On the Existence of C^1 Functions with Perfect Level Sets

E. D'Aniello and U. B. Darji

Abstract. Given a closed set $M \subset [0, 1]$ of Lebesgue measure zero, we construct a C^1 function f with the property that $f^{-1}(\{y\})$ is a perfect set for every y in M.

Keywords: Level sets, C^1 functions

AMS subject classification: 26 A 30

1. Introduction

Bruckner and Garg in [1] give a full description of the level set structure of a typical continuous function. In [2] the description of the level set structure of a typical C^1 function is given. It follows from [2: Theorem 2] that a typical C^1 function is either strictly monotone or has the property that all of its level sets are countable.

In this article we investigate the behaviour of C^1 functions in the other direction. It is easy to show that given a C^1 function $f : [0,1] \to [0,1]$, the set of points where the level sets of f are uncountable has Lebesgue measure zero [3: p. 226/Lemma 6.3]. We show that given a closed set $M \subset [0,1]$ of Lebesgue measure zero, there exists a C^1 function $f : [0,1] \to [0,1]$ with the property that $f^{-1}(\{y\})$ is a perfect set for every yin M as well as finite for every y in $[0,1] \setminus M$.

2. Preliminaries

In this section a few definitions, notations and lemmas are stated that are used throughout the article.

Definition 2.1. A subset $B \subseteq \mathbb{R}^2$ is a *box* if $B = I \times J$ for some compact intervals I and J of the real line \mathbb{R} . A *signed box* is an ordered pair (B, *) where B is a box and $* \in \{+, -\}$. We will generally use B^* to denote the signed box (B, *).

E. D'Aniello: University "Federico II", Dept. Math. & Appl., Via Cintia, Complesso Monte S.Angelo, 80126 Naples, Italy; daniel@matna2.dma.unina.it

U. B. Darji: Dept. Math. Univ., Louisville, KY 40292, USA; ubdarj01@athena.louisville.edu. The author would like to thank the University of Naples for its hospitality during his stay.

Research partially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Italy) and by Gruppo Nazionale di Analisi Funzionale e Applicazioni del CNR

Throughout π_1 and π_2 will be the coordinate projections. We shall say that two intervals of the real line are *disjoint* if their intersection is empty or coincides with a single point.

Definition 2.2. Let $B = [a, b] \times [c, d]$ be a box. A C^1 function $f : [a, b] \to [c, d]$ is diagonal to B^+ , denoted by $f \square B^+$, if

1. f is increasing on [a, b] with f(a) = c and f(b) = d

2. f'(a) = f'(b) = 0

where by the derivatives at the end points we mean the right and the left derivatives, respectively. Further, we say that f is *diagonal to* B^- , denoted by $f \square B^-$, if condition (2) above is satisfied and the condition

3. f is decreasing on [a, b] with f(a) = d and f(b) = c

is satisfied. Finally, we say that f is diagonal to B, denoted by $f \square B$, if $f \square B^+$ or $f \square B^-$. If $f \square B^*$, we say that * is the sign induced on B by f.

Definition 2.3. Let $B = I \times J$ be a box. Then the *slope* of B, denoted by sl(B), is $\frac{\lambda(J)}{\lambda(I)}$.

The proof of the following lemma is a very easy exercise.

Lemma 2.4. Let B^* be a signed box and $\varepsilon > 0$. Then there exists a C^1 function f such that $f \Box B^*$ and $|f'(x)| < \operatorname{sl}(B) + \varepsilon$ for all $x \in \pi_1(B)$.

Definition 2.5. Let $B = I \times J$ be a box. We say:

(i) $f: I \to J$ is jagged inside B^+ if $f|_{B_L} \square B_L^+$, $f|_{B_M} \square B_M^-$ and $f|_{B_R} \square B_R^+$, where $B_i = I_i \times J$ and $\{I_L, I_M, I_R\}$ is the partition of I into three equal pieces ordered from the left to the right.

(ii) f is jagged inside B^- if $f|_{B_L} \square B_L^-$, $f|_{B_M} \square B_M^+$ and $f|_{B_R} \square B_R^-$, where the B_i 's are the same as above.

(iii) f is jagged inside B if f is jagged inside B^+ or B^- .

We call $\{B_L, B_M, B_R\}$ vertical splitting of B into three equal pieces.

Lemma 2.6. Let B^* be a signed box and $\varepsilon > 0$. Then there is a C^1 function g jagged inside B^* such that $|g'(x)| < 3 \operatorname{sl}(B) + \varepsilon$ for all $x \in \pi_1(B)$.

Proof. If * = +, we apply Lemma 2.4 to B_L^+ , B_M^- and B_R^+ . If * = -, we apply Lemma 2.4 to B_L^- , B_M^+ and $B_R^- \blacksquare$

3. Proof of the main result

In this section we first prove a lemma essential to our main result.

Lemma 3.1. Suppose B is a box, * is a sign (i.e. $* \in \{+, -\}$), $M \subseteq \pi_2(B)$ is a closed set with $\lambda(M) = 0$, N > 0 is an integer and $\delta > 0$. Then there exist a C^1 function h and a sequence of pairwise disjoint boxes B_1, \ldots, B_n contained in B such that:

1. $h \square B^*$. 2. $M \subseteq \pi_2(\cup_{i=1}^n B_i), \pi_2(B_i) \cap M \neq \emptyset, and \lambda(\cup_{i=1}^n \pi_2(B_i)) < \delta$. 3. $\{\pi_2(B_i)\}$ is a pairwise disjoint finite sequence, and so is $\{\pi_1(B_i)\}$. 4. $\mathrm{sl}(B_i) = \frac{1}{N} \quad (1 \le i \le n)$. 5. $h|_{B_i} \square B_i^* \quad (1 \le i \le n)$. 6. $|h'(x)| < \mathrm{sl}(B) + \delta$ for all $x \notin \cup_{i=1}^n \pi_1(B_i)$. 7. $|h'(x)| < \frac{1}{N} + \frac{\delta}{2}$ for all $x \in \cup_{i=1}^n \pi_1(B_i)$.

Proof. Let $B = I \times J$, where I = [a, b] and J = [c, d]. Without loss of generality let us assume that * = +. Since M is a closed subset of a compact set and $\lambda(M) = 0$, there exist a finite number of disjoint closed intervals J_1, \ldots, J_n such that $M \subseteq \bigcup_{i=1}^n J_i$, $J_i \cap M \neq \emptyset$, $\lambda(\bigcup_{i=1}^n J_i) < \delta$ and

$$0 < \frac{\lambda(J) - \lambda(\bigcup_{i=1}^{n} J_i)}{\lambda(I) - N\lambda(\bigcup_{i=1}^{n} J_i)} < \frac{\lambda(J)}{\lambda(I)} + \frac{\delta}{2}.$$

We shall find a finite sequence of pairwise disjoint intervals I_1, \ldots, I_n contained in Iand $h \in C^1(I)$ such that

- (i) $\lambda(I_i) = N\lambda(J_i) \quad (1 \le i \le n)$
- (ii) h is diagonal to B^+
- (iii) $h|_{B_i} \square B_i^+$ $(1 \le i \le n)$ where $B_i = I_i \times J_i$
- (iv) $0 \le h'(x) < \frac{\lambda(J) \lambda(\bigcup_{i=1}^n J_i)}{\lambda(I) N\lambda(\bigcup_{i=1}^n J_i)} + \frac{\delta}{2} \quad (x \in I \setminus \bigcup_{i=1}^n I_i).$

Without loss of generality we may assume that $z \ge y$ for all $z \in J_{i+1}$ and all $y \in J_i$ $(1 \le i \le n)$. Let

$$m = \frac{\lambda(J) - \lambda(\bigcup_{i=1}^{n} J_i)}{\lambda(I) - N\lambda(\bigcup_{i=1}^{n} J_i)}$$

and set

$$d_{1} = d(J_{1}, c), \ I_{1} = \left[a + \frac{d_{1}}{m}, a + \frac{d_{1}}{m} + N\lambda(J_{1})\right]$$

$$d_{2} = d(J_{1}, J_{2}), \ I_{2} = \left[a + \frac{d_{1}}{m} + \frac{d_{2}}{m} + N\lambda(J_{1}), a + \frac{d_{1}}{m} + \frac{d_{2}}{m} + N(\lambda(J_{1}) + \lambda(J_{2}))\right]$$

$$\vdots$$

$$d_{n} = d(J_{n-1}, J_{n}), \ I_{n} = \left[a + \sum_{i=1}^{n} \frac{d_{i}}{m} + N\sum_{i=1}^{n-1} \lambda(J_{i}), a + \sum_{i=1}^{n} \frac{d_{i}}{m} + N\sum_{i=1}^{n} \lambda(J_{i})\right].$$

Apply Lemma 2.4 to B_i^+ and δ , and also to $[a, a + \frac{d_1}{m}] \times [c, c + d_1]^+$ and $\frac{\delta}{2}$, to

$$\left[a + \sum_{i=1}^{n} \frac{d_i}{m} + N \sum_{i=1}^{n} \lambda(J_i), b\right] \times [\max J_n, d]^+$$

and $\frac{\delta}{2}$, and to

$$\tilde{B}_t^+ = \left[a + \sum_{i=1}^t \frac{d_i}{m} + N \sum_{i=1}^t \lambda(J_i), a + \sum_{i=1}^{t+1} \frac{d_i}{m} + N \sum_{i=1}^t \lambda(J_i)\right] \times [\max J_t, \min J_{t+1}]^+$$

and $\frac{\delta}{2}$, for $t \in \{1, \ldots, n-1\}$. We paste together the resulting functions and call this function h. Then h is a C^1 function which satisfies the desired properties (1) - (7)

Theorem 3.2. Let $M \subseteq [0,1]$ be a closed set with $\lambda(M) = 0$. Then there exists a C^1 function $f : [0,1] \to [0,1]$, onto, such that $f^{-1}(\{y\})$ is a nowhere dense perfect set for all $y \in M$ as well as finite for all $y \in [0,1] \setminus M$.

Proof. We shall construct the desired function f as C^1 limit of a sequence of piecewise monotone C^1 functions. At stage n we shall have a piecewise monotone function f_n with $f_n(0) = 0$, $f_n(1) = 1$ and a finite collection of boxes. Then f_{n+1} will be an appropriate modification of f_n inside these boxes. This sequence $\{f_n\}$ will be constructed inductively.

Let us first construct f_1 . We apply Lemma 3.1 with $B = [0, 1] \times [0, 1]$, * = +, M = M, $N = 3 \cdot 2$ and $\delta = \frac{1}{2}$ and obtain a function h and a finite collection of boxes B_1, \ldots, B_n which satisfy the conclusions of Lemma 3.1. Using Lemma 2.6 with $\varepsilon = \frac{1}{2}$, for each $i, 1 \leq i \leq n$, we obtain a C^1 function g_i which is jagged inside B_i^+ . Let

$$f_1(x) = \begin{cases} h(x) & \text{if } x \in [0,1] \setminus \bigcup_{i=1}^n \pi_1(B_i) \\ g_i(x) & \text{if } x \in \pi_1(B_i) \text{ for some } i. \end{cases}$$

Now, for each *i*, let $B_{i,L}$, $B_{i,M}$, $B_{i,R}$ be the vertical splitting of B_i into three equal pieces and let $\mathcal{G}_1 = \{B_{i,L}, B_{i,M}, B_{i,R} : 1 \leq i \leq n\}$. At the end of stage 1, the following properties hold:

- 1. f_1 is a piecewise monotone C^1 function with $f_1(0) = 0$ and $f_1(1) = 1$.
- 2. $f_1|_B \square B$ for all $B \in \mathcal{G}_1$.
- 3. $|f'_1(x)| < \operatorname{sl}(B) + \delta = 1 + \frac{1}{2}$ for all $x \in [0,1] \setminus \bigcup_{i=1}^n \pi_1(B_i)$.
- 4. $|f'_1(x)| < 3 \cdot \frac{1}{N} + \delta = 3 \cdot \frac{1}{3 \cdot 2} + \frac{1}{2} = 1$ for all $x \in \bigcup_{i=1}^n \pi_1(B_i)$.

Now let us assume that we are at stage k > 1, f_k and \mathcal{G}_k have been constructed so that the following properties are satisfied:

- (i) $M \subseteq \pi_2(\cup \mathcal{G}_k), \pi_2(B) \cap M \neq \emptyset$ for all $B \in \mathcal{G}_k$, and $\lambda(\pi_2(\cup \mathcal{G}_k)) < \frac{1}{(k+1)!}$.
- (ii) $\operatorname{sl}(B) = \frac{1}{2^k}$ for all $B \in \mathcal{G}_k$.
- (iii) Suppose that $y \in M$ and $B \in \mathcal{G}_{k-1}$ are such that $y \in \pi_2(B)$. Then there exist disjoint boxes B_1 and B_2 in \mathcal{G}_k contained in B such that $y \in \pi_2(B_1) \cap \pi_2(B_2)$.

- (iv) f_k is a piecewise monotone C^1 function with $f_k(0) = 0$ and $f_k(1) = 1$.
- (v) $f_k(x) = f_{k-1}(x)$ if $x \in [0,1] \setminus \pi_1(\cup \mathcal{G}_{k-1})$.
- (vi) $f_k|_B \square B$ for all $B \in \mathcal{G}_k$.
- (vii) $|f'_k(x)| < \frac{1}{2^k} + \frac{1}{2^k}$ for all $x \in \bigcup_{B \in \mathcal{G}_k} \pi_1(B)$.
- (viii) $|f'_k(x)| < \frac{1}{2^{k-1}} + \frac{1}{2^k}$ for all $x \in \pi_1(\cup \mathcal{G}_{k-1}) \setminus \pi_1(\cup \mathcal{G}_k)$.
- (ix) If $(x, f_k(x))$ is such that $f_k(x) \in M$, then $(x, f_k(x)) \in \bigcup \mathcal{G}_k$.

Now we proceed to construct f_{k+1} . Fix a box $B \in \mathcal{G}_k$ and let * be the sign induced on B by $f_k|_B$. Now we apply Lemma 3.1 to B^* , $M \cap \pi_2(B)$, $N = 3 \cdot 2^{k+1}$ and $\delta = \frac{1}{(k+2)!} \cdot \lambda(\pi_2(B))$ and obtain a function $h : \pi_1(B) \to \pi_2(B)$, onto, and a finite collection of pairwise disjoint boxes B_1, \ldots, B_n which satisfy the conclusions of Lemma 3.1.

Using Lemma 2.6 with $\varepsilon = \frac{1}{2^{k+1}}$, for each $i, 1 \leq i \leq n$, we obtain a C^1 function g_i which is jagged inside B_i^* . Now let $h_B : \pi_1(B) \to \pi_2(B)$ be defined as

$$h_B(x) = \begin{cases} h(x) & \text{if } x \in \pi_1(B) \setminus \bigcup_{i=1}^n \pi_1(B_i) \\ g_i(x) & \text{if } x \in \pi_1(B_i) \text{ for some } i. \end{cases}$$

We observe the following:

- 1. h_B is a piecewise monotone C^1 function.
- 2. $|h'_B(x)| < \mathrm{sl}(B) + \delta < \frac{1}{2^k} + \frac{1}{(k+2)!}$ for all $x \in \pi_1(B) \setminus \bigcup_{i=1}^n \pi_1(B_i)$.
- 3. $|h'_B(x)| < 3 \cdot \frac{1}{3 \cdot 2^{k+1}} + \frac{1}{2^{k+1}} = \frac{1}{2^k}$ for all $x \in \bigcup_{i=1}^n \pi_1(B_i)$.

4. h_B and h'_B agree with f_k and f'_k , respectively, at the end points of $\pi_1(B)$.

Let

$$\mathcal{G}_{k,B} = \left\{ B_{i,L}, B_{i,M}, B_{i,R} : 1 \le i \le n \right\}$$

and observe that, for every $C \in \mathcal{G}_{k,B}$, $\mathrm{sl}(C) = \frac{1}{2^{k+1}}$. Now for each *B* obtain such function h_B and a collection of boxes $\mathcal{G}_{k,B}$. Define $f_{k+1} : [0,1] \to [0,1]$ by

$$f_{k+1}(x) = \begin{cases} f_k(x) & \text{if } x \in [0,1] \setminus \pi_1(\cup \mathcal{G}_k) \\ h_B(x) & \text{if } x \in \pi_1(B) \text{ for some } B \in \mathcal{G}_k. \end{cases}$$

Let $\mathcal{G}_{k+1} = \bigcup_{B \in \mathcal{G}_k} \mathcal{G}_{k,B}$. It is easy to verify that f_{k+1} satisfies the induction hypotheses (i) - (ix). Fix k. Then

$$|f'_k(x) - f'_{k+1}(x)| \le \sup_{x \in \cup \mathcal{G}_k} |f'_k(x)| + \sup_{x \in \cup \mathcal{G}_k} |f'_{k+1}(x)| \le \frac{7}{2} \cdot \frac{1}{2^k}$$

for all $x \in [0,1]$. Since $f_k(0) = 0$, $\{f_k\}$ converges to some C^1 function f.

Next let us show that $f^{-1}(y)$ is perfect for every $y \in M$. Clearly, $f^{-1}(y) \neq \emptyset$, since $f : [0,1] \to [0,1]$ is onto. Let $x \in [0,1]$ be such that f(x) = y and let $\varepsilon > 0$. We shall show that there exists x' such that $|x - x'| < \varepsilon$ and f(x') = y. Let k be large enough so that $\frac{2^k}{(k+1)!} < \varepsilon$. Notice that, for each $B \in \mathcal{G}_k$, $\lambda(\pi_1(B)) < \frac{2^k}{(k+1)!}$. By induction hypotheses (v) and (ix), $(x, f_k(x)) \in B_0$ for some $B_0 \in \mathcal{G}_k$. Notice that $\pi_1(B_0) \subseteq (x - \varepsilon, x + \varepsilon)$. By hypothesis (iii) there exist disjoint boxes B_1 and B_2 in \mathcal{G}_{k+1} contained in B_0 such that $y \in \pi_2(B_1) \cap \pi_2(B_2)$. For each l > k, $f_l(\pi_1(B_1)) = \pi_2(B_1)$ and $f_l(\pi_1(B_2)) = \pi_2(B_2)$. Since $\{f_k\}$ converges to f in the C^1 norm, we have $f(\pi_1(B_1)) = \pi_2(B_1)$ and $f(\pi_1(B_2)) = \pi_2(B_2)$. There is at least one point $x' \neq x$ in $(x - \varepsilon, x + \varepsilon)$ such that f(x') = y. Therefore $f^{-1}(\{y\})$ is perfect. From the same argument it follows that $f^{-1}(\{y\})$ is nowhere dense.

Now we want to show that, for each $y \in [0,1] \setminus M$, $f^{-1}(\{y\})$ is finite. Let k be large enough so that $y \notin \pi_2(\cup \mathcal{G}_k)$. Then, for all l > k, $f^{-1}(\{y\}) = f_l^{-1}(\{y\})$. Since f_l is piecewise monotone $f_l^{-1}(\{y\})$ is finite

References

- [1] Bruckner, A. M. and K. M. Garg: The level structure of a residual set of continuous functions. Trans. Amer. Math. Soc. 232 (1977), 307 321.
- [2] U. B. Darji and M. Morayne: Level sets of a typical C^1 function. Proc. Amer. Math. Soc. 127 (1999), 2917 2922.
- [3] Saks, S.: *Theory of the Integral* (Monografie Matematyczne: Vol. 7). Warszawa Lwòw 1937 and New York: Stechert Hafner 1937.

Received 02.11.1999