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Abstract. A special system of two discrete two-scale difference equations with polynomial

solutions is investigated. For-the solutions, addition and subtraction theorems are established

showing in particular the behaviour of the solutions for a great argument, as well as further

relations and inequalities. Also, corresponding generating functions are constructed which

imply explicit representations for the solutions.
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1. Introduction

In this paper we consider the special system

Zak =pZy
Zok+1 = qQZx + 1 Ziyy

} (k € N) (1.1)

of two discrete two-scale difference equations under the initial condition

Zy=1. (1.2)
The coefficients are assumed to be non-vanishing complex numbers, and the solution is
obviously a polynomial Z, = Z,(p,q,r) of the coéfficients. In a forthcoming paper (3]
the solution of system (1.1) shall be used for an explicit representation of solutions of
continuous two-scale difference equations at dyadic points. Such equations appear in
wavelet theory and subdivision schemes, cf. 4, 7]. The special case S, = Zn(q+1,q,1)
was already considered in [2] in connection with de Rham’s singular function. After
replacement Zn41 = zn, the second equation of system (1.1) with ¢ = % andr = -1 for

c
¢ > 0 appeared also in 1, 5], however in another context and without its first equation.

It is very simple to calculate the first polynomials Z, (cf. Table 1) as well as Z,. = p*
for £ € Ny, but our aim is to analyze the general structure of Z,, which becomes visible'in
addition and subtraction theorems. We establish further relations and calculate infinite
series. .For p = ¢.=r =1 some Z, are the Fibonacci numbers which here have an
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extremal property. Moreover, we construct generating functions of Z, and of related
polynomials and derive different explicit representations for Z,.

n|Z, n Zn

1|1 9 [ pri+ @ +pr+1°)0g

2] p 10 | p?r2 +pglp+71)
3[pr+gq 11 2(1!7+<1)+(p<1+pr+qr)<1
4| p? 12 p°r 4+ p’q
5|prf+(p+r)e 13 pr(pq+pr+qr)+(p+r)q
6 | p*r +pg 14 | p*r(p +q) +p¢*

7| prip+q)+4° 15 | pr(P* + pa+q°) + ¢°

8| p° 16 | p*

Table 1: The first polynomials Z, = Z.(p,q,T)

In Table 1 it is conspicuous ‘that the non-vanishing coefficients of the polynomials
Z., are all equal to 1. However, this is not a general property as the example

Zay = pri(pg + pr + qr) + (P’q + 2pgr + pr® +qr’)q

shows. It is possible to use the second equation of system (1.1) also for k = 0 and to
introduce

1-—-r
Zy = . - (1.3
0= (1.3)
However, only in the case p=1lorr =1, ie.
(p-1r—-1)=0 (1.4)

the first equation of system (1.1) is compatlble with value (1.3) so that we shall use
(1.3) only in these two cases. :

2 Addition theorems

We begin with the construction of addltlon theorems i.e. of formula.s for Z, wheren is
a certain sum of two terms. ) :

Proposition 2.1. Under conditions (1.2) and p # r the solution of system (1.1)
with initial condition (1.2) has -the structure '

Zokss = 35 (0°X; = 7Y5) Ze 471 Y 2k (2.1)

for0< ;<20 (k€N j,L€ No) where X; = 2;(1,4,) and ¥; = Z;(2, 4,1).
Proof. In the case £ = 0 equation (2.1) is satisfied for j € {0,1} in view of Xo =
L— ,Yo=0and X; =Yy = 1. Hence for £ =0 and 0 < j €1 the polynomials Z, have

the structure

'Zzlk_*.j = X[J'Zk + Y[J'Z};.H . ' (22)
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We assume that (2.2) is satisfied for a fixed and 0 < 5 < 2¢. Replacing k by 2k und
using (1.1) we obtain

Zgl+lk+j = (pXe¢; + qYe) 2k + rYe; 2y

and therefore

Xet1,5 = pXej +qYy5 (2.3)
Yeq1,; =1Ye ' 3
Analogously, replacing & in (2.2) by 2k + 1 we find
Xt 2045 = lez’ : (2 4)
Ye+1 2045 = 7Xe5 + pYy

both equations for 0 < j < 2¢. This shows that (2.2) is satisfied for £ + 1 instead of ¢
and for 0 < j < 2*!. Hence by induction (2.2) is proved for all £ € Ny.

Equations (2.3) have the general solutions

Xt = ;5 (0'X; - r'Y)) }

(2.5)
Yej = r'Y;

for every fixed j and j < 2¢ so that (2.2) implies (2.1). Replacing 7 in (2.1) by 2j and
using Zatg42; = pZae-1k4, for £ > 1 we obtain by comparison of coefficients

Y25 = EY;.
Analogously, replacing j in (2.1) by 2j+lA and using Zyeg 42541 = §Z2t-154 j+7 20144541

we obtain
Xojr = 1X; +rpXjn

Y241 = 1Y + Y.
In view of the initial conditions the proposition is proved B

Remark 2.2.

1. In the case (1.4) at most two of the sequences X,, Y,, Z, are different since
Xn=2,forp=1andY, =2, forr =1. Obviously, X, =Y, =Znforp=r=1.

2. For k = 1 equation (2.1) specializes to

Zoyj = 550X+ (p - 35)7Y; (2.6)
with 0 < 7 < 2¢ (€ € Np). In view of ¥; = Z;(2,4,1) and X, = Z;(1 ,p,l) equation
(2.6) immediately implies

Yyeu; = _L(a)‘x. + (2= L)Y, (2.7)

Xoeqj = ;55X + (1- L) (5 ) Y; (2.8)
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and the three equations (2.6) - (2.8) can be used to calculate Z, forn = 2% 4., 427 427
with integers yx > ... > v; > 7 > 0. In Section 6 we shall come back to this question in
a special case. Equations (2.5), (2.7) - (2.8) can also be used to check equations (2.4).

3. Eliminating X; and Y; out of (2.6) - (2.8) we obtain the relation

Zn = 7 ((p - 1) Y — (r = 1 Xn) (2.9)

for 2¢ < n < 28! (2 € Ny).

The excluded case p = r in Proposition 2.1 can be treated in an analogous way or
by means of the limit process r'— p. For convenience, we consider the case p — r and
write afterwards once more p instead of r. The appearing derivatives with respect to p

shall be labelled by means of a dash.

Proposition 2.3. Forp = 7 the solution of system (1.1) with initial condition (1.2)
has the structure

Zzl+j=P_ [(&1+p )Y — quj] : (2.10)
where :
' w; = Z;(p, 7P, p)|p=1 (2.11)
satisfies
: wyiyi(z) = (2 + 2+ 1) — lzw,(x) . (2.12)

for0<j <2t (j,LeNy), Y; =2Z;(1,z,1), 2 = %, and wy = —%, wy = 0.

Proof. Since Z, is a polynomial in p, ¢, 7 it is differentiable and so are X, and Y,
in view of p # 0 and r # 0. Equation (2.6) can be written in the form

e _ e ‘
pt—r Y, - X;
Zyty; = (Prl+q p— )Yj—quLp_—r-]~

r! e

For p — r both X; = Z;(1, ,9;, }-’J) and Y; = Z;(2,2,1) converge to Zj(l,ﬁ;,l) and, by
means of de I’'Hospital’s rule (which is also applicable to holomorphic functions), we
obtain

‘ Zyer; = P70 + L)Y, - pla(Y] - X))
and therefore (2:10) with

PP

wy =p[Z(2,81) - Z (L4 D], (213)

Obviously, w; depends on z = £ alone and it can be represented as (2.11). In particular

2.11) yields the initial values of w; for j =0and j = 1. Substituting ¢ = pz in (2.10
J g
we obtain

Zyp;=p [(fz +p)Y; — :z:wj]

and by differentiation with respect to p, choosing p = 1 and considering (2.11), we also
have proved (2.12) B
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Remark 2.4. More generally, it follows from (2.1) for pA—o r
Zacr; = P 9(OY; — )2k + PY, e (2.14)
and in view of (2.11)
Wotky; = z(lej — Zt-ui)Yk + 8Y;Yi41 + 2(8Y; — wjlwi + Yjwen (2.15)

for0<j<2¢ (k.E N,¢ € Ny), ¥; = Zj(1,z,1). For j = 0 this implies wye; = €Yk + we
and for £ > 0 in particular wye = €. Moreover, for £ = 1 and j = 0 resp. j = 1 we easily
see:

- Corollary 2.5. The polynomials wj (j € N) are uniquely determined by the initial
value wy = 0 and the system o

w2y = wy Y5 } (2.16)

woj+1 = Twj + Wit + Y2j41

Y; = Zj(1,z,1), which is the inhomogeneous counterpart to the homogeneous system
(1.}) withp=r=1and g==z.

By elimination of Y; in (2.16), using Yz;41 = z¥; + Yj41, we obtain the further
relation ’
Waj41 = TWoj + W2j42 (2..17)

which is also satisfied by Y, instead of wy, and from (2.10) and (2.12) with p =1 and
qg =z we get .
'U)21+)'=£Y21+)‘+Y'j, (218)

Y; = Z;(1,z,1). All these relations can be checked for the first indices by means of
Table 2. ’ '

n|Y, Wn n|Y, W

111 0 9143z 4+ 9z

211 1 10| 142z 4 + 6z

3[1+4+=z 2+ 11 | 1+ 2z + 27? 4 + 7z + 622
411 2 12|14+ 4+ 3z

5|1+2z 3+4z 13 | 14 2z + 222 4 + 8z + 6z2
6|1+ 3+2z 4|1+z+2? 4 + 4z + 322
7|1+ z+2%| 3+ 3z+22° 15| 14+z+2%+2° | 4 +4z + 42% + 323
8|1 3 1611 4

Table 2: The first polynomials Y, = Zn(1,z,1) and wa(z)
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3. Subtraction theorems

There exist analogous formulas for negative j, i.e. corresponding subtraction theorems.

Proposition 3.1. In the case p # q the solution of system (1.1) with initial conds-
tion (1.2) has the property

Zy_y = 50U + (15 - S5)etY; (3.1)

P—q

forOSjSZe—l(feNo)whechj=Zj(1, , )andV—Z( £1).

9’9’
The proof can easily be carried out inductively using the initial values Zye = pt,
Ug = ?;:1, Vo = 0 and the recursions

Uz; =U; Va; = EV;
and
Uzj1 = ‘U + U]+1 Voj = g‘/] + Vina

s that it shall be omitted here. For j = 2 the right-hand side of (3.1) is equal to
¢, and is equal to (1.3)forall ¢ifand only if p=1orr = 1.

As a'consequence of (2.6) and (3.1) we find

r¥ e

Z2’+] =p7‘(Z (E q 1) +ql221_j(§,§,1) (32)

and this equation is not only valid for 0 < j < 2¢ but also for j = 2¢. Owing to
continuity, equation (3.2) remains valid in the limit case p = r. Since both terms on the
right-hand side of (3.2) are homogeneous polynomials we can conclude (cf. Table 1):

Corollary 3.2. For 1 <j < 2¢—1 every polynomial Zaeyj 18 a sum of a homoge-
neous polynomial of degree €+ 1 plus such a polynomial of degree ¢.

It is also possible to consider the limit case ¢ — p in (3.1) where we proceed
analogously as before.

Proposition 3.3. For p = q the solution of system (1.1) with initial condition (1.2)
has the property

Zye_; =pt(r(€ - 1)+ NU; - rw;] (3.3)

for0<j < 2! =1 (¢ € No) where U; = Z; (1, 5 L.1) and ﬁ)j = w;(3) is determined by
(2.16) with z = T and w; = 0. '

Proof. By means of de 'Hospital’s rule we obtain from (3.1) for p — ¢

Zoye_ (re+1—r)p‘ 'Z;(1,5,1) - [Z'(g,i,l) —Z’(1,§,§)]|q=p

J q J

where in view of (2.11)
P25 51 - Z(L 5 Do, = wi()

so that (3.3) is proved B
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Analogously, in the case ¢ # 1 we can derive
wye_j(z) = 75 (U; —2*Vy) = 271V} (3:4)

for 0 < j <20 (€€ Ny) with Uj = Z;(1,1,z) and V; = Z;(L,1,1), and in the case
z=1

wgz_j(l) = (6® - 1)Y; — lw; (3.5)

with Y; = Z;(1,1,1). Moreover, a simple consequence of (2.10) with p = ¢ = 1 as well
as £ — 1 instead of £ and (3.3) withp=r=11s

; Yye_; = Yoriy (3.6)

for 0 < j < 2¢! with Yn = Zn(1,1,1). This equation shows a local symmetry of Yy,
with respect to the points n = 3-2¢7% (£> 2) (cf. the later Table 3).

4. Further relations and inequalities

In the following we also admit vanishing coefficients in system (1.1). In order to establish
new relations between different solutions Zn we need the definition of -a k-sequence.

Definition 4.1. Let k € Nand ¢ € Ng.

(i) A finite sequence g, 42, -, kk is called a k-sequence if p; € {1,3}, puj € {82+
1,80 + 3} for puj—y =40+ 3 and p; € {86+ 5,80+ 7} for pjoy =4€+1 (2<5 < k).

(ii) A finite sequence 1y 12y oo ik, 1} 18 called an eztended k-sequence if py, ..., pk
is a k-sequence, uy = 4¢ + 3 for pp = 4¢+1and p} =48+ 1 for p =40+ 3.

The foregoing'deﬁnitions can be visualized by means of a so-called Collatz graph
(cf. [8]). We begin with the directed Collatz graph in Figure 1 for the function g defined
by

g4l+1)=g(4€+3)=2+1 (L€ No).

Inverting the directions and interchanging the neighbouring numbers 4¢ + 1 and 4€ + 3
for all ¢ € Ng, we obtain the inversely directed Collatz graph in Figure 2 for the function
f defined by :

F(8E+1) = f(80+3) =40+ 3

: } (€ € No).
f(8+5)=f(86+T7)=4+1

After these preparations, the numbers of k consecutive vertices in a’directed path of Fig-

ure 2 beginning with 1 or 3, where in the last case the loop at the vertex 3 can be passed

several times, yield always.terms of a k-sequence. The term uj of the. corresponding

extended k-sequence is fixed by the demand that p} # pi and that an interchange of
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sk and p} again yields an extended k-sequence. Note that for all J we have u; < 27+,

Figure 2: The inversely directed Collatz graph of the function f
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Proposition 4.2. For every extended k-sequence the polynomials Z, satisfy the
relations .

N Zoniy = N7 Zanguy + M Zgnguy + (a1)

+ ’\ZQ"n-Hu .+ ZQk+ln+uk + ng+1n+“ .

for arbitrary k e Ny ne Ny and A\=p+q+r.

Proof. From system (1.1) we easily derive

Zaks1 = P2k + 1722k 1 (4.2)
Z4k+3 = qZ2k+1 + pr i . '
By addition we -obtain
(P+q+7)Z20m41 = Z4n+71 + Zan+s . (4.3)

and therefore (4.1) for k& = 1. If (4.1) is satisfied for a fixed k-sequence, we multiply
this equation by A and regard that :
Aoktingatss = Zortngsesr + Zoktingsess

AZyetinyatss = Zortrngsess + Dortanggsr-

in view of (4.3). Hence we obtain (4.1) with k+ 1 instead of k and two extended (k + 1)-
sequences, one with the old p; for j < k.and one with the old y; for j < k-1 and y}
instead of uk, and both with suitable pxyy, pp,, B

- Remark 4.3.
1. Further special cases of relations (4.1) besides of (4.3) are

N Zons1t = AZan1 + Zonts + Zgnyr
N Zont1 = AZ4nts + Zans1 + Zonss.

2. Dividing (4.1) by A* and considering the case k — co we obtain the expansion

oo

Zongr = Z 3 Zath i ngp, (4.4)
=1

so long as the series is converging. This is always the case for positive p,q,r but also
for some complex coefficients:

Proposition 4.4. The series (4.4) converges for complex p,q,r provided that
C = max {|pl, g + I}, 1} < |A| ' T (4.5).

where A\=p+q+r.

Proof. 1. In order to show the convergence of series (4.4) first we shall prove that

|Ze| < C* (4.6)
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for1<k <2t (¢c Np). For this reason we shall show by induction that
|Zass] < (4.7)

for 0 < j < 2%. This inequality is true for £ = 0,5 € {0,1} according to Z; = 1 < C and
|Z2| = |p| £ C. Assume that (4.7) is valid for a fixed £. Then we have

¢ ¢
|Z2e+142;] = |Pl1Z2e4 ;] < |PIC <ot

|Zoew42541] <111 Z2es | + 1 Z5e 45401 < (g + [P)CHH! < CH2

for j < 2% and j < 2, respectively, i.e. (4.7) with £+ 1 instcad of £ so that (4.7) is
proved. This implies inequality (4.6) in view of C > 1.

2. Now, from (4.6) and u, < 2¢*! we obtain |Zyet1p4,,, | S CH™F forn 41 < 2™
in view of 2¢+'n + pp < 201 (n +1) < 2¢+™+!. This yields |37 Zyet1 04, | < C™F! (]_%)t
so that according to (4.5) the series in (4.4) converges B

For k = 2¢ + j we immediately obtain from (4.7) and 2¢ < k < 2¢+!:

Corollary 4.5. The polynomials Zy (k € N) can be estimated by

PARYeS o (4.8)

InC
In2°

with ¢ =

In the case p = ¢ = r = 1 we can state the following curious connection between
the numbers Y, = Z,(1,1,1) and the Fibonacci numbers Fy; (k € Np):

Proposition 4.6. With the notation my = 3 (251 +(=1)¥) (k € No) the numbers
Ym, = Zm,(1,1,1) are the Fibonacci numbers Fy. These have the eztremal property
Yo < VY, forn < my and k > 2.

_ Proof. In view of my = m; =1 and (1.2) the first assertion is valid for ¥ = 0 and
k =1. According to

2K+ ()% = 2K 4 (—1)FL 22K 4 (—1)F?)
and (1.1) with p = ¢ = 7 = 1 the numbers Y,,, satisfy the difference equation
Yo, =Ymuy + Yoo, ] [(4.9)

for k > 2 which proves the first assertion.

In order to prove the second assertion it suffices to consider odd indices since Y3, =
Y, and to consider (4.2) in the specialization

}/471-{-1 = Yn + Y2n+l } (4 10)

Yinis = Yoy + Yoni
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The assertion is valid for n < my = 3 where Y3 = 2 (cf. Table 3). We assume that it is
valid for n < mx_, with k > 3. In the case that k is even we choose £ = }(2¥~! — 2)
and have

mir-2=¢+1
mk_1=2€+1
mi =4+ 3.

Hence 4n +1 <4€+3impliesné€, ie. n<f+laswellas2n+1<2¢+1, and
4n +3 < 4+ 3 impliesn < ¢, i.e. ntl<f+1laswellas2n+1< 20+ 1. In the case
that k is odd we choose ¢ = ;1;(2"'1 — 1) and obtain

mig_p =¢
mr_1 =20+1
my =40+ 1.

Hence 4n+1 < 42+ 1 implies n < £ as well as 2n+1 < 2¢+1, and 4n+3 < 4¢+ 1 implies
n+1<¢aswell as 2n+ 1 < 2¢+ 1. In both cases equations (4.9) and (4.10) show that
the second assertion is also valid for n < my so that it is proved by induction

It can be shown analogously by induction that ¥ < Y, for mg <n < 3- 25=2 and
k > 3, but we can extend this inequality a second time by means of (3.6). Introducing
numbers mx (k € N) by 2% — my = 2k=1 4+ my, ie. by

) me = 1(5-2"" = (-1)*)
we have Y, = Ya, according to (3.6). Obviously, 2k-1 <, < 3.282 <y < 2K
and my = my if and only if k = 2. Now, the foregoing remarks and equation (3.6)
imply:

Corollary 4.7 For a fized k € N the Fibonacci number Fy is equal to the mazimum
of Yn for 1 < n < 2% which is attained in this interval ezactly for both n = my and
n=mg. )

The extremal properties in Proposition 4.6 and in Corollary 4.7 can be checked for

the first indices by means of Table 3 where the Fibonacci numbers Y;,, are underlined
and the Fibonacci numbers Yz, are labelled by an overhead bar.

nl1 2|13 4|5 6 7 8| 9 10 11 12 13 14 15 16
Y,,;T|21|3_2§1|43§23341
n 117 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Y.| 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
n 133 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63
Y.l 6 9 11 10 11 13 12 9 9 12 13 11 10 11 9 6
nl65 67 69 71 73 75°-77 79 81 83 8 87 8 91 93 95
Y.| 7 11 14 13 15 18 17 13 14 19 21 18 17 19 16 1l

Table 3: The first numbers ¥, = Z,(1,1,1)
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5. Generating functions

It is useful to construct the generating function

G(t) = i Zat"! (5.1)

n=1

of the sequence Z,. In view of (4.8) the series converges for [t|] < 1. The recursions
(1. 1) casily imply the functlonal equation

G(t) =1 -1+ (r + pt + qt?) G(£?) ' (5.2)

and therefore by iteration for arbitrary n € N

n—1k-1
G)=0-1)3 [ +pt®” +¢¥ )+ G(t*" )H(r+pﬂ +qt? ™.
k=0 ;=0 j=0

As usual the products are defined by 1 in the cases k = 0 and n = 0 For |t] < 1 we
have Cv'(t2 ) = G(0) =1 as n — oo. Hence for {t| < 1 we get in the case |r| < 1

oo k-1

G(t) —(I—T)ZH r+pt2 + t2’+) (5.3)

k=0 j=0

and in the caser =1

=

]
©

Gt) =[] +pt¥ +q*"). (5.4)
; ,

However if we write (5.2) in the form
G(t)—1=pt+qt?+ + (r+pt +qt?) (G(t2) - 1)

we get

Gty =1+ (pt* + g2t H (r+pt? +g?") S (85)
k=0

for arbitrary r and again for |t| < 1. Summarmng these results we have proved:

Proposition 5.1. For 1t < 1 the generating functwn (5.1) has the representation
(5 5). In the case |r| < 1 it can also be represented by (5.3) and in the case r = 1 by
(5.4).

Concerning the different represcntatmns (5.4) and (5.5) in the case r = 1 cf. [6: p.
233].

Moreover, we consider the generating functions

F(t):iYnt"‘“ * and H(t):iwnt"". (5.6)

n=1

where Y, = Z,(1,q, 1) and w, = w,.(q) so that F(t) = G(t) from (5.1) with p =r=1
and (5.2) specializes to A ,
F(t)=(1+t+qt2)F(t ). (5.7)

According to (2.18) and (4.8) the series for H(t) converges for |t| < 1, too.
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Proposition 5.2. The generating function H from (5.6) satisfies the equation

H(t)=F() -1+ (1 +t+qt?)H(t?) (5.8)
and it can be represented by the series _ '
s 1
HO = FO Y (1~ )  (59)

which converges for |t| < 1.

Proof. Equation (5.8) follows from (2.16) and (5.6) by straitforward calculations,
and (5.9) follows from (5.7) and (5.8) in view of H(0) =0 and F(0) =11

Let us mention that scries (5.9) can be written in the form

R _F@) o 7
H(t) = Z; (F(t) F(t?*)) \ (5.10)
where the quotients
. F it 2i i+
F(t(:k))=111(1+t +qt¥")

are polynomials. It is also possible to eliminate F(t) out of (5.7) and (5.8), but then
H(t*) appears in the equation.

6. Explicit representations

We begin with very special representations. In our representations we need the dyadic
sum-of-digits function v(j) and its complement p(k) = € — v(k) for 27! < k < 2¢ with
7 €Noand £,k € N, i.e. v(;) denotes the number of 1s and u(k) the number of Os in the
dyadic representation of j resp. k. Obviously, we have the initial values »(0) = u(1) = 0
and the recursions

v(27) = v(j) } and w(2k) = p(k) +1 }
v(2j +1) = v(5) + 1 #(2k +1) = (k) '

Moreover, we put u(0) = 0 which is compatible with the last equatlon of (6.1). Since
Zye, = p'Zi it suffices to consider odd k only.

(6.1)

Proposition 6.1. For k € N the polynomials Z,x4, have the representations
PO forp =0 _
pRlpu)+1 - gor 0 — (6.2)
pr(k) gv(k) forr=0.

Proof. From (1.1) and (4.2) we immediately obtain

Zakyy =

TZ2k+1 qZak41 forp=0

Z4k+1 = { Tsz+1 and Z4k+3 = {p22k+1 for q = 0 ' (63)
PZ2k41 9Z2k41 forr =0.

In view of Z3 = pr + q equations (6.2) are valid for k = 1. If they are valid for a fixed

k € N, then also for 2k resp. 2k + 1 instead of k in view of (6.1) and (6.3). Hence the

proposition is proved by induction il
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Remark 6.2. In view of (1.2) the first and last equations of (6.2) remain valid
for k = 0. In the case r = 0 we have Z, = p#(M¢*("=! for all n € N. We even can
use Proposition 2.1 for ¢ = 0 and Proposition 3.1 for r = 0 if for j = 0 we interpret
gXo=p—rresp. rUy =p—gq.

In order to deal with the general casec we need some preparations. It can easily be

seen that
— 2¢—1

1
H 1 + pi2 Z p”(k)t

=0

and, more generally,

4

1 2t v(k)—1

(ept) = 0 (] o | ¢ (6.0
k=0 m=0

It

1=0

where the indices yxm € Ny are defined by
k = 2Vkv(k)-1 + ... + 271 + 27ko . (65)

with Yk < 7k1 < k2 < ... . For another generalization we need

Definition 6.3. We say that the ordered pair (z, k) € Ng x Ny belongs to the relation
w(z, k), if ¢ = 0 or if {7io, Yits - Yiw(i)=11 C { VK0 Th1, s Th,w(k) 11}

By means of this definition we find that

v(k)—1

II e+a®™ ™) = > pW7v g0 . .(6.6)

m=0 w(i k)

Choosing p; = p + qtzj we obtain

-1 ‘ ) -1 2¢-1
H (7‘ +pt2) + qt2:+1) _ H (r +Pjt2]) — Z Z s,“t'+k . (6.7)
j=0 3=0 k=0 w(i,k)

according to (6.4) and (6.5) where we have used the abbreviation

Sike = 7"f—u(k)pu(k)—u(i)qu(i) ) (68)

Proposition 6.4. For n € N the solution of problem (1.1) — (1.2) has the repre-
sentation , ,
Zngr= Y siket Y. PpSike (6.9)
i+k=n . i+k=n—2¢

where 28 < n < 2+ (i,k € Np) and a prime at sums shall mean that (i, k) must belong
to w(i, k) and that k < 2¢ — 1.
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Proof. Comparing (5.1) with (5.5) we see that Z,, is the coeflicient of t" in the
polynomial

- . . l_] . .
(pt* "+ qt*) H rtpt? gt )+ [ (et + @) (6.10)
3=0 =0
since the product in (5.5) is a polynomial in t of degree E 27 = 2kl _ 92 It is

possible to replace (6.10) by

-1 . .
(1 +pt21) H (7‘ +pt2) + qt2)+‘)

=0
because the difference is a polynomial in ¢ of degree 2¢ — 2 which gives no contribution
to the coefficient in question. Now, (6:7) immediately implies (6.9) i
Remark 6.5.

. In accordance with Corollary 3.2 the first sum of (6.9) is a homogeneous poly-
nomlal of degree ¢ and the last sum is such a polynomial of degree ¢ + 1.

2. Inview of i+ k = n — 2% and n < 2!+, the restriction k < 2¢ — 1 is automatically
satisfied in the second sum of (6.9).

By means of (2.11), it follows from (6.9) with ¢ = pz:
Corollary 6.6. For n € N the polynomial wn4, has the representation
' . ] .
Way1(z) = ¢ Z ') 4 (£+1) z 2™ (6.11)
i+ k=n i+k=n-2¢
with the same restrictions as in Proposition 6.4.

Comparing (6.9) and (6.11) with (2.18) inthecasep=r = 1,z = gandn = 2¢+j -1
we obtain the simplification
Y= Y ¢ (6.12)
i+k=j—1 '
-where 57 € N, (¢, k) € w(1,k) and Y; = Z;(1,¢, 1), but a further restriction with respect
to k is not required. ’

In the special case r = 1 we can derive another type of representations. For conve-
nience we use the notation z, = z,(p,q) = Z,(p,q,1) for n € Ny. If we mtroduce new
parameters and f as solutions of £ — pf + ¢ = 0 so that

z _ Z; g } ‘ (6.13)
we can write system (1.1) with 7 = 1 in the form
22k = (a + Bz
22541 = Qf 2k + zk41

and every z, is a symmetric polynomial with respect to @ and 8. The generating
function (5.4) supplies a representation for z,:
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Proposition 6.7. The polynomial z,, has the representation
n—1
tn= 3 at)gHn=1oD (6.14)
i=0
where a and f are determined by (6.13) and v(7) by (6.1).

Proof. In view of (6.13) we have 1 + pt + ¢t = (l.+ at)(l + Bt) so that the
gencrating function (5.4) has the form

oo oo
Gt)=[ (1 +et®) [ (1 +8¢)
1=0 1=0

for |t| < 1. Owing to

) ' oo )
ITa +6%) Z v(k) 4k : (6.15)
=0 k=0
we obtain - -
G(t) = Z av) i Z ﬂ"(k) 1k
7=0 k=0

and hence, by means of the Cauchy product and (5.1), representation (6.14) B

Solving (6.13) with respect to p and g it is possible in (6.14) to express z, explicitly
by means of the parameters p and g.

Exarﬁples 6.8.

1. In the special case § = 1 and thercfore & = ¢, p = ¢ + 1 formula (6.14) reduces
to a representation of S, = za(g + 1,¢) in [2]. ‘

2. In the special case g = 1,i.c. 8 = %, formula (6.14) simplifies to

n—1
Za(py1) = Y a*D7r(=1=9) (6.16)
J

=0

where

s
H
kl

0%

(6.17)

dnd in partlculdr forp=2ie. a=1, (6 6) implies z,(2,1) = n which also follows
immediately from (1.1) with p = 2, ¢ = r = 1 and (1.2). For p > 2 we can put

p = 2coshr with real r so that a = eir and
n-1
2n(2coshr, 1) = > cosh [r(v(j) — v(n — 1 - j))]. (6.18)
7=0 ‘

For —2 < p < 2 we can put p = 2cos ¢ with real p so that a = e**¢ and

n—1

za(2cos p,1) = Z cos [g(u(]) ~v(n—1-7))]. - (6.19)

j=0
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Of course, representations (6.18) and (6.19) are also valid for complex r resp. o.

3. A last special case is p = 1 which concerns the polynomials ¥, = Zn(1l,q,1) =
z(1,9). Formula (6.14) yields the representation

n—1
Yo=Y a0 - a)tn-1-9) (6.20)
=0

a=L+,/1-4q (6.21)

From (2.18) and (6.20) also a representation for w, can be obtained, but we do not deal
with that case.

where

Finally, we want to give a third type of representation for Y,, = Zn(1,4,1) = z,(1,q)
where once more it suffices to consider odd n only. From (2.10) with p = r = 1 and
(2.18) with.z = g we obtain :

Yacyony; = (g€ = N) +1)Yyay; — gV . (6.22)

for 0 <7 <2* < 2% Asin (6.5), an arbitrary positive odd integer can be written in the
form : '
ng = 2’7k + 2‘“—1 + ...+ 2‘Y| + 2“/0

withy =1< 7 <72 < ... (k€Np)and v; € N. For a fixed sequence v; we introduce
the notation

n;=q9(vi—v-1)+1  (jEN)
Then, with € = v, A = vx2) and j = nk_s, (6.22) can be written as
| . y"k = 7/ky'u_| - an._z (6.23)
for £k > 2. Since ng = 1 and n;, = 2™ 4 1 we have the initial values Yo, = 1 and
Yo,=gn+1=mn,;cf (210) withp=j3=1and € =1~,.

Proposition 6.9. For k € Ny the poiynomidl Y, = Z.(1,4,1) has the representa-
tion

w2
Y"k = Z(_q)Jnixniz e 7’1'*_7,- (6.24)
=0

where the sum Tuns over all indices with 1 <1, <1, < ... < k under the condition that
tj 15 odd or even for j odd or even, respectively.

Proof. In view of the initial values, (6.24) is valid for k =0 and k = 1. If (6.24) is
valid up to a fixed k, then we obtain from (6.23)

[k/2] ' [(k+1)/2) ‘
Yoo = (=0 00y iy e + DR T T
1=0 j=1

and these sums can be gathered up as one single sum (6.24) with k + 1 instead of k
since tx41-2; < k — 1 in the second sum B
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The first sums (6.24) with k& > 2 read

Yn; =mn2—9
Yo, = mnans — g(m +n3)
Yo, = mn2mang — ¢(mnz + mna + n3ne) + g%

By means of (2.18) and (6.24) it is possible to derive also a representation for w,, but
we are not concerned with that. 4
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