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Asymptotic Justification
of the
Conserved Phase-Field Model with Memory

V. Felli

Abstract. We consider a conserved phase-field model with memory in which the Fourier heat
conduction law is replaced by a constitutive assumption of Gurtin-Pipkin type; the system
is conserved in the sense that the initial mass of the order parameter is preserved during
the evolution. We investigate a Cauchy-Neumann problem for this model which couples an
integro-differential equation with a nonlinear fourth-order equation for the phase field. Here
we assume that the heat flux memory kernel has a decreasing exponential as principal part
and we study the behaviour of solutions when this kernel converges to a Dirac mass. We show
that the solution to the conserved phase-field model with memory converges to a solution to
the phase-field problem without memory under suitable assumptions on the data.
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1. Introduction

A material subject to variation of temperature and phase-transitions occupies an open
bounded connected domain @ C RY (N = 1,2,3) with smooth boundary 89, in a
given time interval [0,T] (T > 0). We assume that only two phases are observed. The
dynamic of the system can be characterized by two state variables, namely the relative
temperature 9 (fixed in order that ¥ = 0 is the equilibrium temperature between the
two phases) and the phase field x (which may stand for the local proportion of one of
the two phases).

The evolution of J and x is governed by the differential model

61(19 + EX) — ko AY = go

in Q x(0,T 1.1
dx — O(-Dx+ x> —x-09) =0 @ x(0.1) (D

where go stands for the heat source, kg is a positive constant and ¢ € Rt represents the
latent heat. We associate with (1.1) the Neumann boundary conditions

k08,9 =8, x = 0, (-Ax +x* —x—€9)=0  on 8Q x (0,T) (1.2)
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where 8, denotes the outward normal partial derivative on 9Q, and the initial conditions

9(0) = } in Q (1.3)
x(0) = xo .

where J9 and xo are the initial data for the temperature and phase field, respectively.

In this paper we study some connections between problem (1.1)-(1.3) and the phase-
field model analyzed in [9], by developing techniques which are similar to those employed
in [7] for the non-conserved phase-field models introduced and analyzed in 5, 6]. For
some of our results one can also see [10].

We notice that (1.1); is a balance of energy where the diffusion term koAd comes
out from the Fourier law.

Let us assume the Gurtin-Pipkin law (see {11]) according to which the heat flux q
is given by

t
q(z,t) = —/ k(t — s)VI(z,s)ds . (1.4)
so that q depends only on the temporal history of the temperature gradient V9. In
(1.4) k : (0,T) — R represents a heat relaxation kernel. Consequently, under-this

assumption, the balance of energy is given by
O(d+8ex)—k+xAd =g (1.5)

where * denotes the time convolution product over (0,T), i.e. for a and b summable in

0,7),
(a*b)(t)=/0 a(s)b(t = s)ds (¢ €[0,T]).

The right-hand side g of equation (1.5) takes not only go but also the assumption that
the past history of the system is known up to ¢ = 0 into account. Letting § stand for the
Dirac mass located at’t = 0, we remark that kgAY may be equivalently set as kg6 * AD.
Arguing as in [7], we take k = k, for a suitable sequence {k.}.>o approximating ko6
and study the problem with memory corresponding to the kernels k,, in order to discuss
the convergence of the solution to the e—problem (with memory) to the solution to the
limit problem (1.1) - (1.3) (without memory) as ¢ | 0.

As far as the memory kernels are concerned, we assume them to be given by the
sum of a decreasing exponential

lz—oe—:' (t > 0), (1.6)

the trivial extension of which converges to kod in the sense of distributions, and a
perturbation converging to 0 in a suitable topology.

Referring to [7], we remark that this choice is motivated by the fact that, if k, is
given by (1.6), then the heat flux constitutive assumption

ko [f e

. e” © Vi(z,s)ds = q(z,0) — (ke *+ VI)(t)

— 00

q(z,t) =
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comes from the well-known Maxwell-Cattaneo law (cf. [4])
€diq+q=—koV9J

where € > 0 1s small (for ¢ = 0 we have the Fourier law). Setting w = 1 % (§ + €x) and
rewriting (1.5) in the form

8,211) - k*A(@,w —ex) =g

1e.
0w — k(0)Aw = g + k' * Aw — €k * Ay,
we underline the hyperbolic character of (1.5), since the left-hand side of the previous

equation is the wave operator if k(0) > 0 and &' * Aw can be considered as a lower order
term.

Now we are going to develop three sections. In Section 2, we give an explanation
of our notation, the rigorous formulation of the problem, and the statement of our
main results. In Section 3; we prove the convergence of the solution to the problem
with memory to a solution to the limit problem. In the last, Section 4, we prove error
estimates with respect to the parameter ¢.

2. Main results

For the sake of convenience, we recall the same notation adopted in [9]. We set

H = 1(Q)
V =H'(Q)
W={ve H}Q): d,v=00n N}

and introduce the operator A € L(V, V') given by
(Au,v) = / Vu- Vv (u,v € V) (2.1)
Q

where (-,-) stands for the duality pairing between V' and V. We denote by (-,-) the
inner product in H (which is identified with its dual space H'), and by ((-, -)) the duality
pairing between W' and W. Let W, V, H, V', W' be the subspaces of W,V, H, V' W',
respectively, of null-average elements v, that i1s ((v,1)) = 0.

Now, we define the operator A : 'H — W that maps v € H into the unique function

Nv € W which solves
—ANv)=v ae inQ

9, (Nv)=0 ae onl

/J\/v=0 - o
Q
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We remark that A" is an isomorphism and can be extended to an 1somorphism (still
denoted by A) from V' to V given by

Nvey, /S;V(va) -Vz=(v,2) (z€V). (2.2)

By transposition, NV is extended to an operator (which is denoted by A and is an
isomorphism again) from W' to H as

Nv e H, —/(Nv)Az ={{v,2)) (2 e W).
Q
Note that the norm
(/ |V(Nv)|2> : = (v,Nv)? is equivalent to lvllv (veV) (2.3)
Q

and we use this norm instead of ||v||v+ whenever it is more convenient. Besides,

(/ |Nv]2> is equivalent to  |jv||wr (v eW").
0

Let us use the same notation || - || both for the norm in H = L?(Q) and for that in

HYN = L*(Q, RN).
Let us assume
ko, 2 € (0, 00) (2.4)

and let us consider the ¢-problem (for all € > 0)

O(Ie + xe) — A(ke *9e) = g in Qr
Oixe ~ A(=Axe + xi — xe — 89:) =0 in Qr (2.5)
Oy(ke *0e) = Ouxe = Ou(—DXe + X2 — Xe — 89:) =0 on '
9:(0) = Yo, and xe(0) = xo. in

where Q1 = Q x (0,T) and Tr = 02 x (0,T). The kernel k. in (2.5); is the unique

solution to the singular perturbation problem :

. Ek; +k, =m, (26)
k
ke(0) = = (2.7)
that 1
at is ke . 1 s
k= —e7c +-e v xm, (2.8)
€ €
for a given

e € W2(0,T). (2.9)
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Let g, satisfy the conditions

ge € L*(0,T; H)n (W'(0,T; H) + WH'(0,T; V")) (210)
g:(0) € H. ' (2.11)
Assume also
Yo €V
o (2.12)
X0, € Vv

and that the kernels k. are of positive type, that is

/T (u(t), (ke *0)(£))dt >0 (v € L*(0,T; H), T € (0, +00)). (2.13)
0

Note that there is indeed at least one memory kernel given by (2.8) which fulfils (2.13),
namely the one obtained for 7, = 0. Besides, a sufficient condition which guarantees
that k. is of positive type is that 7 is of positive type, since [13: p. 278/Thcorem XX]
ensures that the convolution of functions of positive type is of positive type.

A weak formulation of problem (2.5) can be stated as
de € W0, T;W')N L=(0,T; H) N L*(0,T; V)
xe € HY(0,T;V')n L=(0,T; V)N L*(0, T; W)

. (2.14)
ne := e + €xe € C°([0,T),V)NC'([0,T); H)
€ € L*(0,T;V)
and
{(0e(9e + €xe)(t),v)) — /(kc * 9. )(t)Av = / ge(thv (v e W,ae. in(0,T))
Q Q
o= mhxetxe = xe = 6 (2.15)

@xe(t),) + [ VE() - Tv=0 (v € Viae in (0,T))
Q .
9¢(0) = Yo, and xe(0) = Xo,e-

This has been proved in [12] (existence) and {9] (uniqueness) under weaker assumptions
on the data k., g, % and, consequently, with less regularity than that stated above.
On the other hand, assuming our hypotheses one can easily obtain regularity (2.14) for
the solution to the e-problem. In particular, to obtain the improved regularity (2.14)3
claimed on 7., we set w, = 1 * 7, and rewrite (2.15); as

wl + k(0)Aw, = fo — Ak, * w.)

where f. = g. — £A(k. * x¢), with the initial conditions

w.(0) =0 :
w,(0) = no,e = Jo,e + €xo0.e '
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Since f, € L'(0,T; H) + W(0,T; V') and g, € V, we can apply [1: p. 62/Theorem
4.4] to get .
we € C°[0,T); VYN C([0,T); H).

Then we set f} = f, — A(k, * w,), thus we obtain

w, + k.(0)Aw, = f}
we(0) =0
w,(0) =g
Since f} € Wh(0,T; H) + WY(0, T; V') and f}(0) € H, using (1: p. 74/Theorem 5.1)
we have :
we € C'([0,T); V)N C*([0,T); H)
and so (2.14); is proved.

One can also see (8], where a generalized system is studied and regularity results
are presented as well.

Thanks to (2.14),, 9. takes values into V so that problem (2.5) can be rewritten by
means of the operator A4 as
Ou(Be + €xe) + Alke x9.) = g
Oixe + AL =0
§e = Axe + X2 — Xe — €9,
9e(0) = Po,c and x.(0) = xo, '

(in V', ae. in (0,7)). (2.16)

If the unknown function 9, is replaced by the integrated enthalpy w., namely
we = 1% (9, + €x.), : (2.17)
problem (2.16) is transformed into

?w, + Ake % Qwe) = go + A(ke * €x.)
atXe + A{s =0

2.18
Axe + X:: + (€2 - l)Xt - eatwe =& ( )
at.ws(o) = ﬂO,é + eXO,z, XE(O) = X0,es wt(o) =0
We now consider the limit problem

O(9+Ex)+koAd =g in W'

Oix+ AE =0 in V'
3 X ; o (for ae. t € (0,T)). (2.19)

Ax+x" - x-809=¢ inV

9(0) = Jo, x(0) = xo

Arguing as above, we introduce the integrated enthalpy

w=1x%(J+ ly) ‘ (2.20)
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and write the limit problem in terms of w as
O*w + koA(Byw — x) =g
Ox + A6 =0

AxHX — X~ HOw - ) = € @21
Gw(0) = Jg + €xo, x(0) = xo, w(0) =0
As far as the data are concerned, we assume
g € L*(0,T; H)
Yo eV’ (2.22)
Xo € H
and look for a solution (9, x, ) to problem (2.19) such that
e H'(0,T;W')n L=(0,T; H)
X € L®(0,T; V)N H'(0,T; V)N L2(0,T; W) } . (2.23)

£ e L*(0,T;V)

Now, let us state our results. The first.one ensures the convergence of the conserved
phase-field model with memory to the conserved phase-field model without memory

(classical model). For the uniqueness of the solution to the limit problem we refer to
[3: p. 550/ Theorem 3.1].

Without any loss of generality, we can assume € < 1 and réquire boundedness of
converging terms to hold for 0 < € < 1. ’

Theorem 2.1. Fore € (0,1), assume (2.4),(2.6)—(2.13),(2.22) and let (I, x¢. &)
be the solution to problem (2.16) satisfying (2.14). Moreover, assume that

Xo,e = Xo in H, 9o = 9o in V' . (2.24)
ge — g in L*(0,T;H) - - (2.25)
e — 0 in WH(0,T) -~ (2.26)
as € | 0 and that, for any € € (0,1), |
xe € C°([0, T V) (2.27)
I90,elli + lIxo,ellv + IgellL2co,7;1) < co (2.28)

for some constant co > 0. Then, there ezists a triplet (9, x, &) satisfying (2.23) and such
that the strong, weak star and weak convergences

19, = 1+9 in C°0,T); H)NH'(0,T; V")
Xe = x i C°([0,T); H)N L*0,T; V)
9,29 in L=(0,T;H)N H'(0,T; W')
Xe—x in L*®(0,T;V)YNHY0,T;V')n L*(0,T; W)
t.— € in L¥0,T;V)
x:=x® in L®(0,T; H)

(2.29)
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hold. Moreover, the triplet (9, x,£) yields the solution to problem (2.19).

Sufficient conditions in order to ensure the validity of (2.27) are given in [8].

We next present an error estimate, for which we ask for additional bounds on the
sequences {ge}, {0}, {x0,e}, {7}, besides (2.28). Let (I, xe,¢) be the solution to
problem (2.16) satisfying (2.14) and (9, x, €) the solution to problem (2.19) satisfying
(2.23). '

Theorem 2.2. In addition to the assumptions of Theorem 2.1, assume

ge € H'(0,T; H) + W>'(0,T; V') (2.30)

and

a
€7||lge(O)ll 1 + €llFo.e + Exo.ellv + €llgell (o, 7: )4 w2 (0,7.v)

+ ‘/Q(XO,E = Xo)

1
Himellwrro,ry + lige = gllL20, 1,1y < 162

+ IIx0,e = xollv: + [[90,e — Jolv- (2.31)

for any € € (0,1) and for some constant ¢, > 0. Then the error estimate

2 .
W1 *9e) = (L + )0, mmynLeo,mvy + Ixe — XMoo, 1vynLzo,15v) < Cie? (2.32)

holds for any e € (0,1) with C, > 0 a constant depending only on Q,T,co,c;1,8, ko and
on the upper bounds for the data related to (2.24) — (2.26).

In the following proofs, for the sake of convenience, ¢ > 0 denotes a constant which
may vary from line to line, but it always depends on Q,ko,¢,T and on the data at
most. Constants like By, B, ctc. depend only on the data (not on the approximation
parameter). We point out that ¢ > 0 always denotes a parameter which is chosen
small enough in each step of the proofs and a symbol like ¢, is employed to stress the
dependance on the parameter o.

Moreover, we recall the formulas

a*xb=a(0)(1*b)+a*1xb
(0)(1 +b) + a .
(axb)y=a(0)b+ay *b
which hold whenever they make sense, and the Young theorem
lla * bllLrco,m,x) < llallLeco,myllbll Lo (0,7 x) (2.34)
where X is a real Banach space and p, g,r € [1,00] with % = % + % — 1. Finally, we use
the elementary inequality
1
2ab < oa? + = b? (a,6>0,0 >0) - (2.35)
o

and extended versions of the Gronwall lemma (see [2: pp. 156 - 157]).
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3. Proof of Theorem 2.1

The scheme of the proof is the following. First of all we prove some a priori estimates for
the solution (9., x¢, &) to problem (2.16). Then we select some converging scquences
by weak and weak star compactness. Finally, we show that the limits of these sequences
solve problem (2.19).

First set of a priori estimates. The first a priori estimate, which we derive for
the reader’s convenience, is actually the same inequality deduced in [9: Theorem 2.1].
We sum (2.16); tested by 9.(¢) (note that ¥, takes values into V)

(Gi9e(2), e (2)) + €(Texe(t), Ve (1)) + /(’Ce * VI)(t) - VI(t) = (g¢(t), 9e(2))

for a.e. t € (0,T) with (2.16); tested by M(d,x.)(t) (note that Oixe(t) E V' by (2.15)3
tested by v = 1), i.e.

(Oexe(t), N (Bexe)(t)) + (AL(t), N (Bexe(t))) =0 ae. in (0, 7).
Using (2.2), (2.3) and (2.16)3, integrating with respect to time and remarking that

/0‘ ([ ke wos) VI))ds 20 (t>0)

by virtue of (2.13), we infer that

S0 + [ ool s + 5190l + 5 [ OcEe) - 17

< 2l + 3190l + 5 [0 =074 [ ([ actorn(e)) as.

Applying the generalized Gronwall lemma, we obtain

I9e()I3 + [ 18ixe()Y ds + NVxeF + [ (x2(t) = 1)
1] Q

¢ (nﬂo,en%, 10l + [ (e =17 + ( / lge(s)l d)>

with ¢ >0 bemg a constant.
Note that, owing to the continuous embedding H'(Q) C L"(Q)

[0k =17 < el + 1
where | - | is the Lebesgue measure in R™. Hence we find the estimates
t .
19 ()11 +/ [1Bexe(s)lIYr ds + I19xe(s + Ixe(t)ll ()
0

<c (llﬂg,ellf, +IVx0.ell% + lIxo,elly + 1+ ||9e||2Ll(o,T;H)) (3.1)

< ¢ (I90. 1B +1+ xoelly + lgelso. 7,00
= cB(e)



962 V. Felli

where
B(e) = o.ellty + 1+ llxo,elly + lgell} s 0,70y (3.2)

Remarking that x. — xo,. € V, by virtue of Poincaré inequality we obtain

xe @Iy < e(IVxe(O% + lixo el
< C(||190.e||§1 +Ixoelly +1+ ||9c||2Ll(o,T;H) + ”Xo,e“%/)

< c(190.cl3 + ol + 1+ lgelids o710
= ¢B(e)

(3.3)

where ¢ > 0 is a constant. We point out that (2.28) yields B(e) < ¢z, ¢z > 0 being a
constant.

Second set of a priori estimates. In order to deduce the second estimate we
develop techniques which are similar to those employed in (7). We first integrate (2. 16),
with respect to time to get

Je +€xe — Vo, — lxo,e + Al % ke x9.) =1%g, in V'
and multiply (2.16), itself by € to get
(e + Oxe) +eA(ke ¥ 9,) = €g. in V'

Adding the two equalities obtained this way and noting that (2.6) - (2.7) yield ek, + 1 *
ke = kg + 1 x m, we have

e(Je + €xe) + 0 + Oxe + A((ko + )+ 9,) = F. (3.4)
where
O, =1*7r, e W0, T
o : (3.5)
Fe=¢g9e + 90 + lxo,e + 1+g. € L*(0,T; H).
We can rewrite (3.4) in terms of w, as
€0]we + Owe + koAwe = F, — A(me » we) + A((ko + TI) * £x,). (3.6)
Testing this by d,w, = 19€‘+ 2x. and integrating with respect to ¢, we have
€ k
sloasc(®l + | 1wl + LIVl
Q:
(3.7)

t 3
= 5190+ ol + [ (Fule),duuc(s))ds + 37,0
=1
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where Q, = Q x (0,t) (¢ € (0,T]) and
20 = [ ([ Vb x)6) - @wils)) ds
70 = || (M 9x)- V(00
1) = = [ (rex Fue) - V(20

We now estimate these quantities. Integrating by parts, we can treat 7, as
(1) = /(ko ¢ V(Exe))(t) - Vuog(t) - // tkoVxe - Vo,
Q . Q¢ : .
. 1 : . _ ,
< oIV Ol + 5o ko * VXN = [, Ve~ T

c ; kol kol ;
<olVu Ol + 268 [ 9l + 2 [ ol + 2 our
Ql Q‘ Ql

where the Young theorem and (2.35) have been employed.

To deal with 7, we use-integration by parts and the Young inequality to obtain
70 = € [ (1L + x)0) - Fuw(t) - ¢ //Q B(TL, + V) - Vuw,
=t [ (M x0Tt - ¢ //Q (7 + V) Vi,
< o||Vwe (8|13 + iﬁllﬂz * VxellLoo (0,61
+ [ V() ds + € / e = Vxe ()l ds
S oIVuOlfy + L Eelimelon || 19

N // Vwel? + @7l o1y // Vxe .
Q. Q.

As far as T is concerned, after integrating by parts and in view of (2.33) and (2.35)
we have

Ii(t) = - /S;(TQ * Vw)(t) - V.w,(t) + //Q (7e(0)Vw, + 7, * Vw,) - Vw,
< oAl + Sl [, 190 + (70 + o) [, (9.

Now we collect all these estimates and add %Q||w¢(t)||%, to both sides of (3.7). Re-
marking that

k t
el < e [ poolntow@lnds <o | o+ 2 ] o
0 : : Q: g Q.
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we infer that
€ 9 2, ko 2 | ko 2
§||atwe(t)”H + 0 {Orwel” + ?"V“’e(t)“n + T||w5(t)||,.,

. 1 .,
< ellfclly + ol + ol Vwclolfy + ettt | vxl’
Q:

kot kol ¢
+ 5 1l 5 [ 19l 4 £ IR s
¢ Q. o 0

‘ : 1 :
w0 [ W ()l ds + oNVwls + ZEelmlsom [] 19Xl
0 ¢

+ [ 1Vl + el n //Q IV xel? + ol Vwe ()%
1
(G imelaon + 7O+ Irlon) [ 19w

c
+a// |a,w,|2+—/ e 2.
. ¢ g JJQ.

If we choose o = min{1, ’l‘—%} and recall (3.2) - (3.3) we obtain
€ 1 k R
— 18w ()3 + = // 10w |* + = llwe ()]}
2 2 Mo, 4
< ellBo,elify + €€ lixoellts + (¢ + climellLio,m) //Q 1V xel®

+ (et elimelBaoiry + 17O + Intllzrom) //Q Vwdf?
t
+o [URG s+ |
0 Q.
< ellFo.ellls + eClixo.ellts + cB(E)(1 + lImellLso,1))
t
4 el Eul o rn + GGE) [ lrwc(s)lyds
where we have set
G(e) =c+ C”"'t”i?(o,'r) + 7w (0)| + llwell L o,1)
for some constant ¢ > 0. Applying the Gronwall lemma we find the estimate
clouwe(Olf + ] 100wl + Iwelol
< (eM90.c1 + eClixaclls + BE + Irelagom) + I1Felaomin) T

Since (2.26) implies
lmellwrao,ry < By (3.8)
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for some constant By > 0, we have G(¢) < B3 so that, recalling also (2.28), we infer

Vo + [ 100wel + (Ol < By (3.9
for some constant By > 0 depending on Q, ko, ¢, T. Besides, the estimate
(L *9)(Ollv < (1 * (Fe + Exe))(B)llv + €1 * xe)(D)llv
< Nlwe(Ollv + cllxellz20.1;v)

< 33% + cB(e)%
< By

(3.10)

holds for some constant By > 0 depending on €, ko., ¢,T.
Third set of a priori estimates. By (2.16), tested by v = £.(t) and integrated

over (0,T), we have

V€l T20,7,1) < NellLao,mvy 18exell 2o, mivy < clléellao,rivy (3.11)

where (3.1) is used to get the second inequality. We put

1
M.(t) = —/ £.(t) da.
12 Ja
The Poincaré inequality, (3.11) amd (2.35) next yield

€ellZz0,mvy < ellée = Mellfao, vy + el Mel% 20,1y
< el VeéellLao, 1y + €IMel Lo,y
< clléell 2o, myvy + €l MelZao. 1y
1
< §||§z||3ﬂ(o,r;V) +c+ C|Me|2u(o,”r)'
Thus . -
”£¢”2L’(0,T;V) <+ ClMeli,?(o,’I‘)

and it easily follows from (3.1) and (2.16); that M, is bounded indipendently of ¢ in
L*°(0,T), hence

T .
| eola < 5 (3.12)

for some constant Bs > 0 depending on 2, ko, ¢, T. The continuous embedding H'(Q) C
L8(Q) yields
Ixe(OllF = lxe®lZeny < clixe@I$ < cB(e)®

and therefore o .
Ix2(t)in < Bs (3.13)
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for some constant Bg > 0.

Weak convergence. The previous estimates yield

19ell oo 0,781
. N x|l o0mvy | -
Ixell oo o, 7,0y nH (0,7 )AL 0. L)y | < C(Q ko, 2, T). (3.14)
N€ellL20,13v)
”X::”L“’(O,T;H)
Well-known weak or weak star compactness results ensure the existence of
9 € L=(0,T; H)
¥ € L®(0,T; V)
x € L=, T;V)NH'(0,T; V)N L>®°(0,T; L*(Q))
€€ L*0,T;V)
w € L*(0,T; H)

such that, at least for a subsequence of € | 0, the convergences

J.=9 in L>(0,T; H)
1+9., 2% in L%®(0,T;V)
Xe=x in L®(0,T;V)NH'(0,T; V') N L™(0,T; LY(R)) (3.15)
e — € in L*0,T;V)
Xi=e in L®(0,T; H)
hold. It i1s casy to show ¢ = 1 * 9, so that
19, 51+9  in L°°(0,T;V). (3.16)

In order to prove ¢ = x%, we would like x, to converge to x in a quite strong sense.
Using [14: p. 89/Corollary 8], we obtain that {x.} is relatively compact in C°([0, T}; H)
so that, possibly for a subsequence of ¢ | 0,

xe = x - .in C°([0,T); H). (3.17)

Then x. — x in L2(Q7) and, possibly for a subsequence, a.e. in Qr, and this implies
x? — x® ac. in Qr. Thus x* = ¢ a.c. in Qr and we get

x2 L3 in L=(0,T; H). ' (3.18)

Passage to limit. Owing to (2.24), (2.16)4 and (3.17), we have

xe(0) = Xo0,e = Xo )
i H
x:(0) — x(0)
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and consequently x(0) = xo. Now we let € | 0 in (2.16);. Then (3.15)3, (3.18), (3.15),,
(3.15)4 and the fact that A € L(V, V") allow us to pass to limit in L?(0,¢; V') in a weak
sense, thus obtaining (2.19);3. Thanks to (3.15); and (3.15); we can pass to limit in
(2.16); with respect to the weak topology of L2(0,T; V') and we get (2.19),.

We now want to pass to the limit in (3.4). First of all we can rewrite (3.4) as
€0} w. + Bwe + ko A(1 % 9.) + A(1 7, % 9.) = F. (3.19)
Next, by (3.5) we have .
”5a:2wc||i2(o,7";v')
< C(Hatws”zm(o,?*;v') + k§||A||2/:(v,vr)|v|1 * ‘jell’;,’(o,’l‘;V)
+ 52.”95.”3,?(0,T;V') + ”geui?(o,'l‘;v') + “'90,5“2\/" + “XO,:”%/'
+ I|A||3:(v;v')||1 * Te % 19:||2;,2(o,'1‘;v))
<c( ] 100wl + AR 1+ Dol ooy
Q . A
+ ||9e||i?(o.'1‘;u) + ”95”22(0,7;11) + 190,ell3s + lxo.ll¥
+ ||A”22(V,V')”7re”%,‘(0,’1‘)”1 * 19e”2L°°(o,'1‘;V))~
Therefore, from (3.9), (2.28), (3.10) and (3.8) we get
lled?well L0, 7.v+) < Br

for some constant By > 0. Then the previous estimate and (3.9) (which ensures that
edyw, — 0 in the sense of distributions) allow us to conclude .

€dw, — 0  in L*(0,T;V").

We can note that (3.15), and (3.15)3 imply dyw. — 9 + €x in L%(0,T; V') and (3.16)
yields A(1 *9.) — A(1 *9) in L*(0,T;V'). By (2.24) and (2.25) we have

€ge — 0 in L2(0,T; V")
lxg. —=1lxg n LQ(O,T; 180
Joe — Yo in V'

Moreover, recalling the Young theorem, we get

NAL * 7e x Ie)ll 20, 7vr) < NNAllevivnlll * me % Bell 20,70y
S [Alleqvvnlil * Bellrzqo, vy Imell 11 0,7
< c||Allgev,vy Ballmellwn.i o,y

and ||7¢|lw1.1 0,7y — O thanks to (2.26). Thus A(1#7.*9.) — 0in L?(0,T;V'). Passing
now to the limit in (3.19) we obtain

9+ O+ koA(1*9) = 1% g+ Jo + Oxo . (3.20)
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in L2(0,T; V') and consequently in-V', a.e. in (0,T).
Introducing now the operator Ae L(H,W') by

((A.v,z))z—/n-v.Az (z e W,ve H)

we can observe that A is an extension of A. Since 19 € H'(0,T; H), we have E(l *9) =
A(1+9) € H'(0,T;W'). Since x and 1 * g are in H'(0,T; W') too, by (3.20) we get
9 € H'(0,T; W'). Differentiating (3.20) with respect to t, we find 0,(9+€x) + ko Ad = ¢
in L2(0,T; W') and thus in W', a.c. in (0,T). Finally, (3.20) in ¢t = 0 gives 9(0) = 9
in account of the fact that x(0) = xo.

It remains to verify the strong convergence in (2.29); and (2.29);, and the weak
convergences of 9, to ¥ in H'(0,T;W') and of x. to x in L*(0,T; W).

First we prove {x.} is bounded in L*(0,T;W). By (2.16)3 and (3.14), 35 we have
lAXellL2g0,7;m) _
< xellzqo,rmy +IxE N Lzo, 7.y + el 20,750y + el L2g0,7 1)
< (R, ko, 6,T).. ‘
Hence, thanks to well-known regularity results on elliptic equations, we conclude

IxellL2go, 73wy < (82 ko, €, T). - o (821

Then, possibly taking a subsequence of ¢ | 0, there exists u € L?(0,T; W) such that
Xe — uin L2(0,T; W). From (3.15)3 it is clear that u = x, so

Xex  in L0, T; VYN HY(0,T; V') n L*=(0, T; L“(Q))OL"’(O T W)

Being {x.} bounded in Lz(O,T; W) and {O:x.} bounded in L%(0,T; V'), by virtue of
[14: p. 89/Corollary 8] we conclude (possibly for a subsequence) x. — x in L?(0,T; V).
Being, by (3.14)2, {1 * Y.} bounded in L*°(0,T; V) and, by (3.14),, {J.} bounded in
L>°(0,T; H), {19} is bounded in W!°(0,T; H). Besides, 1 9. >1%9 in L=(0,T; V)
so that we can apply the Ascoli theorem and conclude

1+9, = 1+9  in C°([0,T); H). (3.22)

Since k. * 9, belongs to CO‘([O,T]; H) (and thus to L*(0,T; H)) as k. € C°([0,T)) and
9. € L>=(0,T;H), we have A(k. x 9.) € L?(0,T;W'). Thanks to (2.16),, we find
89, € L*(0,T;W'), and (3.14), yields .
[ ACke * )llL2co,mwey < NAlleqa,wnllke * DellL2o, i)
< | Allecm,wey 19l Lo, 1)

IN

C

for some constant ¢ > 0 depending on 2, kg, ¢, T, where 0 < fOT ke(t)dt < ¢ has been
used. Since by (2.28) {g.} is bounded in L?(0,T; W') and by (3.14)3 [|0cXe | L2(0,7,w") is
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bounded we get ||0:9||12¢0,7,w+) < ¢. Thus 89 — 8,9 in L%0,T;W') and so 9, — 9
in H'(0,T; W'). Thanks to [14: p. 89/Corollary 8} again, {J.} is relatively compact in
L%(0,T;V'). Hence, possibly for a subsequence,

9. —9  in L}0,T;V"). (3.23)

Therefore (3.22) and (3.23) yield 1 * 9, — 1 %9 in H'(0,T;V'). Finally, let us remark
that the uniqueness of the solution to the limit problem implies that the convergences
stated above hold for the entire sequence B

4. Proof of Theorem 2.2

First of all, we prove an estimate for

1
e7|87 well 20,13 1)

following the scheme of [7]. We differentiate (3.6) with respect to ¢ and we would like
testing it by €0?w,. Since this is not an admissible test function, we should approximate
it by admissible test functions, e.g., as in {6: Appendix]. However, we prefer to proceed
formally and use 82w, directly, since we are essentially allowed to do it. We integrate
over (0,t) and, recovering the initial value for 8w, from (2.18),, we obtain

}C0€

52
ot +e [[ 1ot + S IVowa(ol

2 3 (4.1)
= lae(O) + Vo + Ex0, I + DL

=1
where
t
I,(t) = 5/ (BcF.(s), 0] we(s))ds
)

I,(t) = —6/0 (AB(me * we)(s), BFwe(s))ds

L =¢ | "(ABU(ko + TLL) » £x)(s), BRwe(s)) ds.
Now we estimate these quantities. Since (2.30) and (3.5) imply
F. e H'(0,T; H) + W*'(0,T; V")
we split -

F.,€ H(0,T;H)

F.=F.,+F., .with {Fe,z € W2Y(0,T; V')
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In 7, (t) we integrate by parts the second term, and owing to (2.18); we have
Ii(t) < ae// |02 w, | + c,e// [OcFe 1| + o€||Bcwe (8)||3
. Ql Ql
+ coellOFe 2t} + elldo,e + €xo,ellY + €ll O Fe 2013

t
N / €402 F. 5(5) v+ [|Bewe(s)l v ds.
0. . . .

In order to deal with I, we use (2.33), (2.1) and integratc by parts. Owing to (3.8)
and (3.9), we obtain

I (1) = —5[/ V(7e(0)we + 7, * ws) - Vo w,
= —E/ V(ﬂ's(O)wc + 7 = wz)(t) - VOyw,(t)
Q
+ € ﬂ V(?I'C(O)agws + 7ri * ath) . Va(w5

< o€l Vowe ()l + eco Byl Vwe(t)I17;

+ coell(r+ Qw0 + e [[ 190w,
< oe|Vawe ()3 + eco, b, (B;; + // |V6,w5|2) .
At last, we consider I3 and, in view of (2.34), (3.21) and (3.8), we get '
t -
Iit) < 6/'||A(kofxe + e * €xe)(3) | 1110 we(s) |1 ds
0

t
<ee / 1Axe ()11 102w (5) ] s
0
+ Celmell Lo o,y Xe 20, 7w 18 well 1 0,75 1)

t
<e / (Ixe(s)llw + c)ellOwe(s)] ds.

Then we add Egiﬂalws(t)lli, to both sides of (4.1), choose ¢ small enough, and apply
the generalized Gronwall lemma. Taking the infimum over all decompositions of F, we
have in view of,(3.21) and (2.31)

1w (1)l + // 10w, 2 + el|Bewe (D)%
o

< C”Xc”’il(o,’r;W) (4~2)
+ (9O + ellfo.c + Exoelly + el Elliniorsmswero.rvn +1)

<ec.
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Let us introduce the notations

Xe ' = Xe — X

zﬁc =9, -9

fe i= (Je + €xe) — (8 + €x) = De + %,
ue := 1%,

u:=1x%1

Ue = U — U

= fz —-£
=11 | (o = x0)
Ho,e = |Q| o Xo0,e — Xo0)-

Note that the system described by the approximating problem is conserved, i.e. fn xe(t)
= Jo Xo,e for all ¢ € [0,T]. We can pass to the limit here and get [, x(t) = [, xo for all
t € [0, 7). Owing to these two relations we have

woe =1 [ (e =00 (celo.m). (43)
In view of (2.17) and the definition of u, we can rewrite (3.6) as
eafwc + Owue + kgAue = F, — €xe — A(me * ue). (4.4)
Integrating (2.19), with respect to time we get
Ou + kgAu = F — €y 4 (4.5)
where F' is given by ‘
F=1%xg+3+£€xo € H'(0,T;V").
In order to estimate the term ., we take the difference between (4.4) and (4.5), i.e.
€A w, + Oyt + koAt = (F, — F)—8xe — A(me * u.).

We test this equation by J,4.. As before, this formal procedure could be made rigorous
using [6: Appendix]. Thus, after integration over (0,t) we get

L ke :
[, 101+ oo = Y ne (46)
t i=1
where

1) =/0 ((Fe = F)(s), Beiie(s))ds

I,(t) = ~5'/ 82w, Oy
Q

L = -¢ %e B,

Z4(t) =A—/0 (A(7r¢ *ut)(s),agﬁz(s))ds.
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Then we split

®., € L*0,T; H)

FoF-F=%,,+®,., with {‘bcﬂ € H'(0,T; v’

and estimate I,(t) after intcgration by parts as
¢
I,(t) = // D, 1000, + (D, 2(t), e (2)) -/ (6,<I>€_2(s),125(s))ds
¢ 0
<o [ 100l + col@rliaio iy + ol
2 1 2 A 2
+ col|®e 2l 0,7v1y + §||(I’e,2“111(o,7‘;v') *t3 A ||uc(5)]|vd3-
As far as I5(t) and Z3(¢) are concerned, we have obviously
I(t) < U// |8y |? +c,,62/] |02 w, |?
Q: Q:
(0 <o [[ 10 + collieliao
Q.

To deal with Z,(t), we integrate by parts and use (2.1), (2.33), (2.35) and (3.10) to
obtain

Iy(t) = —(A(me *u)(t), de(t)) + /0 (8 A(me = us)(s),ﬁe(s»ds

—/QV(m *ue)(t) - Vﬂe(t)+//q‘ Y (re(O)ue + 74+ ue) - Vi,

IA

SNVa DI + collmelago 1y //Q Va2

+ // IV + (17O + 17122 0.75) // V2
Q Q.
< oIV + collmelprno.my //Q Vu.l + // Va2

< oV + collmelipragory + //Q V2.

Adding %Q“ﬁc(t)”f, to both sides of (4.6) and observing that

i < [ antoduds <o | oot 4o, [[ 1o
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we obtain, after choosing o small énough,

// 10cie 2 + lac(8)]%
Q.

< cl|®ealllzormy + cl®e2litio,r v

+ ce? //Q ~|a¢2ws|2 + cuiz”iz(o,:;f{) + c||7r¢||2w,.!(0,7‘)

t t
c / lie(s)llZds + c / lae(s)lI3 ds.
0 0

973

Now we can apply the Gronwall lemma and, taking the infimum over all decompo-

sitions F, — F = &, ; + .2 we get

J| 10l + 1o < e 18wl e

s .
+ |1 Fe = FllLag0,718y+ 1 (0,T;v")

el a0,y + Imellfnnom)-

(4.7)

Taking, the difference between (2.16), and (2.19); we get Oixe + A€, = 0. Owing to
(4.3), we have X.(t) — po,. € V. Hence N(xe(t) — po,e) is an admissible test function

for the previous equation and, in view of (2.2), we get

2 = / | VN (xe(t) = po e)l + (Re(t) = po,e, Ee(t)) = 0.
Thanks to (2.18); and (2.21)3, the second term is given by

()Ze(t) - I‘O,e,ée(t»
= (Re(t) = o, (A% + X2 = X + (€ = Dxe — £3)(1))

- /n V() = o) + /Q (O = X*)Re)(H) = poe /Q o =)

-1 / (Re(t) = po.e)Re(t) = (7ie(t), Re(t) = proe)-
Q
After noting that
/ (%e(t) = po.e)Relt) = / (Re(t) = poe)?
0 Q

we can deduce

33 L ITNGAD = o ) + [ 19620 = P
+/ (O3 = X% + €150 = ol

/ (2 = xX)(E) + (Re(t)  How + el Fe(t) — o).
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Estimating the last term by

Coll(Re = po,c + E7)ONY: + ollXe(t) = po,elly

thanks to (2.35), recalling (2.3), choosing o0 = 3 min{1,€?} and integrating over (0, ¢),
1t 1s easy to obtain

1. 1 e
() = sl + 5 min{1,€) [ 12.() - ol ds
0

1
< 5llxo.e = xo = moellv: + uo,e/ (x:-x%
Q.

: / (I = mo XN + (I )ds

where the monotonicity of the function z — z* has been used.
Note that 7. = Oyt + €xe, whence
e (I < e (Bede(s)Iy + 1Xe())
< c(I0ite()Yr + Re(s) — po,ellY + 130 -
Then we have ' :

llxe(t) — I‘O,c”%/' + || Xe — #0!”%7(0,!;\/)

< cllxo,e — X0 = po,ell¥r + cpo, / - ‘
€ € » & Q‘ £ (48)

t t
e / 12 (s) — po.elBods + eyl , + ¢ / 18cie ()]0 ds.
0 0 _
Note that

Cilo,e / (X: -
Q:

= cg,e // (Xe — p0,e) (X2 + X* + xxe) +cpd . /Q (2 +x* + xxe)
Q¢ i

(4.9)
< 2elunl || 1% ol +x7) + 20, [Q 0 +x).

L. .
> §||Xe - #0,e||2u(o,z;H)‘ + Cﬂg,z (||Xe||7,4(nx(o,7')) + ||X||4L4_(nx(o,r))) :
Thanks to (4.9) and (4.7), (4.8) yields .
lixe(t) — l‘0,€”2 v+ lIxe — #O.e“:;ﬂ(o,t;V)

. 1
< cllxo,e — xo = #O,e“%/' + EHXc - /‘0.€[|:;,7(0,1;H)
+ 6#3,5 (l'xcln,‘(nx(o,’l')) + ||X“41,4(nx(o,"r)))

) .
+e [ 1560 = ol ds

, \
+ F#o et C(”F F”L’(O T,H)+H'(o,T;v) T € 107 well3 z(o,'T;n) + ||7T€”€/V‘-1(0,T))
+ C”Xe Ho e”LT(o tH)"
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Note that, since (xe — po,e)(t) € V;

t
I%e = ol = [ (Gie = o)) (e = ho.)(5) s
0

1t t
— | Nxe(s) = po,cllirds + 0 [ Xe(s) = po.cllv ds.
40 J, 0
Hence, choosing o small enough and recalling (3.14)3, we have
l1%e(t) = poellyr + e = mo.ellz g0,y

t
< cllxoe — xo — poellZr + ¢ / %e(s) = poellZeds + cpd,

+ C(”Fc - F”i?(o;r;H)+Hl(o,'1';v') + €| 0F we %,7(0,T;H) + ||7Te||€v1‘l(o,”r))~

Applying the Gronwall lemma and recalling (4.2) we have

llxe(t) — #0,:”%/' + llxe — /‘0,6“2;.2(0,!;V)

2
< C(#g,z + lIxo,e — xollyr +11Fe - F||2L2(o,7';H)+Hl(o,'l‘;v') + ||7fe||w1-l(o,’r)) + ce
which implies

IXell oo (o, 7 v)AL2(0,75v) ,
< C(|#o,e| +lIxo,e — xollv: + |Fe = Fliz20,71y+H10,T;v7) + ||7rel|w1.x(o,'r)) (4.10)
+ ce%.

Then (4.7) and (4.10) yield (2.32), thanks to (4.2) and (2.31) B

Remark. The techniques used in the previous error estimate are similar to those
employed in the proof of the continuous dependence of {9: Lemma 3.1}.
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