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Some Definite Integrals
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Abstract. The authors aim at deriving a family of series representations for ζ(2n+1) (n ∈ N)
by evaluating certain trigonometric integrals in several different ways. They also show how the
results presented in this paper relate to those that were obtained in other works. Finally, some
illustrative computational examples, using Mathematica (Version 4.0) for Linux, are considered.
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1. Introduction

The Riemann Zeta function ζ(s) and the Hurwitz (generalized) Zeta function ζ(s, a),
which are defined usually by

ζ(s) =





∞∑
n=1

1
ns = 1

1−2−s

∞∑
n=1

1
(2n−1)s if <(s) > 1

1
1−21−s

∞∑
n=1

(−1)n−1

ns if <(s) > 0 (s 6= 1)
(1.1)

and

ζ(s, a) =
∞∑

n=0

1
(n + a)s

(<(s) > 1; a /∈ −N0), (1.2)

can indeed be extended meromorphically to the whole complex s-plane except for a
simple pole at s = 1 with residue 1 (see, for details, Titchmarsh [23]), N0 being the set
of nonnegative integers. It is easily seen from (1.1) and (1.2) that

ζ(s, 1) = ζ(s) = (2s − 1)−1ζ(s, 1
2 )

ζ(s, 2) = ζ(s)− 1

}
. (1.3)
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In recent years there has been a renewed interest in representing ζ(2n+1) (n ∈ N),
N being the set of positive integers, by means of series which converge more rapidly than
the defining series in (1.1). These developments seem to have stemmed from the use of
the familiar series representation (see, e.g., Hjortnaes [14] and Gosper [11]):

ζ(3) =
5
2

∞∑

k=1

(−1)k−1

k3( 2k
k )

(1.4)

in Apéry’s proof [2] of the irrationality of ζ(3), as well as from Ewell’s yet another redis-
covery [8] of Euler’s formula (see, e.g., Ayoub [3: pp. 1084 - 1085]; see also Ramaswami
[19] and Srivastava [20: p. 7/Equation (2.23)]):

ζ(3) = −4π2

7

∞∑

k=0

ζ(2k)
(2k + 1)(2k + 2)22k

. (1.5)

The works of (among others) Ewell [9], Da̧browski [7], Zhang and Williams [24],
Cvijović and Klinowski [6], and Srivastava [21, 22] may be cited in connection with
the aforementioned developments.

The main object of this paper is to derive a family of series representations for
ζ(2n + 1) (n ∈ N) by evaluating certain trigonometric integrals in several different
ways and to show how the results presented here relate to those that were obtained
in other works. We also consider some illustrative computational examples by using
Mathematica (Version 4.0) for Linux.

2. A cosecant integral and its consequences

We begin by considering the cosecant integral

Is(ω) =
∫ π/ω

0

ts csc2 t dt (<(s) > 1; ω > 1) (2.1)

which, upon integration by parts, readily yields

Is(ω) = −
(π

ω

)s

cot
(π

ω

)
+ s

∫ π/ω

0

ts−1 cot t dt (<(s) > 1; ω > 1). (2.2)

The cotangent integral in (2.2) can, in fact, be evaluated in several different ways. First
of all, since (cf., e.g., Magnus et al. [17: p. 36])

z cot z = −2
∞∑

k=0

ζ(2k)
( z

π

)2k

(|z| < π), (2.3)

we find from (2.2) that

Is(ω) = −
(π

ω

)s

cot
(π

ω

)
− 2s

(π

ω

)s−1 ∞∑

k=0

ζ(2k)
(s + 2k − 1)ω2k

(2.4)



The Riemann Zeta Function 833

for <(s) > 1 and ω > 1. In its special case when ω = 2, the integral formula (2.4)
reduces immediately to the form:

∫ π/2

0

ts csc2 t dt = −2s
(π

2

)s−1 ∞∑

k=0

ζ(2k)
(s + 2k − 1)22k

(<(s) > 1) (2.5)

which, for s ∈ N \ {1}, appears in the works of (for example) Glasser [10: p. 446/Equa-
tion (11)] and Prudnikov et al. [18: p. 388/Entry (2.5.4.6)] (see also Gradshteyn and
Ryzhik [12: p. 418/Entry 3.748(2)]). Furthermore, if we set ω = 4 in (2.4), we shall
readily obtain the special case

∫ π/4

0

ts csc2 t dt = −
(π

4

)s

− 2s
(π

4

)s−1 ∞∑

k=0

ζ(2k)
(s + 2k − 1)42k

(<(s) > 1) (2.6)

which, for s ∈ N \ {1}, is recorded (among other places) in Prudnikov et al. [18: p.
388/Entry (2.5.4.1)] (see also Gradshteyn and Ryzhik [12: p. 418/Entry 3.748(3)]).

The integral formula (2.4) also simplifies when ω = 3 and ω = 6, giving us the
special cases

∫ π/3

0

ts csc2 t dt = − 1√
3

(π

3

)s

− 2s
(π

3

)s−1 ∞∑

k=0

ζ(2k)
(s + 2k − 1)32k

(2.7)

and ∫ π/6

0

ts csc2 t dt = −
√

3
(π

6

)s−1

− 2s
(π

6

)s−1 ∞∑

k=0

ζ(2k)
(s + 2k − 1)62k

(2.8)

for <(s) > 1, which do not seem to have been recorded earlier.
Next, in terms of the incomplete Gamma function γ(z, α) defined by

γ(z, α) =
∫ α

0

tz−1e−tdt (<(z) > 0; | arg(α)| ≤ π − ε; 0 < ε < π), (2.9)

it is easily seen that

∫ τ

0

tλ−1e−µtdt = µ−λ γ(λ, µτ) (<(λ) > 0). (2.10)

Thus, by writing

cot t = i

(
1 +

2
e2it − 1

)
(i =

√−1) (2.11)

and making use of (2.10), it is not difficult to deduce from (2.2) that

Is(ω) = −
(π

ω

)s [
cot(

π

ω
) + i

]
− 2is

∞∑

k=1

γ(s,−2kπi/ω)
(−2ki)s

(2.12)
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for <(s) > 1 and ω > 1. Setting s = 2n (n ∈ N) and noting that (cf., e.g., [12: p.
940/Entry 8.532(1)]

γ(m + 1, α) = m!

(
1− e−α

m∑

j=0

αj

j!

)
(m ∈ N0), (2.13)

(2.12) yields the integral formula

I2n(ω) = −
(π

ω

)2n

cot
(π

ω

)

− (2n)!
(π

ω

)2n−1
[

1
(2n− 1)!

∞∑

k=1

cos(2kπ/ω)
k

+
n−1∑

j=1

(−1)j

(2n− 2j − 1)!

( ω

2π

)2j ∞∑

k=1

cos(2kπ/ω)
k2j+1

+
n∑

j=1

(−1)j

(2n− 2j)!

( ω

2π

)2j−1 ∞∑

k=1

sin(2kπ/ω)
k2j




(2.14)

for n ∈ N and ω > 1, it being assumed here and throughout this paper that an empty
sum is (as usual) nil. On the other hand, if we set s = 2n + 1 (n ∈ N) in (2.12) and
apply the reduction formula (2.13), we shall obtain

I2n+1(ω) = −
(π

ω

)2n+1

cot
(π

ω

)
+ (−1)n (2n + 1)!

22n
ζ(2n + 1)

− (2n + 1)!
(π

ω

)2n
[

1
(2n)!

∞∑

k=1

cos(2kπ/ω)
k

+
n∑

j=1

(−1)j

(2n− 2j)!

( ω

2π

)2j ∞∑

k=1

cos(2kπ/ω)
k2j+1

+
n∑

j=1

(−1)j

(2n− 2j + 1)!

( ω

2π

)2j−1 ∞∑

k=1

sin(2kπ/ω)
k2j




(2.15)

for n ∈ N and ω > 1. Since (cf., e.g., [13: p. 239/Entry 17.2.5)] with y = 0)
∞∑

k=1

cos(kx)
k

= − log
[
2 sin

(
1
2
x

)]
(0 < x < 2π), (2.16)

in terms of the generalized Clausen functions C`2n and C`2n+1 defined by (cf. Lewin
[16: p. 191/Equations (7.9) and (7.10)])

C`2n(x) =
∞∑

k=1

sin(kx)
k2n

C`2n+1(x) =
∞∑

k=1

cos(kx)
k2n+1





(n ∈ N), (2.17)
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it is easily seen from our evaluations (2.4), (2.14), and (2.15) that, for n ∈ N and ω > 1,
∞∑

k=0

ζ(2k)
(2k + 2n− 1)ω2k

= −1
2

log
[
2 sin

(π

ω

)]

+
(2n− 1)!

2




n−1∑

j=1

(−1)j

(2n− 2j − 1)!

( ω

2π

)2j

C`2j+1

(
2π

ω

)

+
n∑

j=1

(−1)j

(2n− 2j)!

( ω

2π

)2j−1

C`2j

(
2π

ω

)


(2.18)

and ∞∑

k=0

ζ(2k)
(2k + 2n)ω2k

= (−1)n−1 (2n)!
22n+1

(ω

π

)2n

ζ(2n + 1)− 1
2

log
[
2 sin

(π

ω

)]

+
(2n)!

2

n∑

j=1

(−1)j

(2n− 2j + 1)!

( ω

2π

)2j

×
[
(2n− 2j + 1)C`2j+1

(
2π

ω

)
+

2π

ω
C`2j

(
2π

ω

)]
.

(2.19)

In its special case when n = 1, (2.18) would readily yield a known result [13: p. 356/En-
try (54.5.4)] in the form

∞∑

k=0

ζ(2k)
(2k + 1)ω2k

= −1
2

log
[
2 sin

(π

ω

)]
− ω

4π
C`2

(
2π

ω

)
(ω > 1). (2.20)

Moreover, since [16: pp. 103 - 104/Equations (4.14) and (4.15)]

C`2

(
1
2
π

)
= G = −C`2

(
3
2
π

)
, (2.21)

where G denotes Catalan’s constant defined by

G : =
∞∑

k=0

(−1)k

(2k + 1)2

= −
∫ π/2

0

log
[
2 sin

(
1
2
t

)]
dt

∼= 0.915965594177219015...,

(2.22)

by setting ω = 4 and ω = 4
3 in (2.20), we obtain its further special cases

∞∑

k=0

ζ(2k)
(2k + 1)42k

= −G

π
− 1

4
log 2 (2.23)
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and ∞∑

k=0

ζ(2k)
2k + 1

(
3
4

)2k

=
G

3π
− 1

4
log 2 (2.24)

in terms of the Catalan constant G defined by (2.22).

3. Series representations for ζ(2n + 1)

In every situation in which the Clausen functions C`2n and C`2n+1 can be expressed
in closed forms, each of our formulas (2.18) and (2.19) will readily yield a series repre-
sentation for ζ(2n + 1) (n ∈ N). We begin by considering the following rather simple
special case.

Case 1. Let ω = 2. It immediately follows from the definitions (1.1) and (2.17)
that

C`2n(π) = 0

C`2n+1(π) = (2−2n − 1) ζ(2n + 1)

}
(n ∈ N). (3.1)

Thus the formulas (2.18) and (2.19) yield the series representations

ζ(2n + 1) = (−1)n−1 (2π)2n

(2n + 1)!(22n − 1)

[
log 2 + 2

∞∑

k=0

ζ(2k)
(2k + 2n + 1)22k

+(2n + 1)!
n−1∑

j=1

(−1)j

(2n− 2j + 1)!

(
22j − 1
(2π)2j

)
ζ(2j + 1)




(3.2)

and

ζ(2n + 1) = (−1)n−1 (2π)2n

(2n)!(22n+1 − 1)

[
log 2 +

∞∑

k=0

ζ(2k)
(k + n)22k

+(2n)!
n−1∑

j=1

(−1)j

(2n− 2j)!

(
22j − 1
(2π)2j

)
ζ(2j + 1)




(3.3)

for n ∈ N, respectively. In its special case when n = 1, the result (3.2) immediately
reduces to the following series representation for ζ(3):

ζ(3) =
2π2

9

(
log 2 + 2

∞∑

k=0

ζ(2k)
(2k + 3)22k

)
(3.4)

which was proven independently by (among others) Glasser [10: p. 446/Equation (12)],
Zhang and Williams [24: p. 1585/Equation (2.13)], and Da̧browski [7: p. 206] (see also
Chen and Srivastava [5: p. 183/Equation(2.15)]). And a special case of (3.3) when n = 1
yields (cf. Da̧browski [7: p. 202]; see also Chen and Srivastava [5: p. 191/Equation
(3.19)])

ζ(3) =
2π2

7

(
log 2 +

∞∑

k=0

ζ(2k)
(k + 1)22k

)
. (3.5)
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In view of the known sum:

∞∑

k=0

ζ(2k)
(2k + 1)22k

= −1
2

log 2, (3.6)

which incidentally results also from (2.18) in the special case when ω = 2 and n = 1,
Euler’s formula (1.5) is indeed a simple consequence of (3.5).

We remark in passing that an integral representation for ζ(2n + 1), which is easily
seen to be equivalent to the series representation (3.3), was given by Da̧browski [7: p.
203/Equation (16)], who [7: p. 206] mentioned the existence of (but did not fully state)
the series representation (3.2) as well. The series representation (3.3) is derived also in
a forthcoming paper by Borwein et al. (cf. [4: Equation (57)]).

The generalized Clausen function C`2n+1 defined in (2.17) is known to be expressible
in a closed form in at least three other cases, and we find for n ∈ N that (cf. Lewin [16:
p. 198])

C`2n+1

(
1
2
π

)
= −2−2n−1(1− 2−2n)ζ(2n + 1) (3.7)

C`2n+1

(
1
3
π

)
=

1
2
(1− 2−2n)(1− 3−2n)ζ(2n + 1) (3.8)

C`2n+1

(
2
3
π

)
= −1

2
(1− 3−2n)ζ(2n + 1). (3.9)

With a view to evaluating the generalized Clausen function C`2n, also defined in
(2.17), when x = 1

2π, x = 1
3π and x = 2

3π, we recall the following result recorded (for
example) by Hansen [13: p. 223/Entry (14.4.3)]:

∞∑

k=1

sin(kx + y)
ks

=
(2π)s

2Γ(s)
csc(πs)

[
cos

(
y − 1

2
πs

)
ζ

(
1− s,

x

2π

)

− cos
(

y +
1
2
πs

)
ζ

(
1− s, 1− x

2π

)] (3.10)

for <(s) > 1 and 0 < x < 2π. By setting x = 2π
ω (ω > 1) and y = 0, (3.10) reduces at

once to the form:

∞∑

k=1

sin(2kπ/ω)
ks

=
(2π)s

4Γ(s)
csc

(
1
2
πs

)[
ζ

(
1− s,

1
ω

)
− ζ

(
1− s, 1− 1

ω

)]
(3.11)

for <(s) > 1 and ω > 1. Now, by making use of the identity:

ζ(s) =
1

qs − 1

q−1∑

j=1

ζ

(
s,

j

q

)
(q ∈ N \ {1}), (3.12)
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which follows readily from the definitions (1.1) and (1.2), the Rademacher formula (cf.,
e.g., Magnus et al. [17: p. 23])

ζ

(
s,

p

q

)
= 2Γ(1− s)(2qπ)s−1

×

sin

(
1
2
πs

) q∑

j=1

cos
(

2pjπ

q

)
ζ

(
1− s,

j

q

)

+cos
(

1
2
πs

) q∑

j=1

sin
(

2pjπ

q

)
ζ

(
1− s,

j

q

)


(3.13)

for p, q ∈ N, as well as the familiar special case of (3.13) when p = q = 1

ζ(s) = 2(2π)s−1 sin
(

1
2
πs

)
Γ(1− s)ζ(1− s) (3.14)

or, equivalently,

ζ(1− s) = 2(2π)−s cos
(

1
2
πs

)
Γ(s)ζ(s), (3.15)

we find from (3.11) and the relevant definition in (2.17) that, for n ∈ N,

C`2n

(
1
2
π

)
= 21−4nζ

(
2n,

1
4

)
− (1− 2−2n)ζ(2n) (3.16)

C`2n

(
1
3
π

)
=
√

3
[
6−2n

{
ζ

(
2n,

1
3

)
+ ζ

(
2n,

1
6

)}
− 1− 3−2n

2
ζ(2n)

]
(3.17)

C`2n

(
2
3
π

)
=
√

3
[
3−2nζ

(
2n,

1
3

)
− 1− 3−2n

2
ζ(2n)

]
(3.18)

in which each ζ(2n) can be replaced by its value in terms of the Bernoulli numbers B2n

by appealing to the well-known relationship (cf., e.g., [17: p. 19]):

ζ(2n) = (−1)n+1 (2π)2n

2(2n)!
B2n (n ∈ N0). (3.19)

Much more general trigonometric sums than the ones involved in (3.7) to (3.9) and
(3.16) to (3.18) can also be evaluated by applying the aforementioned technique or
(alternatively) by appealing appropriately to the elementary series identity:

∞∑

k=1

f(k) =
q∑

j=1

∞∑

k=0

f(qk + j) (q ∈ N) (3.20)

and its straightforward consequence (3.12). Thus, for example, we can derive a gener-
alization of (3.7) in the form:

∞∑

k=1

cos( 1
2kπ)

ks
= −2−s(1− 21−s) ζ(s) (<(s) > 1), (3.21)
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which immediately yields (3.7) in the special case when s = 2n+1 (n ∈ N). Analogous
generalizations of the remaining evaluations of the Clausen functions C`2n+1 and C`2n

can be derived similarly; we choose to skip the details involved.

In view of the evaluations (3.7) to (3.9) and (3.16) to (3.18), we are led easily to
the following additional special cases of our general results (2.18) and (2.19).

Case 2. Let ω = 3. Then, by making use of (3.9) and (3.18) in each of our formulas
(2.18) and (2.19), we obtain the series representations

ζ(2n + 1) = (−1)n−1 (2π)2n

(2n + 1)!(32n − 1)

[
log 3 + 4

∞∑

k=0

ζ(2k)
(2k + 2n + 1)32k

+ (2n + 1)!
n−1∑

j=1

(−1)j

(2n− 2j + 1)!

(
32j − 1
(2π)2j

)
ζ(2j + 1)

− (2n + 1)!√
3

n+1∑

j=1

(−1)j

(2n− 2j + 2)!
2ζ

(
2j, 1

3

)− (
32j − 1

)
ζ(2j)

(2π)2j−1




(3.22)

and

ζ(2n + 1) = (−1)n−1 (2π)2n

(2n)!(32n+1 − 1)

[
log 3 + 2

∞∑

k=0

ζ(2k)
(k + n)32k

+ (2n)!
n−1∑

j=1

(−1)j

(2n− 2j)!

(
32j − 1
(2π)2j

)
ζ(2j + 1)

− (2n)!√
3

n∑

j=1

(−1)j

(2n− 2j + 1)!
2ζ

(
2j, 1

3

)− (
32j − 1

)
ζ(2j)

(2π)2j−1




(3.23)

for n ∈ N. In particular, when n = 1, (3.22) and (3.23) yield the following (presumably
new) series representations for ζ(3):

ζ(3) =
π2

12

[
log 3 + 4

∞∑

k=0

ζ(2k)
(2k + 3)32k

+2
√

3
2∑

j=1

(−1)j−1

(4− 2j)!
2ζ(2j, 1

3 )− (32j − 1)ζ(2j)
(2π)2j−1




(3.24)

and

ζ(3) =
π2

13

[
log 3 + 2

∞∑

k=0

ζ(2k)
(k + 1)32k

+
2

π
√

3

{
ζ

(
2,

1
3

)
− 4ζ(2)

}]
. (3.25)
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Case 3. Let ω = 4. Then, by applying the evaluations (3.7) and (3.16) in each of
our formulas (2.18) and (2.19), we obtain the series representations

ζ(2n + 1) = (−1)n−1 (2π)2n

(2n + 1)!(22n − 1)

[
log 2 + 4

∞∑

k=0

ζ(2k)
(2k + 2n + 1)42k

+ (2n + 1)!
n−1∑

j=1

(−1)j

(2n− 2j + 1)!

(
22j − 1
(2π)2j

)
ζ(2j + 1)

−(2n + 1)!
n+1∑

j=1

(−1)j

(2n− 2j + 2)!
ζ

(
2j, 1

4

)− 22j−1
(
22j − 1

)
ζ(2j)

(2π)2j−1




(3.26)

and

ζ(2n + 1) = (−1)n−1 (2π)2n

(2n)!(24n+1 + 22n − 1)

[
log 2 + 2

∞∑

k=0

ζ(2k)
(k + n)42k

+ (2n)!
n−1∑

j=1

(−1)j

(2n− 2j)!

(
22j − 1
(2π)2j

)
ζ(2j + 1)

−(2n)!
n∑

j=1

(−1)j

(2n− 2j + 1)!
ζ

(
2j, 1

4

)− 22j−1
(
22j − 1

)
ζ(2j)

(2π)2j−1




(3.27)

for n ∈ N. In their special cases when n = 1, (3.26) and (3.27) yield the following
(presumably new) series representations for ζ(3):

ζ(3) =
2π2

9

[
log 2 + 4

∞∑

k=0

ζ2k)
(2k + 3)42k

+6
2∑

j=1

(−1)j−1

(4− 2j)!
ζ

(
2j, 1

4

)− 22j−1
(
22j − 1

)
ζ(2j)

(2π)2j−1




(3.28)

and

ζ(3) =
2π2

35

[
log 2 + 2

∞∑

k=0

ζ(2k)
(k + 1)42k

+
1
π

{
ζ

(
2,

1
4

)
− 6ζ(2)

}]
. (3.29)

Case 4. Let ω = 6. Then, in view of the evaluations (3.8) and (3.17), our formulas
(2.18) and (2.19) give us the series representations

ζ(2n + 1)

= (−1)n−1 (2π)2n

(22n − 1)(32n − 1)

[
− 4

(2n + 1)!

∞∑

k=0

ζ(2k)
(2k + 2n + 1)62k

+
n−1∑

j=1

(−1)j

(2n− 2j + 1)!

(
(22j − 1)(32j − 1)

(2π)2j

)
ζ(2j + 1)

+
1√
3

n+1∑

j=1

(−1)j

(2n− 2j + 2)!
ζ

(
2j, 1

3

)
+ ζ

(
2j, 1

6

)− 22j−1(32j − 1)ζ(2j)
(2π)2j−1




(3.30)
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and

ζ(2n + 1)

= (−1)n−1 (2π)2n

22n + 32n + 62n − 1

[
2

(2n)!

∞∑

k=0

ζ(2k)
(k + n)62k

−
n−1∑

j=1

(−1)j

(2n− 2j)!

(
(22j − 1)(32j − 1)

(2π)2j

)
ζ(2j + 1)

− 1√
3

n∑

j=1

(−1)j

(2n− 2j + 1)!
ζ

(
2j, 1

3

)
+ ζ

(
2j, 1

6

)− 22j−1(32j − 1)ζ(2j)
(2π)2j−1




(3.31)

for n ∈ N. In their special cases when n = 1, these last results (3.30) and (3.31) yield
the following (presumably new) series representations for ζ(3):

ζ(3) = −π2

18

[
2
∞∑

k=0

ζ(2k)
(2k + 3)62k

+
√

3
2∑

j=1

(−1)j−1

(4− 2j)!
ζ(2j, 1

3 ) + ζ(2j, 1
6 )− 22j−1(32j − 1)ζ(2j)
(2π)2j−1




(3.32)

and

ζ(3) =
π2

12

[ ∞∑

k=0

ζ(2k)
(k + 1)62k

+
1

2π
√

3

{
ζ

(
2,

1
3

)
+ ζ

(
2,

1
6

)
− 16ζ(2)

}]
. (3.33)

4. An alternative derivation of the series representation (3.2)

In view of the following known representation of ζ(s) as a Mellin transform [17: p. 21]:

ζ(s) =
2s−1

(1− 21−s)Γ(s + 1)

∫ ∞

0

tssech2t dt (<(s) > −1; s 6= 1), (4.1)

we propose to give here an interesting alternative derivation of the very first of the set
of eight series representations for ζ(2n + 1) (n ∈ N) which we have presented in the
preceding section. Indeed, from the work of Glasser [10: p. 445/Equation (4) with
α → 0], it is known also that

I : =
∫ ∞

0

(tan−1 z)2n

z2
dz

=
∫ π/2

0

t2n csc2 t dt

= (−1)n 21−2n=
{∫ 1

0

(log u− iπ)2n

(u + 1)2
du

}
(4.2)
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for n ∈ N. Now evaluate the cosecant integral in (4.2) by means of the known result
(2.5) with s = 2n (n ∈ N). Thus, by setting log u = −2t, we find from the last member
of (4.2) that

∞∑

k=0

ζ(2k)
(2k + 2n− 1)22k

=
(−1)n−1

4n

(
2
π

)2n−1

=
{∫ ∞

0

(
t +

1
2
iπ

)2n

sech2t dt

}
(4.3)

for n ∈ N. By the binomial expansion, we find for n ∈ N0 that

(
t +

1
2
iπ

)2n

=
2n∑

k=0

(
2n

k

)
tk

(
1
2
iπ

)2n−k

=
n∑

j=0

(−1)n−j

(
2n

2j

)
t2j

(π

2

)2n−2j

− i

n−1∑

j=0

(−1)n−j

(
2n

2j + 1

)
t2j+1

(π

2

)2n−2j−1

(4.4)

where, as also elsewhere in this work, an empty sum is interpreted to be nil. Upon
replacing n in (4.3) by n + 1 and making use of (4.4), we obtain, for n ∈ N0,

∞∑

k=0

ζ(2k)
(2k + 2n + 1)22k

=
1
2

n∑

j=0

(−1)j−1

2j + 1

(
2n + 1

2j

)(
2
π

)2j ∫ ∞

0

t2j+1sech2t dt. (4.5)

The infinite integral in (4.5) can be evaluated by means of the known result (4.1) except
when j = 0, in which case it is easily seen by integrating by parts that (cf. [12: p.
353/Entry 3.527(4)])

∫ ∞

0

t sech2t dt = lim
t→∞

(t tanh t− log cosh t) = log 2. (4.6)

We thus find from (4.5) that

∞∑

k=0

ζ(2k)
(2k + 2n + 1)22k

=
1
2

n∑

j=1

(−1)j−1

(
2n + 1

2j

)
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)− 1

2
log 2

(4.7)

for n ∈ N0.
For n = 0, (4.7) immediately yields the known sum (3.6), which (as we observed

in the proceding section) is derivable also from (2.18) for ω = 2 and n = 1. More
interestingly, just as we indicated in Section 3, since

1
(2k + 1)(2k + 2)

=
1

2k + 1
− 1

2k + 2
, (4.8)
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by suitably combining the series representation (3.5) with (3.6), we can easily deduce
Euler’s formula (1.5). In the case when n ∈ N, by separating the term for j = n in (4.7),
we readily obtain the desired series representation (3.2) in its (obviously equivalent)
form:

ζ(2n + 1) = (−1)n−1 (2π)2n

(2n + 1)!(22n − 1)

[
log 2 + 2

∞∑

k=0

ζ(2k)
(2k + 2n + 1)22k

+
n−1∑

j=1

(−1)j−1

(
2n + 1

2j

)
(2j)!(22j − 1)

(2π)2j
ζ(2j + 1)




(4.9)

for n ∈ N.

5. A unification of the series evaluations (2.18) and (2.19)

With a view to unifying the series evaluations (2.18) and (2.19), we begin by considering
the formulas (2.2) and (2.4) which readily yield the representation

Sp :=
∞∑

k=0

ζ(2k)
(2k + p)ω2k

= − π

2ω

∫ 1

0

tp cot
(

πt

ω

)
dt (p ∈ N; |ω| > 1) (5.1)

where, for the purpose of this section, we have only considered a special case when s =
p + 1 (p ∈ N). Now change the variable of integration in (5.1) by letting t = − iω

2π log z.
Since ∫ z

1

(log t)p

t
dt =

zp+1

p + 1
(p ∈ N), (5.2)

we thus find from (5.1) that

Sp =
πi

2(p + 1)ω
+

1
2

(
− iω

2π

)p ∫ Ω

1

(log z)p

1− z
dz (p ∈ N; |ω| > 1) (5.3)

where, for convenience,

Ω = exp
(

2πi

ω

)
(|ω| > 1). (5.4)

Finally, by setting z = 1− (1− Ω)t in (5.3), we obtain

Sp =
πi

2(p + 1)ω
− 1

2

(
− iω

2π

)p ∫ 1

0

{
log(1− (1− Ω)t)

}p dt

t
(5.5)

or, equivalently,

∞∑

k=0

ζ(2k)
(2k + p)ω2k

=
πi

2(p + 1)ω
− p!

2

(
iω

2π

)p

S1,p(1− e2πi/ω) (5.6)
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in terms of Nielsen’s generalized Polylogarithmic function Sn,p defined, for n, p ∈ N and
z ∈ C, by (cf., e.g., Kölbig [15: p. 1233/Equation (1.3)])

Sn,p(z) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0

(log t)n−1{log(1− zt)}p dt

t
, (5.7)

which is known to play a role in the computation of higher-order radiative corrections
in quantum electrodynamics. For the ordinary Polylogarithmic function Lin defined,
for n ∈ N \ {1} and z ∈ C, by

Lin(z) =
(−1)n−1

(n− 2)!

∫ 1

0

(log t)n−1 log(1− zt)
dt

t
= Sn−1,1(z) (5.8)

or, more generally, by

Lis(z) =
∞∑

k=1

zk

ks
(s ∈ C when |z| < 1; R(s) > 1 when |z| = 1), (5.9)

it is known that (cf. [15: p. 1240/Equation (5.6)])

S1,p(z) = ζ(p + 1) +
p∑

k=0

(−1)k−1

k!
{log(1− z)}k Lip−k+1(1− z). (5.10)

Thus, in view of (5.10), we have proved the following unification of our series evaluations
(2.18) and (2.19):

∞∑

k=0

ζ(2k)
(2k + p)ω2k

=
πi

2(p + 1)ω

− 1
2

log(1− e2πi/ω)− p!
2

(
iω

2π

)p

ζ(p + 1)

+
1
2

p∑

k=1

(p

k

)
k!

(
iω

2π

)k

Lik(e2πi/ω)

(5.11)

for p ∈ N and |ω| > 1. In view of (5.1), this last result (5.11) immediately yields the
integral formula:

∫ 1

0

tp cot(νt) dt = − i

p + 1
+

1
ν

log(1− e2νi)

+
p!
ν

(
i

2ν

)p

ζ(p + 1)

− 1
ν

p∑

k=1

(p

k

)
k!

(
i

2ν

)k

Lik+1(e2νi)

(5.12)

for p ∈ N and ν ∈ C \ {0}.
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There is yet another approach for the derivation of a closed-form expression for the
infinite series in (5.11). This general (generating-function) approach is based upon a fa-
miliar integral representation for the Zeta function; it was fully described and illustrated
by Adamchik and Srivastava [1], whose technique is also implemented in Mathematica
(Version 3.0). Here we choose to present three examples which demonstrate how Math-
ematica (Version 4.0) for Linux can be used to evaluate the infinite series in (5.11) for
certain values of the parameters p and ω:

In[1] : = Sum
[
Zeta[2k]/((2k + 1)2q(2k)), {k, 1, Infinity}]

Out[1] =
1− Log[2]

2
In[2] : = Sum

[
Zeta[2k]/((2k + 2)2q(2k)), {k, 1, Infinity}]

Out[2] =
Pi2 − 2Pi2Log[2] + 7Zeta[3]

4Pi2

In[3] : = Sum
[
Zeta[2k]/((2k + 3)2q(2k)), {k, 1, Infinity}]

Out[3] =
2Pi2 − 6Pi2Log[2] + 27Zeta[3]

12Pi2

Since ζ(0) = − 1
2 , these examples completely agree with the special cases (3.6), (3.5),

and (3.4), respectively, which have already been shown here to follow from our general
series representations considered in Section 3.
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