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A New Approach for 
Describing Electromagnetic' Wave Propagation


in Inhomogeneous Media 

V. V. Kravchenko 

Abstract. We propose a new approach for obtaining approximate solutions of Maxwell's equa-
tions in inhomogeneous media. This work is based on the application of quaternionic analysis 
technique and consists of some approximate diagonalization of Maxwell's equations. They are 
reduced to a pair of quaternionic equations which under some additional conditions can be 
solved exactly. 
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1. Introduction 

The application of methods of hypercomplex analysis and in particular of quaternionic 
analysis to Maxwell's equations has more than a century of history, starting from the 
work of J. C. Maxwell himself. There exists a reformulation of these equations in vacuum 
in quaternionic terms (see, e.g., [2, 5 1 10 - 12, 19, 20]) which allows some fundamental 
physical laws to be rewritten in a space-saving form. 

Some integral representations for the solutions of Maxwell's equations in homoge-
neous media were obtained in [9: Section 4.5] and [8, 13, 15, 161 using methods of 
quaternionic analysis. In [13] and then [15, 16] a method based on the diagonaliza-
tion of Maxwell's equations in isotropic and homogeneous media was proposed and 
implemented for obtaining new integral representations for different electromagnetic 
quantities and for solving a class of boundary value problems. 

In the present work we use quaternionic analysis methods for studying electro-
magnetic propagation in inhomogeneous media. We show that under some additional 
assumptions about the electromagnetic characteristics of the medium the Maxwell equa-
tions can be diagonalized and can be reduced to a pair of quaternionic equations of first 
order. In [14] a method for solving the resulting quaternionic equations for some class 
of coefficients was proposed. In particular, when the coefficient depends only on one 
variable the method allows us not only to obtain exact solutions of the quaternionic 

V. V. Kravchenko: Escuela Sup. de Ing. Mec. y Eléc. del Inst. Polit. Nac., Dept. de Telecom., 
Unidad-Zacatenco, C.P. 07738, D.F., Mexico; vkravche©maya.esimez.ipn.mx 

ISSN 0232-2064 / $ 2.50 © Heldermaun Verlag Berlin



904	V. V. Kravchenko 

equation but also to obtain the fundamental solution and to construct the correspond-
ing right inverse operator. In other words this case can be completely solved and here 
we consider it in detail. 

Besides this introduction, our work consists of four sections. Section 2 contains a 
very brief description of the notations used throughout the article. In Section 3 we 
rewrite the Maxwell equations in quaternionic "almost diagonalized" form. In Section 
4 we consider one-dimensional Maxwell's equations in a slowly changing medium. The 
slow changing of the medium characteristics gives us the possibility "completely" to 
diagonalize the Maxwell equations, and as was mentioned above in the case of one-
dimensional equations the corresponding quaternionic system can be completely solved. 
We give its solution and obtain the corresponding electromagnetic field. Moreover, in 
order to justify the neglect of some small terms due to the slow changing of the medium 
we estimate the norm of the corresponding integral operator. In Section 5 we give some 
conclusions and outline some possible continuations of this work to participate in which 
the interested reader is cordially invited. 

2. Preliminaries 
We will consider the propagation of time-harmonic (= monochromatic) electromagnetic 
fields in an isotropic, inhomogeneous medium. The field vectors E and if are repre-
sented as

= Re(()eHt) 

i'i,t) = 

where w denotes the frequency which can be a complex number (the circular frequency), 
and Maxwell's equations for the complex amplitudes_9 and 71 have the form 

rot) = —iwji(F)7)	 (1) 

rot	() = iwE()(r).	 (2) 

Here F = (x , y , z)T , i is the complex permeability of the medium and e is the complex 
permittivity.	. 

For the analysis of (1) - (2) we will need the algebra of cornplexquaternions H(C). 
The elements of 11-1(C) are represented in the form p = Pk1k where Pk E C, i 0 is 
the unit and ik k( k = 1,2,3) are standard quaternionic imaginary units: i = — 1 (k = 

1,2,3), i 1 i2 = —i 2 i i	i 3 , i 2 1 3 = —i 3 i2 = i 1 and z 3 z 1 = —ii3 = z 2 . Note that by 
definition the complex, imaginary unit ,z commutes with lk (k = 0,;_3). We will use 
also the vector representation of complex quaternions. Any p E H(C) can be represented 
in the form p = Sc(p) + Vec(p), where Sc(p) = p0 and Vec(p) = PkZk. Complex 
quaternions of the form p = Vec(p) are called purely vectorial, and we identify them 
with vectors from C3 : W = Vec(p). The complex quaternion := Sc(p) - Vec(p) = P0 - 
is called conjugate to p. 

We denote by 5 the set of zero divisors from 11-11(C). Note that 

P  6	 p5=0	=:	p2=2pop' p=C')2	(3)
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(see [16: p. 28[). As usual zero is not included to G. 
We will consider H(C)-valued functions given in some domain Q CR 3 which may 

coincide with the whole space R 3 . On the set C'(fl;llfl(C)) the well-known Moisil-
Theodoresco operator is defined by the expression 

	

=.--	' a	a D z 1 +22— +3


	

Si	Sy	Sz 

It was introduced in [17, 18] and studied in hundreds of works (see, e.g., [3, 4, 7 - 9, 161 
and many others). Let f be a function from C'(Q; 1111(C)). The expression Df can be 
rewritten in the form

	

Df –divf+ gradfo + rotf	 (4) 

where the differential operators are defined as usual. For instance, 

	

.5	.5 gradfo = 2 1 — Jo + 22
y
 fO + 23—fo.


	

Ox 	Sz 

The right-hand side in (4) would have no sense in vector calculus, but here it simply 
means the following equalities for the scalar part and the vector part of the quaternion 
Df:

Sc(Df) = – divf 
Vec(Df) = gradfo + rotf. 

Thus, the quaternionic equation Df = 0 is equivalent to the system 

divf= 0 

gradfo l- rotf = 0 

For the operator D an analogue of the Leibniz rule holds (see, e.g., [8: p. 241 or [16: p. 
63]). Let f,g E C'(l;11-ll(C)). Then 

D[f . g] = D[f] - g + J- D[g] + 2(Sc(fD))[g] 

where

(Sc(fD))[g]= _( 4 + S	5 
' Ox f2+f3)9. 

Note that if f Jo (Vec(f) 0), then 

D[f0 - g] = gradfo g + 10 D[g].	 (5)
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3. Relationship between Maxwell's equations and 
quaternionic operators 

For the sake of simplicity we consider the case of a medium with constant permeability ji. 
The case of i depending on spatial coordinates can be studied by analogy and requires 
only some more quite obvious calculations. Thus, we have the Maxwell equations in the 
form

rot() = — iw1 ' (r)	 (6) 

rot() = iWE(F)E(r).	 (7) 

Applying the divergence to (6) - (7) we obtain the additional pair of equations 

-4 (IiVH(T)0 

- - ( 
e()	)) J	

(8) 
divE( ) -	gradE(r) 

Let us introduce the auxiliary notations

1 -E  
ZWE(r) 

= /iii7(r) 

We will need also the other pair of vectors 

= E + 7-1 

=—E +7-1 

Note that in the mks system, as	and	are measured in V/rn and A/rn, respectively,

these new magnitudes both are measured in V2/A. 

Applying the operator D to	and using (5) we obtain the equalities 

D=D I -
-4	1+/i)	

(9) IWE 
grad E	1---+3,V117 grade  1 V "13 = 

-
 

2L)E 2	 ZWE 

From (6) - (8) we have	
d D=( 
E 

,I)_iW/1H 

D1 =
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Thus, continuing (9) we obtain 

-	'grade D	grade	
E + ( -\ 

I
- - 3/7grade	- 

H +i.I —E 
zwe 2	\ zwe e 2.'	e5/2	 e 
/ 1 —*	

1I7 - —a( - E +
i grad e	—* 

—	
E 

\iwe w 2 A "2e'2 
_	grade _

ç
—*	3 , E) +

grade — . H)  j /	e5/2 e3

where a is the wave number: a = 

Finally, for	we obtain the equation 

D +,V = —a( E- g, Z) + .

 

V_+)	 ( 10) 

where— grade 
— j,j1/23/2 In a similar way the equation for 'I' is obtained as 

D kP—a	= a( . E— (,ë) —	. 7).	 (11)


Let us notice that the quaternionic equation 

Df(1) + a()f(i) = 0 

under some additional conditions over a can be solved exactly [14), and in the case of a 
slowly changing medium the expressions on the right-hand side in (10) and (11) can be 
neglected. We will use these facts in the next section for solving Maxwell's equations 
in the one-dimensional situation. 

4. One-dimensional electromagnetic waves 

In this section we will consider the propagation process depending only on x. Maxwell's 
equations (6) - (7) take the form E 1 = H 1 = 0 and 

9E3	 0H3	 3E2	.	3H2 = zwH2 ,	= —zeE2 , ---- = — zw1iH3 ,	= uieE3. ox	 ox	 ox	 ox 

Let us assume that e is a smooth complex function and 

aE —=0	for xE(—,0)U(d,00)
ax 
where d is a positive constant. As before ,a is constant and we will suppose that the 
medium is changing slowly, that is the dimensionless expression is a very small 
number (usually it is supposed to be much less than one; see, e.g., [1)). Here vdenotes 
the propagation speed.
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We remind the relation v =	between this magnitude and the electromagnetic 
characteristics of the medium. Thus, v' = - 2 ,f312 and the above mentioned condition 
on the slow changing medium readsas

I/23/2 <<2. 

The dimensionless expression on the left-hand side is precisely , and assuming that 
it is sufficiently small we can neglect the expressions on the right-hand sides of (10) - 
(11). Then we have the equations

a- 	 (12) 

(
a-*


	

1_ _ a(x)) '11 (x) =0.	 (13)


-3	-4 
for 4' and 'P. 

Let us consider the equation

	

+ a(x))f(x) = 0	 (14) 

where f is a complex quaternionic function. The solution of this equation was obtained 
in [14] and has the form 

f 	= ((i + ii 1 )eA A + (1 - ii i )e A . B)	 (15) 

where A is an antiderivative of a, A and B are arbitrary constant complex quaternions. 
The complex quaternions (1 ± ii I ) represent the simplest example of zero divisors. Note 
that the solutions of (12) - (13) must be purely vectorial. Thus, we have the two 
additional conditions	 S	 S 

Sc((1 + ii i )A) = Sc((1 - ii i )B) = 0 
which are equivalent to the equalities	 S	 S 

A0 = iA1 

B0 = — zB1 

Under these conditions we obtain 

(1+ ii, )A=a(i2+ji3) 

(1 —iz i )B = b(i 2 —ii3) 

where a+ = A2 - iA3 and b+ = B2 + zB3 . Thus, we obtain the solution of (12) as 

	

(x) = (a+e_lA(i2 + ii 3 ) + b+eIA(i - ii 3 )).	 (16) 

In a similar way we obtain the solution of (13) as 

S	
(x) = (a_etA(i2 + ii 3 ) + b_e_ IA (i 2 - ii 3 )).	 (17) 

We proved the following assertion.	 S
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Proposition 1. Let a± and b± be arbitrary complex numbers and A an antideriva-
tive of c. Then the functions (16) and (17) are solutions of (12) and (13), respectively. 

Now, we obtain the representations for vectors of the electromagnetic field as 

= iwE(X) ((x) - 
2 

- ZwE(X) ((a + e_ 1A	- a_ e') (i 2 + ii')	 (18) 
4 

+ (b+ e A	- be'')(i2 - iz3)) 

and
WE/2(x) -4	-4 

H(x) = 2h/2 ((r)+ I1(x))	 -: 
= we 3 /2(X) ((a

+ e	+a- e)(i2 + ii3)	 (19) 
41L /2 

+ (b+ CiA( z)
 + be)(i2 - ii3)). 

The results of [14] also allow us to construct a fundamental solution of the operator 
+ a(x) and therefore to obtain its right inverse operator. Namely, the distribution ax

U(x) = -(1 - sgnx . zji)ez iA(z) 

satisfies the equation

(
a 

ii - 
+ cs(x))U(x) = 

Then the integral operator

I f (x) =
	

U(x - )f()d 

is the right inverse for the operator i 1	+ a(x) in a suitable functional space (for ax 
example, in the Sobolev space W). Thus, the general solution of the inhomogeneous 
equation

	

(ii-+a(x))p(x)=h(x)	 (20) 

has the forn	 .	 . 
p(x) = f(x) + l[h](x), 

where f is defined by (15). 

Note that in the one-dimensional situation equation (10) is reduced to (20) if p = 

and h=—(-E — &,+ 22 q. 71). 
We want to estimate the norm of I in order to justify the neglect of terms on the 

right-hand side of (10). Obviously, a similar analysis can be done for (11). Let us notice
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that under the accepted condition of finiteness of the support of E'(x) we also have that 
is different from zero on the finite interval [0, d]. Thus, we are interested in some 

estimates for the operator
fd 

lh(x) = J U(x - 
0 

For this purpose we will use the following kind of module of a complex quaternion q: 


	

q2	IReq[ 2 + ImqI2 =	(Req2 + IImqkI2) 

where Reqk and Imq k are obviously the real and the imaginary parts of the component 
q . If Imq = 0, then Jq1 coincides with the usual quaternionic module and Jq[ 2	q 
but in general this is not true. 

Let us prove the following important proposition. 
Proposition 2. Let p and q be complex quaternions. Then 

v'IpI Iqi. 
Proof. We denote a = Rep, b = Imp, c = Req and d = Imq. Then 

p . q1 2= ( a + ib)(c + id) 12 

= ac - bd + i(bc + ad) 12 

= ac— bdI 2 +Ibc+adJ2 

< 2([ac1 2 + Jbd1 2 + Jbc I 2 + ad12) 
= 2(ja1 2 + l b 1 2 )( 1 c 1 2 + Id[2) 
= 21pJ 2. Iq12 

and the statement is proved I 
Using this proposition we obtain the estimate 

a	 d 

	

Ih(x)j 
=	

U(x - )h() d	V 2 
f, 

IU(x - )[. h()[ d. 

It . is easy to see that if Ima 0, then JU(x -	= i//. In this case 
d 

ITh(x)I	
j 

Ih()Ide < d 1 h()j.


This inequality practically gives us the required estimate of the operator lin the C-norm. 
Remark 3. Of course, it would be desirable to have another kind of estimate which 

could give us a sufficient statement about when using the method some a priori given 
error would not be exceeded, but this is a general and completely open problem in the 
application of different asymptotic methods like, e.g., the Wentzel-Kramers-Brjllouin 
(WRB) method: that the precision and the justification of the neglection of some small 
terms depends on the exact solution which is impossible to find. In such a situation 
the estimates like the one obtained here are the best results which in principle can be 
proved and give us the possibility to estimate the relative smallness of the neglected 
part compared with the main terms.
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5. Conclusions 
We proposed a new approach for obtaining asymptotic solutions of Maxwell's equations 
in inhomogeneous media. The Maxwell equations are reduced to a pair of quaternionic 
equations. In the case of a slowly changing medium the resulting quaternionic equations 
for some classes of coefficients a can be completely solved. Here we discussed only 
the situation when the coefficients depend on one variable. Although this situation is 
very important in a great number of applications, it is not unique such that permits a 
complete solution. In [14] a class of coefficients for which such a solution is obtained 
was described. Thus, the class of media for which this technique works is much larger 
than only a stratified medium 

Let us notice that the approach proposed in this article is essentially different from 
the asymptotic methods applied, for instance, for slowly changing stratified media (see, 
e.g., [6]). We reduce Maxwell's equations to a pair of quaternionic equations and on 
this stage neglect some small terms, thereby loosing the precision. But the resulting 
quaternionic equations we solve exactly in difference to other methods in which the 
precision is lost in both stages. 

Finally, this article is only a beginning of the study of this new technique and its 
applications. We plan to use it in some concrete engineering problems like, e.g., the 
propagation of ionospheric waves and at the same time to enlarge the class of media for 
which the resulting quaternionic equations can be solved exactly. 
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