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Hysteresis in Filtration through Porous Media 
F. Bagagiolo and A. Visintin 

Abstract. We study an evolution problem for filtration through porous media, accounting for 
hysteresis in the saturation versus pressure constitutive relation. We provide a weak formula-
tion of the problem, assuming that the memory effect in the constitutive relation consists not 
only of a rate-independent component but also of a rate-dependent one. We prove an existence 
result, which also applies to the case where the hysteresis operator is of Preisach-type. 
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1. Introduction 
Although a large technical literature accounts for hysteresis effects in porous media fil-
tration, apparently the analytical aspects of this phenomenon have not yet been studied. 
A simplified model leads to the system. 

ç--V . k(Vu+pgz)=O	inDI(Q)}	
(1.1) 

s=P(u), k=k(s)	. in  

This must be coupled with appropriate initial and boundary conditions, including a 
seepage condition of Signorini type. The saturation s and the pressure u are unknown. 
The quantity 

E [0, lj represents the porosity 
k the hydraulic conductivity 
g the gravity acceleration 
p the density of the fluid 
I the upward vertical unit vector. 

The function k [0, 1] —* R+ is prescribed and continuous. 
Equation (1.1) 1 follows from the mass balance and Darcy's law. The dependence 

of s upon u is formally represented by the operator F; the description of the latter is 
one of the main issues of this work. Experimental evidence indicates the occurrence of 
a quantitatively relevant hysteresis effect, which has occasionally been represented by 
Preisach-type models in the engineering literature. 
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This problem exhibits several interesting features: 
(i) The parabolic part of equation (1.1) may degenerate, as s is bounded. 

(ii) The elliptic part of equation (1.1) may also degenerate, as k may vanish. 
(iii) The s versus u constitutive relation exhibits hysteresis. 
(iv) The coefficient k depends on a hysteresis-dependent term, s. 

In this paper we discuss the hysteresis relation, and propose a model for which we are 
able to prove existence of a weak solution. In Section 2 we briefly illustrate the equations 
representing saturated-unsaturated filtration through porous media. In Sections 3 and 4 
we then discuss the .s versus u constitutive relation, propose an equation which combines 
hysteresis and time relaxation, and study its analytical properties. In Section 5 we 
formulate an initial- and boundary-value problem in the framework of Sobolev spaces 
for system (1. 1), and prove existence of a weak solution. Finally, in Section 6 we briefly 
discuss the Preisach model, which is used to represent the hysteretic component of the 
s versus u relation. 

We refer to Bear [5] and to Fredlund and Rahardjo [8] for a presentation of the 
physical and engineering background; we also refer to Poulovassilis and Childs [18), 
Poulovassilis and Tzimas [20], Poulovassilis and El-Ghamry [19], Mualem [15, 16], Kool 
and Parker [11] and to the references therein for experimental studies of the hysteresis 
relation. Saturated-unsaturated flow in porous media with free boundary has been 
studied in a large number of papers, in particular we refer to works of Baiocchi [4], Torelli 
[21},Alt [1], and Gilardi [9]. A model analogous to (1.1), with a fairly general saturation 
versus pressure constitutive relation but without hysteresis, has been studied by Alt, 
Luckhaus and Visintin [2], Otto [17] and by Bagagiolo [3]. We refer to the monographs 
of Krasnosel'skil and Pokrovskii [12], Mayergoyz [14], Visintin [22], Brokate and Sprekels 
[6] and KrejI [13] for hysteresis models. 

2. Filtration in a porous medium 
Let Q be a bounded, open and connected set of R3 , with Lipschitz boundary, repre-
senting the region occupied by the porous medium (see Fig. 1). Let the boundary 
of

ri 

Figure 1: Section of a porous dam with two reservoirs
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Q.be divided in two parts, namely 17 1 the impermeable part and 172 the part in con- 
tact with either water or air. We assume that r1 and r'2 are Lipschitz bidimensional 
manifolds. Let f0, T] be a time interval, with T > 0, and define Q = x (0,T), 
El = ri x (0,T) and E 2 = r2 x (0,T). Let us denote by .5, U and k the saturation of 
the medium, the pressure of water inside the medium and the hydraulic conductivity of 
the medium, respectively. 

We suppose that we are in the range of validity of Darcy's law, which is essentially 
an experimental law. That law yields the following relation between the flux q of water 
inside the porous medium, pressure and hydraulic conductivity 

q = — kV(u + pgz)	in Q,	 (2.1) 

where z is the vertical coordinate of the point x, g is the gravity acceleration and p is 
the density of the fluid (i.e. water). For the sake of simplicity, let us omit the porosity 
coefficient W of the medium. From (2.1) and using the equation of continuity for the 
content of water inside any closed region of the medium, we obtain the equation 

	

s - V . [kV(u + pgz)] = 0	in Q,	 (2.2) 

where 5j is the time derivative of .s, V is the spatial gradient, and "V . " is the divergence 
operator. 

Let P be a non-negative function defined on E 2 , representing the datum for the 
pressure u. Typically P vanishes on the part of E2 in contact with air, whereas it 
coincides with the corresponding hydrostatic pressure of the reservoir on the part of E2 
in contact with water. Let us denote by v the outward normal unit vector to ft On 
El U E2 we have the following conditions: 

	

kV(u + pgz) v =0	on E l	 ( 2.3) 

	

U+ =P	on E 2	 (2.4) 

	

kV(u+pgz) . v<0	on E 2 fl{u=0}	(2.5) 

	

kV(u+pgz) . v=0	on E 2 fl{u < 01.	 (2.6) 

By (2.1), (2.3) means that there is no flux through the impervious part E 1 ; ( 2.4) means 
that the positive part of the pressure is prescribed on E 2 ; ( 2.5) means that through the 
part of E 2 where the pressure vanishes, that is where the medium is in contact with 
air, water can only flow outward; (2.6) means that through the part of E 2 where the 
pressure is negative (the boundary of the so-called capillary fringe) there is no flux. 

Conditions (2.5) and (2.6), together with (2.4), are equivalent to the variational 
inequality of "Signorini type" 

	

kV(u+pgz) . zi(u—v)<0 on E 2 , Vu: E 2 —Rsuchthatv = P.	(2.7)


We must also prescribe an initial condition for the saturation s 

s(.,0) = O()	in a	 (2.8)



.1 

S 
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The constitutive relation between the saturation s and the pressure u is typically rep-
resented by a relation of the form 

S(-, t) € f(u(x, i)),	V (x, t) € Q,	 (2.9) 

where f R -* [0, 1] is a maximal monotone graph as in Figure 2. 

S

Figure 2: Non-hysteretic saturation versus pressure constitutive relation 

The value represents a possible irreducible level of saturation. Moreover, the hydraulic 
conductivity is represented by a nonnegative continuous function k(s) of the saturation, 
as in Figure 3; in particular k > 0 in (i, 1].

Figure 3: Hydraulic conductivity versus saturation constitutive relation 

In the sequel we shall discuss and amend the constitutive relation (2.9). 

3. The saturation versus pressure constitutive relation 
Experimental evidence (see Figure 4) indicates that, at any point x E ci, s(x, t) depends 
not only on u(x, t), but also on the initial value s°(x) (see also Remark 6.5) and on the 
previous evolution of u at the same point, u(x,.). We assume that here x occurs just as 
a parameter, and for the moment we do not display it in the study of the constitutive 
behavior.
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At first, let us then consider a dependence of the form 

s(t) = [P(u, s°)](t)	V t E [0, TI .	 (3.1) 

Here u represents the whole function u : [0,T] - lit Although s(t) cannot depend 
on u I(tfl, for formal reasons it is convenient to deal with the whole function, and then 
explicitly require that at time t, P '(t, s°)](t) does not depend on U1( i 7'] (causality). The 
operator F is then called a memory (or Volterra) operator. 

S 

Figure 4: Hysteretic constitutive relation 

On account of experimental evidence, as a first hypothesis it seems natural to assume 
that F is a hysteresis operator. By this we mean that F is rate-independent, that is, for 
any non-decreasing homeomorphism 'p : [0, TI - [0, T], 

.fr(uo, s
o
) =.fr(u, so ) o	in [0,T].	 (3.2) 

According to the current terminology, this characterizes purely hysteretic effects. We 
can assume that F is continuous from C°([0, T]) x R to C°([0, TI), consistently with 
most of the known models of hysteresis. 

When coupling this constitutive relation with the partial differential equation (1.1) 
of the Introduction, we must insert the dependence on the parameter x E : 

s(x, t) = [P(u(x, .), s°(x))](t)	V (x, t) E Q .	 (3.3) 

Difficulties arise in proving existence of a solution for the corresponding initial- and 
boundary-value problem. By a standard procedure we might approximate the problem, 
derive a priori estimates, then try to pass to the limit. On account of the occurrence of 
the memory operator, it seems especially convenient to use implicit time discretization. 
Let us denote the approximation parameter by m € N, and the approximate solution by 
(u,,,, s,,). Uniform estimates for Urn in L2(0,T;H1()) can be derived by multiplying 
the approximate equation by Urn, and then integrating over Q . But this does not yield
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convergence of u in C°([O,T]) a.e. in Q (not even for a subsequence), hence it does 
not suffice to pass to the limit in the memory operator. In order to derive stronger a 
priori estimates, we might try to multiply the approximate equation by

	

	, and then
ai 
integrate over Q . However, difficulties arise in dealing with the elliptic term. 

If the dependence of s on u were without memory, .s = 1(u) with f E C°(R) say, 
then we would apply the Kirchhoff tran3formaiion: 

Pu 
K: u -* ü	/ (kof)(e)d,	 (3.4)


Jo 
so that Vu = k(f(u))Vu ac. in Q . As k and f are non-decreasing, K would be 
invertible; (3.4) would then be equivalent to it E a(u), with a a (possibly multi-valued) 
maximal monotone operator. We might then write the elliptic part as —Au, and express 
(1.1) in terms of s and ü. This procedure was used in Alt, Luckhaus and Visintin [2] 
to deal with the problem without hysteresis. However, it is clear that the Kirchhoff 
transformation cannot be applied whenever memory occurs in the s versus u constitutive 
relation. 

These difficulties induce us to revise the formulation of the model. Although we 
are not able to derive a uniform estimate on the pressure rate, we conjecture that this 
rate should not be too large, even on the (rather slow) time scale typical of filtration 
phenomena. We then propose to insert in the s versus u constitutive relation a term 
which penalizes high rates. By this we shall account not only for hysteresis but also for 
a small rate-dependent component of the memory. 

Let us detail the construction of our model. We suppose that the hysteresis branches 
(hysteresis loops) occur only for values of u which belong to a bounded set, say 1 11 1, u21 C 
R; that is on (—, U11  [u2, +oc] the operator F acts just as a superposition opera-
tor: s E (u) where	is a (possibly multi-valued) maximal monotone graph, with 
lim_._	(u) = i and lim_.+	(u) = 1 (see , Figure 4). Hence we represent the 

hysteresis relation by an operator 

F: C°([O,T]; [u1,u2]) x [ 5 1 .52)	C°([O,T); [s1,s2}), 

where [ S i . 52] c [i, 1]. Let r and a be the truncation functions 
(u 1 if <u 1	 (Si if<si 

r() =	if u < < U2	and	a() =	if S 1 < <2 
(.U2	if	U2	 Is2	if	S2. 

For any ,s 0 E [., 1], we define the hysteresis operator F(r(.),a(s°)) which acts on a 
continuous function u : [0, T] —* R in the following way. For any t E [0, T] such that 
u(t) E (u1,u2), let us define 

	

I = min{t' E [0,i]: u(t") E [u i ,u 2 ] V 	E [t',i]}. 

For any t E [0,T], we then have 
[F(r(u), a(sO ))J(t) 

SI	 if u(t) < u 
[F(u( + I), si )](t —I) if u(t) e (ui, 112), 1> 0, u(I) = UI	(3.5) 

=	[F(u( . + I), s 2 )1(t - t) if u(t) E (u 1 , u 2 ), i > 0, u(t) = u2 
[F(u, o(s° ))](t)	if u(t) E (u 1, 11 2), I = 0 

if u(t)>u2
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where u( . + 1): [O,t	1] — [u i ,u 2 ] and t' -* u(t' + 1).

Hence, for a suitable maximal monotone graph 

q5: R— [-.-a 1 ,i —52], 

satisfying q) = 0 for every e [ 71 1, 11 21 and 

urn ()=—s 

I 'M q5(c) = 1S2 

the constitutive relation (3.1) can be written as 

S(t) E [P(u, s°)](t) := [F(r(u), a(s°))](t) + (u(t)).	 (3.6) 

Under a natural assumption, so-called piecewise monotonicity (namely, the mono-
tonicity of all the hysteresis branches, see Visintin [22: p. 62]), for any choice of the 
initial state so E [s i , s 2 ], we can invert the operator F( . , s°). If F( . , s°) is a hysteresis 
operator, then the same holds for its inverse 9(-, so). 

Now let us define the following aximal monotone graph on [., 1]: 

1'(—s)--ui ifs<s, 
i3(s) =	0	 If ' I	S < S 

cb'(l—s)—u2 ifs>s2. 

We define the operator 

[(s, 0 )](t) = [g (a(s), a(s°))](t) + /(s(0), 

where g(o(.),a(s°)) is defined in a similar way as F(r(.),a(s°)). It is easy to check 
that = F_ 

I . Hence (3.6) can be written in the equivalent form (see Figure 5) 

U(t) e [(s, SO )](t)	]G(a(s), a(s0))]	+ (s(t))	 (3.7) 

We then insert a rate-dependent memory effect, and write our constitutive relation in 
the form

u(t) E [g(s,s°)](t) + c

	

	 (3.8)
ds

 dt 
where ce is a small positit'e relaxation constant. 

In the next section we show that under natural assumptions this equation defines 
a continuous operator .F0 : :L2 (0,T) - H'(O,T) : u —* s, for any fixed so E [i, 1]. 
Obviously, F is rate-dependent. This relation is then extended to the space-distributed 
problem by inserting the dependence on the parameter x. 

The regularity properties of the operator F will allow us to prove existence of a 
solution of the modified problem. It would then be natural to consider the behavior 
of the solution of our problem as c —* 0. But, as it might be expected, in this limit 
we encounter the same difficulties that we pointed out above for the purely hysteretic 
constitutive relation.
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4. Analytical properties of the relaxed constitutive relation 

As in the previous section, we represent the hysteresis operator 0 (see (3.7)) as the sum 
of two operators. One of them, denoted by G, is bounded and accounts for hysteresis; 
the other one, denoted by 6, is an unbounded maximal monotone graph on IR with 
domain [i, 1] (see Figure 5). The graph ,3 may contain horizontal segments, which may 
correspond to vertical segments (jumps) of the s versus u relation (if a = 0 this is a free 
boundary problem). 

Figure 5; Hysteretic and monotone parts of the (inverse) constitutive relation 

For the moment, let the time t 'E [0, TI be the only meaningful independent variable, 
and let us regard x just as a parameter. Accordingly here we drop the notation x among 
the entries of all functions. 

We recall the reader that, for any fixed s 0 E R, 

g( . s°) C°([0, TI) -p C°([0, TI) 

is called a hysteresis operator whenever it is causal and rate-independent (see the previ-
ous section and also Section 6). We consider the following ordinary differential inclusion; 

ds 
dt

u	a.e. in [0,T]	 (4.1) 
S(0) =so 

where .s E [i, 11 (with 0 < i < 1) is fixed, a is a positive real number and u is a given 

function. 

Proposition 4.1. Let 3 be an unbounded maximal monotone graph on R with do-
main [., 1[, and 9(-, so) C°([0,TI) —* C°([0,Tj) be a bounded and Lipschitz continuous
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hysteresis operator (in particular a causal operator). Then, for any u E L2 (0, T), there 
exists a unique solution S E H'(0, T) of (4.1). This defines the solution operator 

.F:L2(O,T)—H'(O,T):u—*s.	 (4.2) 
Proof. Let us take u E L2 (O,T). To solve (4.1) we use an implicit time discretiza-

tion. For every in, n e N \ {O}, n <in, let us define h = , u = f('I)h u(t)dt and 
s°m = 

O Let us assume that, for every 0 I < n, the values s	are known. By the 
memory properties of g, for every continuous function s which is linear on the intervals 
(1h, (1 + 1)h] and such that s(Ih) = sL for every 1, the value of [c(s,s°)]((l + 1)h) de- 
pends only on s((l + 1)h). Hence, for every c E R, we can define i4() as the value of 
[(s,s°)]((1+ 1)h) where .s is a function as above such that s((I+ 1)h) = . It is easy to 
prove that the function V)"is bounded and Lipschitz continuous on R, uniformly with 
respect to in and n, as the same properties hold for  

Let us suppose that s	E [.. 11 is known, and consider the following problem: to 

find s',, E [i, 11 such that

n	n-I
+ s) + fl( s ) u.	 (4.3) 

We use a fixed point procedure to solve (4.3). Let us take r E [., 11 and consider the 
problem: to find G E [i, 1] such that 

Cr srn +	(r) + fl(r) 3 t.	 (4.4) 

Let b be a convex and lower semicontinuous primitive of /3, that is Ob = /3 (the subdif-
ferential of /3); in particular, b +oo in (—, .[U)1, +). Problem (4.4) can be solved 
by minimizing on R the continuous strictly convex function 

J() =	e2 + ( (r) — Sm — 
u) + b(),	 (4.5) 2h	 h 

and using the fact that r minimizes J if and only if 0 E 0J(). 
By the coercivity and strict convexity of J, the minimizer is unique and belongs 

G to [i, 1]. Hence we get a function r '—* which maps [., 1] onto itself. We claim that 
J is a contraction if h is sufficiently small; hence it has a unique fixed point, which is 
the unique solution of problem (4.3). In fact, let us take r, s E [., 1] and suppose that 
G <. By (4.4) and using the monotonicity of 3, we obtain 

0< —	(r) — 

from which, recalling that V) n is Lipschitz, the conclusion easily follows. 
Let us now denote by 5m the linear time interpolate of the nodal values s,. Ob- 

viously, s. E L(0,T) and II S mIILoo(OT) < 1 for every m. If we multiply (4.3) by 
Sn —	and sum over n then, using the fact that Ob = /3, for every 0 < 1 <m we get 

n — 5n-i 2 
hee	

S, — m [b' (s" ) — u"] < b(s o ) — b(s,) < C (4.6) h	) +h	h	m m 
n=1	 n1
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where the last inequality, independent on e and rn, holds since —b is uppersemicontinu-
ous and s E [, 11. Let us denote by ?Im (respectively, 11m, m) the piecewise constant 
interpolate of the nodal values (s) = [g(sm,s°)](nh) (respectively u, s). By the 
properties of G, we conclude that 0 m —* c(s) strongly in L2 (0, T), moreover we have 
also the strong convergence 'm 4 it in L2(0,T). 

We can write (4.6) in the form 

1eh dsm 2 dsm — 
Jo [() +	— iim)]dt <C.	 (4.7) 

By (4.7) we get IInIIH'(o,T)	C for all m E N \ (0). Hence there exists s E H'(O,T) 
such that 5m	s weakly in H 1 (0,T) whence, by compactness. 5m —* s strongly in

C°([0, T]). Moreover. s(t) E [i, 1) for all t and s(0) = s0. 

Now we show that s is the solution of problem (4.1). Note that (4.1) is equivalent 
to

	

	
(u(t) — a(t) — g(s, s°)(0) (s(t) — ) > b(s(t)) — b()	 (4.8)
dt 

for all E R, a.e. in [0,T]. Let us take E Rand	C°([0, T]), p > 0. From (4.3) we

get

m

fT 
dsm — m) (m — e)dt >	(t)(b(5m) — b(e)) di.	(4.9) ( — dt 

Passing to the inferior limit m —* +oo in (4.9), using the lower semicontinuity of b, by 
the arbitrariness of we obtain (4.8) and hence (4.1). 

Finally, let us prove the uniqueness. Let s, and S2 be solutions of problem (4.1). 
We multiply the difference of the two inclusion by s 1 — S2 and integrate over [0, t]. Using 
the monotonicity of fi and the Lipschitz continuity of G, we obtain 

Ce

	

— s 2 )(t)j 2 <Lils i — 2 IIco ( [ o Il) f (si — s2)(T)I dT	(4.10) 

where L is the Lipschitz constant of g. From (4.10), the inequality 

.1 

LI Is
' — 5 211C 0 (lO,TD dT II s i — 2 IIC°(1O 11) 

easily follows and hence, using the Gronwall lemma, we get sj = S 2 in [0, T) I 

Proposition 4.2. The solution operator 1, defined in (4.2), is Lipschitz continuous 
from L'(0, T) to C°([0, T]). 

Proof. Let si and S2 be two solutions of problem (4.1) with different sources it1 
and u 2 . respectively. Let us define = s 1 — s2 and ft = u 1 — it2. Subtracting one
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inclusion from the other, multiplying by i and integrating, we get, in a similar way as 
before,

t 
cr

t .. 
— Is(t)I 2 <LIIIIco ((o ,t)) I I(r)I dr + J Iu(r)I (T)I dr	V i E [0, Tj.	(4.11) 
2	—	 Jo	 a 

Note that, since the right-hand side of (4.11) is monotone in t, the same inequality 
holds even if we replace, in the left-hand side only, the instant t with any other instant 
1 E L0, t] and hence if we replace the left-hand side with 2 II . IIo (( o tj) . Moreover, for 
every e > 0 we can majorize the two terms in the right-hand side by 

1 t 
EL2T II s I[ o ([O7 .]) + - I .(r)2dr 

C J0 

E J0	 Jo 
I ü(r) 2 d + C [ ( r)I2dr, 

respectively. Hence, if e > 0 is suitably small, we obtain 

o	(	
- T(EL2 + e)) IIIIo(o,tl)	L t 

IIsIICO([O,TJ)dT	
1	2 

	

+ - II1L[I 
C	

L2(0"1')	(4.12) 

By (4.12), using the Gronwall inequality, we easily get the Lipschitz continuity of the 
operator .F I 

Inclusion of the spatial dependence. 

Now we insert into (4.1) the dependence on x E Q. First of all, let us consider a 
hysteresis operator

C°([0. T]) x R -* C°([0, T]). 

For every function w E L2 (ci; C°([0, T])) and any initial state '° E L2 (ci), we define 

[g(w,°)](x,t) = [(w(x, .),e°(x))](t)	a.e. in ci,V t E [0, T1.	(4.13) 

Roughly speaking, we apply the operator G at almost every x E Q. 

It is easy to see that g is causal, that is if to1 = to2 in [0, t] ac. in ci and	= 
a.e. in ci, then

9(w1,	)](, t) = [9(w2, 2)I(, t)	a.e. in Q. 

Moreover, from the continuity properties of G, it follows that (see Visintin [22: p. 258]) 
[(w, °)](x,.) E C°(0, T]) ac. x E ci and that g(w,°) : ci - C°([0.T]) is measurable 
and satisfies the following property: if w -* to uniformly in [0,T] a.e. in ci and 

O ac. in ci, then g(wn,) --+(w,°) uniformly in [0,T] ac. in Q. Hence, we 
can reformulate problem (4.1) as 

t) + [9(s, s°)](x, t) + (.s(x, t)) 9 u	a.e. in (x, t) E Q;	(4.14) 

here u E L2(0,T;H'(ci)) and s 0 E L OO (Q) are assumed to be given.
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In order to find a solution of problem (4.14), we solve (4.1) for almost every x E Q. 
Let us call J the function on JR such that, for every E R, is the unique 
solution of the discrete problem (4.3), where u is replaced by . We claim that for 
sufficiently small h, .F is Lipschitz continuous and its Lipschitz constant is independent 
on s	E R. In fact, if s = J() and to = Tv), we subtract the two respective 
inclusions (4.3) and using the monotonicity of /3 and the Lipschitz continuity of , we 
get the conclusion by a procedure similar to the one we used in the proof of Proposition 
4.1. Hence, if u E L 2 (0,T;H 1 (ci)), inserting the parameter x E ci, for every m and n 
we obtain S'. E H'(ci). 

5. Weak formulation of the problem and existence of a solution 

Let ci E JR 3 be open, bounded and connected, and r c 8ci a Lipschitz manifold, with 
positive bidimensional measure. Let [0, T} be a time interval and let us set Q = Q  (0, T) 
and E = F x (0,T). 

We consider the functions P E C°([0, T], H' (Q)) fl H'(0, T; L2 (ci)), P > 0 a.e. in 
Q, and s 0 E L°°(ci). We define the convex set 

K= I, EL 2 (0, T; H'(Q)):  (-you) = P on 

where Yo is the trace operator: H'(ci) -* H(r). Let 9 be a hysteresis operator and 6 
be a maximal monotone graph as in the previous section; moreover, let c be a positive 
real number. We deal with the following problem. 

Problem 5.1. To find a couple (u, s) such that u E K and s E H'(Q) n L°°(Q), 
s(x,0) = s°(x) a. e. in ci, and 

AQ 
[s t (u - v) + k(s)V(u + pgz) . V(u - v)}dxdt 0 VVEK	(5.1) 

as + 9(s, s o ) +13(s) u a. e. in Q.	(5.2) 

The variational inequality (5.1) is a weak formulation of equation (2.2) coupled with 
the Signorzni condition (2.7). Inclusion (5.2) is the relaxed saturation versus pressure 
constitutive relation (see Section 3). In the sequel, for simplicity of notation, we shall 
omit the constant factor pg in front of z. 

Our aim is to prove an existence result for Problem 5.1. 
We assume that

C°([0,T]) - C°([0,T]) 

is bounded and Lipschitz continuous and that +fl is the inverse of a hysteresis operator 
.F which satisfies the property (omitting the initial state among the entries of .F) 

J[v(-,
  

t) - v( . , 0)]	dt > 0	a.e. in ci, V v : Q	JR suitably regular. (5.3)  -
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In some physical settings, an inequality like (5.3) accounts for energy dissipation along 
counterclockwise hysteresis cycles. See Visintin [22: P. 271] for regularity specification. 
However, in the sequel we shall suppose that the following discrete variant of (5.3) holds. 

Let v E L2 (1l. C°([O, T])) and {tn}o<n<m be a partition of [0, T] of uniform step-size 
h. Let vm denote the linear time interpolate of the nodal values v( . , t,,) and, omitting 
the initial state among the entries of .F, let us define w, = [F(v ... )](tn) ac. in ci for 
every Ti. Then

mn—i 
h >	h	

v(x,t) > r	a.e. in ci	 (5.4) 
n=1 

where r is a real constant independent of the partition. In Section 6, we shall see that the 
Preisach hysteresis operator satisfies (5.3) - (5.4); that operator seems also appropriate 
to represent hysteresis in filtration phenomena. 

Finally, given . > 0 as in the previous section, we suppose that there exists . <	1

such that

s°	1	a.e. in ci	 (5.5)


and that there exists F C r with positive bidimensional measure such that 

P(x, t) > 0	a.e. on F, V t E 10, Tj.	 (5.6) 

Theorem 5.1. Let us suppose that the hysteresis operator G is bounded and Lip-
schitz continuous in C°([0, T]), that 9 + 0 is the inverse of a hysteresis operator J 
satisfying (5.4), and finally that (5.5) - (5.6) hold. Then Problem 5.1 admits a solution. 

We shall first prove Theorem 5.1 assuming that the quantity k(s) is larger than a 
positive constant. This will allow us to make use of a "maximum principle". Then, in 

> Lemma 5.2, we shall prove that the assumption k(s) c > 0 is correct. 

Proof of Theorem 5.1. Approximation. Let us fix any m E N. We shall use 
an implicit time discretization of step-size h =	. Let P, be the piecewise constant 
approximation of P, and	be the discretizatiori of the hysteresis operator , which 
we defined in Section 4. At every step n we suppose that	is known, and consider

the problem of finding (u',$) such that s E L OO (Q) and 

and VvEK ) 

h	
(u —v) +k(s)V(u + z) . V(u - v)]dx <0	(5.7)
I [Sn - 

n	n—I	 .	 I Sm 
h	

+	+ fl(s)	
J 

We solve problem (5.7) by a fixed-point procedure. In (5.7) 3 we replace u by a 
function f E L2 (ci), and note that for every such f there exists a unique solution s1 of 
the equation (see Section 4). Moreover, since k(s) ^ c > 0 (see Lemma 5.2 below), 
for every such s1 replacing s,, there exists a unique solution u1 of (5 . 7)2 . The latter 
coincides with the unique minimizer in K of the following continuous strictly convex
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and coercive functional Jj which is defined on H'(cl), equipped with the equivalent 
norm 1u11 2 = fc l Vu 1

2dx + f; I -yo ul2da: 

J1 (v)	f• rk(s)IV( + 2)12 + 
S1 — s1 

vldx.	 (5.8) 2	 Ii	J 

The coercivity of J1 on IaT comes from the Poincaré inequality in view of (5.6) and 
definition (5.7). Thus we have a function A : f —* u j . To prove that (5.7) has a 
solution, it suffices to show that A has a fixed point in R. First of all, since uj is a minimizer of Jj , it is easy to see that A(K) is bounded in H 1 (1l). Indeed, since k is bounded and Sf E [0, 1] a.e. in for every f E L 2 (Q), we have that J1 (u j ) < C with C independent on f; in particular, when f E K, by coercivity we obtain uniform 
boundedness of uj in H(Q). Hence A(K) has compact closure in L2(Q). 

Now we have to prove the continuity of A in L 2 (S1). Let f, converge to f in L2(). 
By the Lipschitz property of the operator F (cf. Proposition 4.2), we get that s = sj converges to s j in L2 (f). Moreover, the sequence ut = ulL is bounded in H'(); hence 
(possibly extracting a subsequence) it converges to a function u weakly in H'(cl) and strongly in L2 (1). For every £ we have J,(ut) := JJL (ut) 5 J(u j ) and then, using also 
the sernicontinuity of f1 IV(ue + z ) 1

2dx , we get 

Jj (u) < IiminfJt (ut ) < Jj(uj). t-• +00 

This yields u	it1, and thus the continuity is proved. By Schauder's theorem, there 
exists u E K such that A(u) = u. Finally, let us set	= 

A prior: estimates. We use the same notation as in the previous section to denote 
linear time interpolations and piecewise constant functions. Let us assume that h < 1 
and take in (5.7) v = (1 - h)u + hP, E K 1 . We obtain  

4 — s)(u	P) + hk(s)V(u + z) . V(u — P f [(	)] <0.	(5.9) 

Let us sum from 1 to n. Note that 
n 

>:Iy t-1 
5m 5m )udx 

t=1

= hE,! 
{S - S	

Um -	— S) +	— t1)2	(5.10) 
___ 	 m ]dx. hh	 h2 

By the definition of the discretized hysteresis operator and by the discrete property 
(5.4), we have

h>f Stm
	

— a 

where r is a real number independent from n and h.
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Moreover, by discrete partial integration, for a suitable constant C independent on 
n and h, we get

n

SmSm )Pdx 
£=1

n-I	pf+I - pt 
<h> I( m	mI -	jiSm	h	

dx +hf sP  —s°PIdx	
(5.11)


ci 
C. 

This quantity is uniformly bounded because Pm (the piecewise linear in time ap-
proximate of P) converges to P in H'(0,T;L2()). Using (5.11) and the fact that 
k(s 1 ) > c > 0 for every n (see Lemma 5.2 below), via standard techniques we get 

h>if, IVuI2dx<C	 (5.12) 

where the constant C is independent on n and h. Hence (denoting the piecewise constant 
in time and the piecewise linear in time approximates as in the previous section) 

	

II U mI0(0,T;H 1 (Q)) 5 C,	independent on m.	 (5.13)


Moreover, integrating inequality (4.6) in space and in time and using (5.13) we obtain 
ISmItffl(O,7';L2(fi)) < C, independent on h. Finally (see the end of Section 4), s e 
H'() for every rn and n. Hence, Sm E L2(0,T;H'(cl)) and II S mIIL 2 (0T;H t (ci)) 5 C for 
every m. Therefore

II S mIIH'(Q) <C	independent onm.	 (5.14)


Passage to the limit. By (5.13) -(5.14) there exist two functions u E L'(0, T; H'(1)) 
and s E H 1 (0,T;L 2 (l)) such that, possibly extracting subsequences, 

- u	weakly in L2(0,T;H'(cl))	
- 15 

S weakly in H'(Q), strongly in C°([0,T];L2()); ° ) 

the latter convergence follows from the compactness of the injection of H' (Q) in the 
space C°([0, TI; L2 ()). By a procedure similar to (4.8) - (4.9), we get that the couple 
(u, s) solves (5.2). 

Let us now take v as in (5. 1), in particular assume that v E C°([0, TI; H '( S1 )); this 
is not restrictive by a density argument. By (5.7) we get 

	

JfQ [i(iim - 5m) + k(S m )V(iim + z) . V(L - Um )] dxdt <0	(5.16) 

where Sm( X , t ) := m(X,t - h) a.e. in Q (with the position .(x5) s°(x) for all 
6 E [—h,01 a.e. in ). We claim that, passing to the inferior limit as in - +oo in 
(5.16), we get (5.1) (with 1 in place of pg). By (5.15), possibly extracting a further
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subsequence, we can suppose that s. -* s a.e. in Q, hence k( m ) -* k(s) a.e. in Q. 
Hence

urn inf AQ k
m )V(1im + z) . V(!!,,- m)dxdt 

M-+00  

(5.17) 

>	
k(s)V(. + z) . V(u - v)dxdt. 

Q 
By (5.7) 3 , considering piecewise constant interpolation, we have 

-	OSTfl - 
m+'tbm +m	 (5.18) 

where m E i3(rn). Hence, inserting (5.18) into the parabolic term of (5.16), we claim 
that we can pass to the inferior limit. In fact, m	9(s, S') strongly in L2 (Q) and 

/ Os 2 
liminf	OSm 2 

dt>	(—) dxdt.	 (5.19) 
+00 AQ (- dx I	- ff \Ot/ 

Moreover, for any finite partition {t} of [0, T] and for any selection E fl( s), E L2(Q), 
for every i there holds 

f[s(x, t) - s(x,	)](x. t j ) dx < f [b(s(x, t,)) - b(s(x, tj 

< f [s(x, t) - s(x, t_ 1 )](x, t) dx. 
Jo 

Passing to the limit in (5.20) as max{ t, - t,1 } - 0, we get 

JI is 
dxdt	[b(s(x, T)) - b(s°(x))] dx.	 (5.21) 5  

Using (5.21) we finally obtain the inequality 

liminf	OSm	
> lirninf	I [b(s(x)) - b(s'(x))Jdx 

m—+JfQ	
mdxdi m—+ 

= liminf f [b(sm(x,T)) - b(s°(x))]dx 
M-+00 

>
 f

[b(s(x,T)) - b(s°(x))]dx 
0 

= 	
it- 

from

JJQ Ot 

from which the proof is complete I 

Next, we state and prove a lemma which we already used to prove that k(s) is larger 
than a positive constant.
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Lemma 5.2. Under the assumptions of Theorem 5.1, there exists i < s,,,,, < 1 
independent of ii (and in) such that Sm(X) 2 S min a. e. in ci. 

Proof. Let us define Z = sup0 z, where the function z is the vertical coordinate 
(we still omit the constant pg in front of z). Let F = ( +,6) - ' represent the hysteretic 
relation between u and s (see Figure 4). By hypothesis, for a suitable C > 0, F does 
not present hysteresis in (—, -C] and we may assume F(-C) < .. 

By (5.7) 3 , for a.e. x E cl, if (u, (x), s, (x)) stays above the graph F, then the term 
s,(x)- s'(x) is negative (the time derivative of s forces the couple to go towards the 
graph); on the contrary, if (u,(x), s,(x)) stays under the graph, then s(x) — s'(x) 
is positive. 

Let us consider the first step n = 1, and note that k(s°) > c > 0 a.e. in Q. Then 
we take in (5.7)2 v = u,, 1 + (ui,, + z + C) - E K n and obtain 

1

0
fl2 — (u + z + C) - + k ( s°)I V (u + z + C)_ 2 ] dx <0. 

h 

Again, for a.e. x E cl, if (u(x), s,,(x)) stays above the graph F, then the first term in 
the integral is nonnegative; on the other hand, if (u,,(x),s,,(x)) stays under the graph 
F, then the first term in the integral is still non-negative since it does not vanish only 
for u,,(x) < -z — C < -C and in that case we necessarily get s,,(x) < F(-C) s0. 
Hence, we obtain

V[(u,, + z + C) - ] = 0	a.e. in ft 

Since (ui,, + z + C) - = 0 on a fixed part of 3Q with positive measure (see (5.6) and the 
definition of K), we get u,,+ z -C a.e. in cl and in particular ut,, ^ -C - Z a.e. in 
Q. Now, we define s mjn = F(-C — Z) and claim that s, > Smin a.e. in ft In fact, by 
(5.7) 3 , for a.e. X E cl, s,,(x) < s rnin implies that (u,,(x),s,,(x)) stays under the graph 
F and hence s°(x) <s(x) which is a contradiction. 

Let us now suppose that ui,, 2 - C - z and s > Smjn a.e. in cl for every 1 < e < 
n - i. By induction, we show that the same inequalities hold for u',, and s' , respectively. 
Let us take xo E cl such that all the functions are defined for all 1 £ n and satisfy 
the inductive hypotheses and that (5.7) 3 holds for all 1 n. By contradiction, 
let us suppose that u,(xo) < -C - z(xo) and that (u,(xo),s,(xo)) stays under the 
graph. In particular, it follows that s'(xo) < s,(xo) < .. By inductive hypothesis, 
u(x 0 ) ^ -C — z(xo) > u,(x0 ) and then also (n'(xo),s'(xo)) stays under the 
graph. Hence, s 2 (xo) <i. Acting in this way, finally we obtain that S° ( ro) < 9 which 
is a contradiction. Then we can conclude that (u,(x),s,(x)) stays above the graph at 
every almost points x E cl such that u(x) < -C - z(x). As in the first step, taking 
the test function v = u,, + (u, + z + C) in (5.7), we obtain u -C — z a.e. in cl 
and in particular u,, n 2 - C — Z ac. in ft Arguing as before, we can then conclude 
that, at almost every point, S, Smjn otherwise we should obtain s < 5 m1,, < . which 
is again a contradiction I 

Remark 5.3. Some engineering papers (see, for instance, Poulovassilis and Tzimas 
[20], Kacimov and Yakimov [10], and the references therein) account for hysteresis even 
in the relation between hydraulic conductivity and saturation, which in this paper is
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represented as in Figure 3 (without hysteresis). These hysteretic effects are however 
much less evident than the ones in the s versus u relation. 

Our result works in this case too. Indeed, let us call K;( . , s o ) the hysteresis operator 
representing the relation between k and s, and suppose that it is bounded and Lipschitz 
continuous in C°([O, T]) (again we consider x just as a parameter). We replace in 
(5.8) k(s 1 ) by the approximation k(s) of the operator K; (constructed as the 
approximation of G in Section 4). In particular, note that k(s') is to be considered 
as known in (5.8). Hence we again obtain (5.15) and (5.17) (with k( 2 ) and k(s) 
replaced by k 1 (s') and AC(s,s°), respectively), from which the conclusion follows. 

Remark 5.4. A more general model should consider the hydraulic conductivity 
as a tensor depending on the saturation s and on the point x (the model we studied 
here corresponds to the case of isotropic material and independence on x). However, 
our result can be easily extended to the case where the hydraulic conductivity is given 
by k(s.x) = a(x)k(s) with k as in Figure 3 and a(x) uniformly (on x) strictly positive 
definite matrix. 

6. The hysteretic component of the constitutive relation 
As we pointed out, the engineering literature seems to support the use of the Preisach 
model in the description of the saturation versus pressure constitutive relation (in par-
ticular we refer to what they call domain theory of hysteresis). This is not surprising as 
this model has been applied to several phenomena, after it was proposed in the 1930s 
by the physicist F. Preisach to represent scalar ferromagnetic hysteresis. 

The idea at the basis of this model is simple and appealing: a hysteresis loop is 
seen as the superposition of a family of rectangular loops, just as a real function can be 
represented as an average of shifted and weighted jumps: for any f E W''(), 

f(x) = lim f(s) + / H(x - s)f'(s)ds 
Ja 

(here H is the Heaviside function: H(s) = 0 if s <0 and H(s) = 1 if s > 0). 
Delayed Relays. Let us denote by C([0, TI) the space of functions [0, T] - R which 

are continuous on the right in [0,T[. For any pair p = ( p 1, p2) E R2 (p1 < p2), we 
introduce the delayed relay operator 

C°([0,T}) x {-1,1} -* BV(0.T)flC([0,T}). 
For any u E C°([0,T]) and any , = —1 or = 1, the function z = h(u,) : [0,T} -p 
(-1, 1) is defined by

1-1 ifu(0)^p1 

	

z(0) =	if p <u(0) < p2	 (6.1) 
1	ifu(0)p2 

and for any t E (0,T], setting X j	T E (0,t] : u(r) = p1 or u(r) = p2), 
IZ(0) ifXt=Ø 

Z(t) = —1	if Xj j4 0 and u(maxX t ) = P1	 (6.2) 
1	if X 1 54 0 and u(maxXt ) = P2 -



U 
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Thus z is uniquely defined in [O,T]. For instance, let u(0) < p i . Then z(0) = —1, and 
z(t) = —1 as long as u(t) < P2; if at some instant u reaches P2, then z jumps up to 1, 
where it remains as long as u(t) > P1; if later u reaches Pi, then z jumps down to —1; 
and so on (cf. Figure 6).

Figure 6: Delayed relay 

The Preisach Model. The thresholds of delayed relay operators form the so called 
Preisach (half) plane

	

P = {p = (p l, p2) ER2: P1 <P2}.	 (6.3) 

We denote by 1Z the family of Borel measurable functions P - { —1, 1), and by = { } 
a generic element of 7?., which we intend to represent the initial configurations of all the 
delayed relays. We fix a finite (signed) Borel measure p over P, and introduce the 
corresponding Preisach operator 

	

C°([O,T]) x 1?. —'L — (O, T) fl C°([O,T])

	I (6.4) 
[ 'H..(u,	 t =
 JP

[h(u, e)j(t) dz(p) V t E [0, T]
 

If i > 0, it is not difficult to see that all the hysteresis branches (non only the exterior 
loop, but also the interior loops) are non-decreasing (so-called piecewise monotonicity). 
In the following statement, lu I denotes the total variation of the measure p. 

Theorem 6.1 (Continuity). Let z be a finite Borel measure over P and e R. 
Then 7-1,(u,) E C°([0, T]) for any u E C°([0, T]) if and only if l p I([r,+)) x {r}) = 
IiI({ r } x [r, +oc)) = 0 for any r E R. Moreover, if the latter condition holds, then 

is strongly continuous in C°([0,T]). 

For the proof we refer to Visintin [22: p. 1131. 
Under appropriate conditions on the measure p, the operator 7L,(., ) is continuous, 

or uniformly continuous, or Lipschitz continuous in C°([0, T]), or operates in the Sobolev
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spaces W''(O,T) (1 <p < +oo), or in the Holder spaces C°''([O,T]) (0 < ii	1), or

in C°([0, T]) fl BV(0, T) (see Brokate and Visintin [7]). 

The two following results allow us to apply the results of this paper to the case in 
which the hysteresis relation is represented by the Preisach model. The first one was 
proved by Brokate and Visintin [7: Theorem 5.14]. 

Theorem 6.2 (Lipschitz Continuity of the Inverse). Let ,i be a finite non-negative 
Borel measure over P, e R and a > 0. Then al + H, : C°([0, T]) -* C°([O, T]) 
is invertible, and its inverse operator is Lipschitz continuous in C°([0, T]). 

The following statement is easily checked, as it holds for each delayed relay. 

Proposition 6.3. Let ,a be a finite non-negative Borel measure over P and E R. 
Then 7(,) : C°([0,T]) -C°(L0,T]) fulfills inequalities (5.3) and (5.4). 

Remark 6.4. The case of relays switching between two values different from +1 
and —1 corresponds to an affine transformation of the measure It. Hence (see Section 
3) for a suitable non-negative measure It vanishing out of the triangle of the Preisach 
plane A = Ju l 5 PI 5 P2 < u 2 1, and for suitable nonnegative values h 1 and h 2 for the 
relays such that s 1 = h 1 p() and S2 = h 2 p(A), we can invert the operator aI+1I(.,) 
between the spaces C°([0,T];[ui,u2]) and C°([0, T}; [s i ,s 2 ]. According to Theorem 6.2, 
the inverse operator is Lipschitz continuous.This allowed us in Sections 3 and 4 to - 
suppose that the inverse hysteresis operator = F 1 is of the form c = G + 13, where 

is a Lipschitz continuous hysteresis operator and 3 is a maximal monotone graph. 
Indeed, this holds whenever the hysteresis branches of F are confined to a bounded 
subset of R2 and have a minimum slope a > 0. In this case (see (3.6)) we can write 
F = F o r + 0 where 0 is a maximal monotone graph, r is a truncation on R and 
F = al + 7-1. with 7-1 a hysteresis operator between the spaces C°([0, T]; [u i , u 2 ]) and 
C°([0, T]; [s1,s2]). 

Remark 6.5. In the previous sections we did not display the initial internal variable 
of the Preisach operator, but we only displayed the initial output's state .s. This 

should be regarded as a "contraction" of a more precise formulation which should contain 
also the initial state of each relay, represented by the function . By displaying only the 
initial variable s 0 , we simplified the notation without restricting the generality of our 
results. More precisely, if we suppose that the initial internal variable is a datum of 
the problem, then we can regard the hysteresis operator as depending only on the initial 
output's state (besides the input function u). In particular (see (3.5) and Remark 6.4), 
when the initial state of the output is equal to s 1 or s 2 , all the relays are switched to 
h 1 or h 2 , respectively.
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