑∞
s=n qs

)
< ∞ holds. If n ≥ n0, then

vn − vn0 =
n−1∑
s=n0

ws

bs
= −

n−1∑
s=n0

1
bs

( ∞∑
t=s

zt

at

)
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and so

−vn0 ≤ −
n−1∑
s=n0

1
bs

( ∞∑
t=s

zt

at

)

vn0 ≥
n−1∑
s=n0

1
bs

( ∞∑
t=s

zt

at

)
≥ f(u0)

n−1∑
s=n0

1
bs

( ∞∑
t=s

1
at

( ∞∑

i=t

qi

))
.

However, this contradicts hypothesis (H2), and we are through the case wn < 0 for
n ≥ n0.

Since {wn} is increasing and wn < 0 is false ensure that there is an integer n1 ∈ N
such that n1 ≥ n0 and wn > 0 for all n ≥ n1. Now {vn} is increasing for all n ≥ n1.
If vn ≤ 0 for all n ≥ n1, then {un} is bounded. But hypothesis (H1) and a result in
[15] say that every bounded solution of equation (1) is oscillatory, so there is an integer
n2 ≥ n1 such that vn > 0 for all n ≥ n2. Now if n ≥ n2, then

un = un2 +
n−1∑
s=n2

vs

cs

≥
n−1∑
s=n2

vs

cs

=
n−1∑
s=n2

1
cs

(
vn2 +

s−1∑
t=n2

wt

bt

)

≥
n−1∑
s=n2

1
cs

(
s−1∑
t=n2

wt

bt

)

≥ wn2

n−1∑
s=n2

1
cs

(
s−1∑
t=n2

1
bt

)
.

If n ≥ n2, then

0 < zn = zn2 +
n−1∑
s=n2

∆zs = zn2 −
n−1∑
s=n2

qsf(us+1).

So

zn2 ≥
n−1∑
s=n2

qsf(us) ≥ Mwn2

n−1∑
s=n2

qs




s−1∑
t=n2

1
cs

t−1∑

j=n2

1
bj


 . (4)

But, according to Stolz’s Theorem [2], we have

lim
s→∞

∑s−1
t=n2

1
cs

∑t−1
j=n2

1
bj∑s−1

t=0
1
cs

∑t−1
j=0

1
bj

= 1

and so hypothesis (H3) implies the divergence of the summations in (4) as n →∞. This
contradiction completes the proof of the theorem
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Corollary 2. Assume hypothesis (H3) holds and

∞∑
n=0

(
n−1∑
s=0

1
as

(
s−1∑
t=0

1
bs

))
qs = ∞. (5)

Then every solution of equation (1) is oscillatory.

Proof. Let {yn} be a non-oscillatory solution of equation (1). Without loss of
generality we may assume that {yn} is eventually positive. If hypothesis (H2) holds
and n ∈ N0, then two successive applications of summation by parts give

∞∑
s=0

1
bs




∞∑
t=s

1
at




∞∑

j=t

qj







=

(
n−1∑
t=0

1
bt

) 


∞∑
t=n

1
at

∞∑

j=t

qt


 +

n−1∑
s=0

1
as

(
s∑

t=0

1
bt

) ∞∑

j=s

qj

≥
n−1∑
s=0

(
1
as

s−1∑
t=0

1
bt

) ∞∑

j=s

qj

=
n−1∑
t=0


 1

at

t−1∑

j=0

1
bj







∞∑

j=n

qj


 +

n−1∑
s=0

qs




s∑
t=0

1
at

t−1∑

j=0

1
bj




≥
n−1∑
s=0

qs




s−1∑
t=0

1
at

t−1∑

j=0

1
bj


 .

Thus (5) implies hypothesis (H2). Now condition (c2) and two applications of Stolz’s
Theorem imply that

lim
i→∞

∑i−1
s=0

1
as

∑s−1
t=0

1
bt∑i−1

s=0
1
as

∑s−1
t=0

1
bt

∑t−1
j=0

1
cj

= 0,

so there is an integer N ∈ N0 such that

i−1∑
s=0

1
as

s−1∑
t=0

1
bt

t−1∑

j=0

1
cj
≥

i−1∑
s=0

1
as

s−1∑
t=0

1
bt

whenever i ≥ N , and we see that (5) implies hypothesis (H1), and the result now follows
from Theorem 1

Remark 1. If an ≡ cn, then (5) is the same as hypothesis (H3), so in this case (5)
implies that every solution of equation (1) is oscillatory. If an = cn = 1 and bn = rn,
then (5) is equivalent to

∑∞
n=0

∑n−1
s=0

n−s−1
rs

qn = ∞ and hence Corollary 2 implies that
every solution of equation (1) is oscillatory. This is [3: Theorem 6.11].
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Example 1. Consider the difference equation

∆
(

(n + 1)∆
(

1
n

∆(n∆yn)
))

+
(

8n + 14 +
(2n + 1)
n(n + 1)

)
yn+1(1 + |yn+1|) = 0 (6)

for n ≥ 1 where an = n+1, bn = 1
n , cn = n, qn = 8n+14+ 2n+1

n(n+1) and f(u) = u(1+ |u|).
It is easy to see that all conditions of Corollary 2 are satisfied and hence every solution
of equation (6) is oscillatory. In fact, {yn} = {(−1)n} is such a solution.

3. Asymptotic behavior of non-oscillatory solutions

Here we discuss the asymptotic behavior of non-oscillatory solutions of equation (1)
under the following conditions:

(c4) {an}, {bn}, {cn}, {qn} are real and positive sequences such that
∑∞

n=0
1

an
<

∞,
∑∞

n=0
1
bn

< ∞,
∑∞

n=0
1
cn

< ∞.

(c5) limn→∞ ρi(n) = 0 where ρi(n) =
∑∞

s=n+1
ρi−1(s)
ri(s)

(i = 1, 2, 3) with ρ0(n) ≡ 1
and r1(n) = cn, r2(n) = bn, r3(n) = an.

We begin with two lemmas that will be needed in the proof of our main result of
this section.

Lemma 3. Consider the difference equation

∆un − ∆ρ(n)
ρ(n)

un +
∆ρ(n)
ρ(n)

φn = 0 (7)

where {φn}, {ρ(n)} are real sequences defined for n ≥ N ∈ N0 and ρ(n) > 0, ∆ρ(n) <
0, limn→∞ ρ(n) = 0. Let {un} be the solution of equation (7) defined for n ≥ N and
satisfying uN = 0. Then

lim
n→∞

φn = ∞ =⇒ lim
n→∞

un = ∞
lim

n→∞
φn = −∞ =⇒ lim

n→∞
un = −∞ .

Proof. The solution {un} of equation (7) is given by the formula

un = −ρ(n)
n−1∑

s=N

∆ρ(s)
ρ(s)ρ(s + 1)

φs (n ≥ N).

If limn→∞ φn = ±∞, then it is obvious that

lim
n→∞

(
−

n−1∑

s=N

∆ρ(s)
ρ(s)ρ(s + 1)

φs

)
=

{
+∞
−∞

Hence, by Stolz’s theorem,

lim
n→∞

un = lim
n→∞

∣∣∣∣∣∣
∆

(−∑n−1
s=N

∆ρ(s)
ρ(s)ρ(s+1)φs

)

∆
(

1
ρ(n)

)
∣∣∣∣∣∣
= lim

n→∞
φn =

{
+∞
−∞

and the lemma is proved
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Lemma 4. Let {ρn} and {vn} be real sequences defined for n ≥ N ∈ N0. If the
limit limn→∞(ρn∆vn +vn) exists in the extended real line R∗, then the limit limn→∞ vn

exists in R∗.

Proof. Let zn = ρn∆vn + vn. Then

lim
n→∞

zn = lim
n→∞

(ρnvn+1 − ρnvn + vn)

= lim
n→∞

ρn lim
n→∞

vn+1 − lim
n→∞

ρn lim
n→∞

vn + lim
n→∞

vn

= lim
n→∞

vn.

So limn→∞ zn ∈ R∗ implies limn→∞ vn ∈ R∗

Theorem 5. Let conditions (c4), (c5) hold, and assume that lim infy→∞ f(y) > 0
and lim supy→−∞ f(y) < 0. If

∞∑

n=N

ρ3(n)qn = ∞ and
∞∑

n=N

ρ3(n)|hn| < ∞, (8)

then all non-oscillatory solutions of equation (1) are bounded and tend to zero as n →∞.

Proof. Let {yn} be a non-oscillatory solution of equation (1). We may suppose
that yn > 0 for n ≥ N1 ∈ N. Define

G0(n) = yn

Gi(n) = ri(n)∆Gi−1(n) (i = 1, 2, 3)

}

and

uk(n) =
n∑

s=N1+1

ρ3−k(s)∆G3−k(s) (k = 0, 1, 2, 3). (9)

We shall first show that {yn} is bounded above. From equation (1) we obtain

G3(n)−G3(N1) +
n−1∑

s=N1

qsf(ys+1) =
n−1∑

s=N1

hs.

Since herein the first sum is positive and by (82) the second sum is bounded, there exists
a constant k3 such that

G3(n) = r3(n)∆G2(n) ≤ k3 (n ≥ N1).

Dividing the last inequality by r3(n) and summing from N1 to n− 1, we obtain

G2(n)−G2(N1) ≤ k3

n−1∑

s=N1

1
r3(n)

(n ≥ N1)
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which shows in view of condition (c4) that there exists a constant k2 such that

G2(n) = r2(n)∆G1(n) ≤ k2 (n ≥ N).

Applying the above arguments repeatedly, we obtain

G1(n) ≤ k1

G0(n) ≤ k0

}
(n ≥ N1)

where k1 and k0 are constants. It follows that {yn} is bounded above for n ≥ N1.
Summation by parts yields

uk−1(n)

=
n∑

s=N1+1

ρ4−k(s)∆G4−k(s)

= ρ4−k(n + 1)Gm−k(n + 1)− ρ4−k(N1 + 1)G4−k(N1 + 1) +
n∑

s=N1+1

ρ3−k(s)
r4−k(s)

G4−k(s)

= −ρ3−k(n + 1)
∆ρ4−k(n)

∆uk(n) + ∆uk(n) + uk(n)− 2ρ4−k(N1 + 1)G4−k(N1 + 1)

= − ρ4−k(n)
∆ρ4−k(n)

∆uk(n) + uk(n)− 2ρ4−k(N1 + 1)G4−k(N1 + 1).

This shows that {uk(n)} satisfies the difference equation

ρ4−k(n)
∆ρ4−k(n)

∆uk(n)− uk(n) + φk(n) = 0 (10)

or, equivalently,

∆uk(n)− ∆ρ4−k(n)
ρ4−k(n)

uk(n) +
∆ρ4−k(n)
ρ4−k(n)

φk(n) = 0 (11)

where
φk(n) = uk−1(n) + 2ρ4−k(N1 + 1)G4−k(N1 + 1).

Since uk(N1) = 0 by (9) and since

ρ4−k(n) > 0

∆ρ4−k(n) < 0

lim
n→∞

ρ4−k(n) = 0





by condition (c5) we apply Lemma 3 to (11) to conclude that limn→∞ uk−1(n) = ±∞
implies limn→∞ uk(n) = ±∞. Further, applying Lemma 4 to (10) we conclude that
limn→∞ uk(n) exists in R∗ whenever limn→∞ uk−1(n) exists in R∗.
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We now multiply both sides of equation (1) by ρ3(n), and summing from N1 + 1 to
n we get

n∑

s=N1+1

ρ3(s)∆G3(s) +
n∑

s=N1+1

ρ3(s)qsf(ys+1) =
n∑

s=N1+1

ρ3(s)hs. (12)

We consider the two cases

∞∑

s=N1+1

ρ3(s)qsf(ys+1) =
{

+∞
−∞ . (13)

Suppose (131) holds. In view of (82) the right-hand side of (12) tends to a finite limit
as n → ∞, so from (12) we see that limn→∞ u0(n) = −∞. Hence by Lemma 3 ap-
plied to (11) with k = 1 we have limn→∞ u1(n) = −∞. Applying Lemma 3 again
to (11) with k = 2 we find limn→∞ u2(n) = −∞. Repeating the same argument we
conclude that limn→∞ u3(n) = −∞ which implies that limn→∞ yn = −∞. However,
this contradicts the positivity of yn. Hence (131) is impossible. Now letting n → ∞
in (12) and using (132) we see that limn→∞ u0(n) is finite. From Lemma 4 applied to
(10) with k = 1 it follows that limn→∞ u1(n) exists in R∗. This limit must be finite
since limn→∞ u1(n) = −∞ would imply limn→∞ yn = −∞ which is a contradiction,
and limn→∞ u1(n) = ∞ would imply limn→∞ yn = ∞ which is a contradiction to the
boundedness of yn. Repeating the same argument we conclude that limn→∞ u3(n) is
finite. Hence limn→∞ yn exists as a finite number. On the other hand, from (81) and
(132) we see that limn→∞ yn = 0. Therefore we conclude that yn → 0 as n →∞

We conclude this section with the following example.

Example 2. Consider the difference equation

∆
(
2n∆(2n∆(2n∆yn))

)
+ 8ny3

n+1 =
1
8

(n ≥ 0). (14)

In this case ρ1(n) = 1
2n , ρ2(n) = 1

3

(
1
4n

)
, ρ3(n) = 1

21

(
1
8n

)
. Since all conditions of Theorem

5 are satisfied, every non-oscillatory solution of equation (14) tends to zero as n →∞.
Especially, this equation has the non-oscillatory solution {yn} =

{
1
2n

}
which tends to

zero as n →∞.
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