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Abstract. A special system of two discrete two-scale difference equations with polynomial 
solutions is investigated. For-the solutions, addition and subtraction theorems are established 
showing in particular the behaviour of the solutions for a great argument, as well as further 
relations and inequalities. Also, corresponding generating functions are constructed which 
imply explicit representations for the Solutions.	 - 
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1. Introduction 

In this paper we consider the special system 

Z2k =PZk 

Z2k+l = q Zk + r Zk+l }	
(k e N)	 (Li) 

of two discrete two-scale difference equations under the initial condition 

Z I = 1.	 (1.2) 

The coefficients are assumed to be non-vanishing complex numbers, and the solution is 
obviously a polynomial Z. = Zn(p, q, r) of the coefficients. In a forthcoming paper [3) 
the solution of system (1.1) shall be used for an explicit representation of solutions of 
continuous two-scale difference equations at dyadic points. Such equations appear in 
wavelet theory and subdivision schemes, cf. [4, 7]. The special case S. Zn (q+ 1,q, 1) 
was already considered in [2] in connection with de Rham's singular function. After 
replacement Z, 1 = x, the second equation of system (1.1) with q = 1 and r = -- for 
c> 0 appeared also in [1, 5], however in another context and without its first equation. 

It is very simple to calculate the first polynomials Z. (cf. Table 1) as well as Z2 € = p' 
for £ E N0 , but our aim is to analyze the general structure of Z. which becomes visiblein 
addition and subtraction theorems. We establish further relations and calculate infinite 
series. For p	q = r = 1 some Z, are tile - Fibonacci numbers which here have an 
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extremal property. Moreover, we construct generating functions of Z, and of related 
polynomials and derive different explicit representations for Zn. 

71 ____________ 

1	 9 
P	 10 
pr+q	 11

pr+(+pr+rOq 
p2r2+pq(p+r) 
pr2(p+q)+(pq+Pr+qr)q 3 

4 p2	 12 
pr+p+r)q	13

p3r+p2q 
pr(pq+pr+qr)+(p+r)Q2 5 

6 p2r+pq	 14 p2r(p+q)+pq2 

7 pr(p+q)+q2	15 pr(p2 + pq + q2) + q3 
8 0	 16 p4

Table 1: The first polynomials Z, = Zn(p,q,r) 

In Table 1 it is conspicuous that the non-vanishing coefficients of the polynomials 
Z, are all equal to 1. However, this is not a general property as the example 

Z21 = pr' (pq+pr+qr) + (p 2 q+2pqr+pr 2 +qr2)q 

shows. It is possible to use the second equation of system (1.1) also for k = 0 and to 
introduce

zo	 (1.3) 

However, only in the case p = 1 or r = 1, i.e. 

(p-1)(r—l)0	 (1.4) 

the first equation of system (1.1) is compatible with value (1.3) so that we shall use 
(1.3) only in these two cases. 

2. Addition theorems 

We begin with the construction of addition theorems, i.e. of formulas for Z. where.n is 
a certain sum of two terms. 

Proposition 2.1. Under conditions (1.2) and p 56 r the solution of system (1.1) 
with initial condition (1.2) has the structure 

= . : (pt Xi _r t Yj )Zk +r'Y,Zk+l	 (2.1) 

for 0 j 2 (keN; j, e ENo) where X3	Z3(1, , ) and Y3 =	1,1). 

Proof. In the case e = 0 equation (2.1) is satisfied for j E 10, 1} in view of X 0 = 
P-r , Yo = 0 and X 1 = Y1 = 1. Hence for e = 0 and 0 j 1 the polynomials Zn have 

the structure
= Xe, Zk + YI3Zk+1.	 (2.2) 
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We assume that (2.2) is satisfied for a fixed £ and 0 j 2 1 . Replacing k by 2k und 
using (1.1) we obtain

Z2+Ik+ = (pX, + qY,)Zk + rY,Zk+I 

and therefore
X,+1,, = pX,, + qY, 

}•	
(2.3)


= rYe, 

Analogously, replacing k in (2.2) by 2k + 1 we find 

	

X,+12+, = qXt,	

} ,	
( 2.4)


= rXtj +pY,, 

both equations for 0 < j < 2'. This shows that (2.2) is satisfied for £ + 1 instead of £ 
and for 0 j 2'. Hence by induction (2.2) is proved for all £ E No 

Equations (2.3) have the general solutions 

X, = 9 .(p1X3 - r'Y,) }

	
(2.5)


Y,j = 

for every fixed j and j	2' so that (2.2) implies (2.1). Replacing j in (2.1) by 2j and 
using Z2 1 k+2j =	 for £ > 1 we obtain by comparison of coefficients 

x2j=xj 

Y2j=. 

Analogously, replacing  in (2.1) by 2j+1 and using Z2k+2J+I = 
we obtain

x2j+I = 2. Xi +rpx+1 

Y2j + 1 = ', + Y+i. 

In view of the initial conditions the proposition is proved U 

Remark 2.2. 
1. In the case (1.4) at most two of the sequences X, Y,, Z are different since 

X=Zforp=1andY=Zforr=1. Obviously, X=Y=Z for p=r=1. 
2. For k = 1 equation (2.1) specializes to 

z2+j = p q rp tXj+ (p - ..L)ty5	 (2.6) 

, with 0 <	2' ( E N0 ). In view of Y = Z	1 1) and X - Z"l .7	Jr' r 1	-	, ,,, j equation 
(2.6) immediately implies

= p- -9-- r ( r	.7 
)'x ± ( Pr	p-r '- -2--) Y.7	

(2.7) 

x2	= 2-X + (1 - _2)()'Y
p-r p j(2.8)
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and the three equations (2.6) - (2.8) can be used to calculate Zn for n 2 +...+2' +2° 
with integers > ... > 

yi >-yo > 0. In Section 6 we shall come back to this question in 
a special case. Equations (2.5), (2.7) - (2.8) can also be used to check equations (2.4). 

3. Eliminating Xj and Y out of (2.6) - (2.8) we obtain the relation 

Z — — ' , ((P— 1)r'Yn — ( r —  1)p''X)	 (2.9) p— 

for 2	n < 2'' (e E N0). 

The excluded case p = r in Proposition 2.1 can be treated in an analogous way or 
by means of the limit process r—* p. For convenience, we consider the case p —* r and 
write afterwards once more p instead of r. The appearing derivatives with respect to p 
shall be labelled by means of a dash. 

Proposition 2.3. For  = r the solution of system (1.1) with initial condition (1.2) 
has the structure

z21. ='' [(eq+p2 )Y3 —qw1 ]	 ( 2.10) 

where
WI = Z(p,xp,p)Ii	 (2.11) 

satisfies
= (x 2 + £ + 1) Y3 — exw1 (x)	 (2.12) 

for o<j<2' (j,	No), Y,=Z(1,x,1), x= , and w 0 =—,w 1 =0. 

Proof. Since Z is a polynomial in p, q, r it is differentiable and so are X. and Y. 
in view of p 54 0 and r 0. Equation (2.6) can be written in the form 

= (prt+/_Tt)yj_ptq_X1 

Forp —* r both X3 = Z(1,,) and Y3 = Z3 (,,i) converge to Z3 (1,,1) and, by 
means of de 1'Hospital's rule (which is also applicable to holomnorphic functions), we 
obtain

Z2€, = p''(p2 + q)Y3 — p'q(YJ — X) 

and therefore (210). with

= p[Z, , 1) — Z' (1, , )JI•	(2.13) 

Obviously, w3 depends on x = 2. alone and it can be represented as (2.11). In particular, 
(2.11) yields the initial values of w3 for j = 0 and j = 1. Substituting q = px in (2.10) 
we obtain	 S 

Z2 1 +j =pe[(&+p)Yj —xw3] 

and by differentiation with respect to p, choosing p = 1 and considering (2.11), we also 
have proved (2.12)1
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Remark 2.4. More generally, it follows from (2.1) for p —* r 

Z2+ = p 1 q(eYj — w)Zk + ptYjZt+i	 (2.14) 

and in view of (2.11) 

= (e2 Y — eW)Yk + e yk+I + x(Yj — w)w + YjWk+1	(2.15) 

for 0j2 t (kEN,ENo),}'j =Zj (1,x,1). For j=0 this implies W21k=Yk+wk 
and for £ > 0 in particular w2 L = £. Moreover, for £ = 1 and j = 0 resp. j = 1 we easily 
see: 

• Corollary 2.5. The polynomials w (j E N) are uniquely determined by the initial 
value w 1 = 0 and the system	 - 

W2j+l = XWj ±	+ Y2+' J

	 (2.16) 

Yj = Z,(1, x, 1), which is the inhomogeneous counterpart to the homogeneous system 
(1.1)withp=r1 andq=x. 

By elimination of Y, in (2.16), using Y21 = xY3 + Y) ,, we obtain the further 
relation

	

W2j+1 = XW2j + W2j+2	 (2.17) 

which is also satisfied by 1',, instead of w,, and from (2.10) and (2.12) with p = 1 and 
q=xweget

= £Y2	+ Y,,	 (2.18) 

Yi = Z,(1, x, 1). All these relations can be checked for the first indices by means of 
Table 2.

fl Yn 
11	1 0 

21 1 
• 1+x 2+x 
41 2 

1+2x 3+4x 
6 1+x 3+2x 
7 1+x+z2 3+3x+2x2 
81 3

n Yn wn 
9 1+3x 4-4-9x 

10 1+2x 4+6x 
11 1+2x+2x2 4+7x+6x2 
12 1+x 4+3x 
13 1+2x+2x2 4+8x+6x2 
14 1±x+x2 4+4x+3x2 
15 1+x+x2 +x3 4+4z+4x2+3x3 
161 1 4

Table 2: The first polynomials Y, = Z(1, x, 1) and w(x) 
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3. Subtraction theorems 

There exist analogous formulas for negative j, i.e. corresponding subtraction theorems. 
Proposition 3.1. In the case p 54 q the solution of system (1.1) with initial condi-

tion (1.2) has the property

	

= r_'U, + (1! - -! ) q'V	 (3.1) 

.7- ) ( 1, ') 

The proof can easily be carried out inductively using the initial values Z2 
= 

U0 =	Vo = 0 and the recursions 

U2j = Uj	
}	and	• = 

U2j + 1 =	+ U+ i	 V2j+I =	+ +I } 

so that it shall be omitted here. For j = 2' the right-hand side of (3.1) is equal to 
and is equal to (1.3) for all € if and only if p = 1 or r = 1. 

As a consequence of (2.6) and (3.1) we find 

Z23 = pr'Z f	1) + q'Z2 e	1)	 (3.2)
J.q' q' 

and this equation is not only valid for 0 < j < 2' but also for j = 2'. Owing to 
continuity, equation (3.2) remains valid in the limit case p = r. Since both terms on the 
right-hand side of (3.2) are homogeneous polynomials we can conclude (cf. Table 1): 

Corollary 3.2. For 1	< 2' - 1 every polynomial Z21, is a sum of a homoge-




neous polynomial of degree e + 1 plus such a polynomial of degree £. 

It is also possible to consider the limit case q -* p in (3.1) where we proceed 
analogously as before. 

Proposition 3.3. For  = q the solution of system (1.1) with initial condition (1.2) 
has the property

	

Z2_ = pti [(r(e - 1) + 1)U — r. 1 ]	 (3.3) 

for 0 < j	2' - 1 - (e E No) where U = Z 2 (i,, 1) and w3 = w 7 () is determined by

(2.16) with x = and w 1 = 0. 

Proof. By means of de l'Hospital's rule we obtain from (3.1) for p -+ 

Z21_, =± (r + 1 — r)p'Z q 

	

(i	1).- rp'[Z' (, , 1) - Z(i. . )1 I 

	

3	'1'' Jq pp ilq=p 

where in view of (2.11)

1 - Z' 1 i	2.\1l 

	

q' q' I	j\ ' P' p)JIq=p'.pi 

so that (3.3) is proved U
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Analogously, in the case x 54 1 we can derive 

W21 _(x) =	- x'V3 ) - x''V	 (3.4) 

for 0 <j < 2' (R E N0 ) with U = Z(1,1,x) and VJ	3 =	1 1), and in the case  zx 

x=1
W2_(1) = ( e2 - 1)Y - ew,	 (3.5) 

with Y, = Z,(1, 1, 1). Moreover, a simple consequence of (2.10) with p = q = 1 as well 
as e - 1 instead of e and (3.3) with p = r = 1 is 

= Y21-1+j	 (3.6) 

for 0	j	2'- ' with Y. = Z(1, 1,1). This equation shows a local symmetry of Y. 
with respect to the points n = 3 2'	( > 2) (c f. the later Table 3). 

4. Further relations and inequalities 

In the following we also admit vanishing coefficients in system (1.1). In order to establish 
new relations between different solutions Z we need the definition of a k-sequence. 

Definition 4.1. Let k E N and e E N0. 

(i) A finite sequence Al , IL2, ..:,Ilk is called a k-sequence if j.t, E 11,3) 1 i, E 18 + 
1,8e + 31 for _, = 4 + 3 and zj e j8 t+ 5,8e + 71 for i_1 = 4e + 1 (2 <j <k). 

(ii) A finite sequence /1,, ,u 2 , ..., ji k, 14 is called an extended k-sequence if /11,..., 
is a k-sequence, 14 = V + 3 for [Lk = V + 1 and j4 = 4 + 1 for /-1 k = V + 3. 

The foregoing definitions can be visualized by means of a so-called Collatz graph 
(cf. [81). We begin with the directed Collatz graph in Figure 1 for the function g defined 
by

g(4e+1)g(4e+3)=2e+1	(EN0). 

Inverting the directions and interchanging the neighbouring numbers V + 1 and V + 3 
for all e E N0 , we obtain the .inversely directed Collatz graph in Figure 2 for the function 

f defined by
f(8e+1)=f(8e+3)=4e+3

>	(ee No) . 
f(8e+5) = f(8e+7) =4e+ 1j 

After these preparations, the numbers of k consecutive vertices in a' directed path of Fig-
ure 2 beginning with 1 or 3, where in the last case the loop at the vertex 3 can be passed 
several times, yield always.terms.of a k-sequence. The term /4 of the. corresponding 
extended k-sequence is fixed by the demand that /4 54 Il k and that an interchange of
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Ik and /4 again yields an extended k-sequence. Note that for all j we have 

__ 

©

o*z 

®* 

Figure 1: The directed Collatz graph of the function g 
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Figure 2: The inversely directed Collatz graph of the function f
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Proposition 4.2. For every extended k-sequence the polynomials Zn satisfy the 
relations

AkZ2n+i = Ak_IZ	+ A 2 Z8 n+ M , +	
( 1) 

+ AZ2 k np	+ Z2k+tn+pk + Z2k+1n+p; 
for arbitrary k E N, n E No and A=p+q+r. 

Proof. From system (1.1) we easily derive 

	

= pqZk + rZ2k+l

}•	
(4.2)


Z4k+3 = qZ2kl + prZk+I 

By addition we obtain

- (p + q + r)Z2 n+ i = Z4 n+ i + Z403	 (4.3) 

and therefore (4.1) for k = L If (4.1) is satisfied for a fixed k-sequence, we multiply 
this equation by A and regard that

= Z2 ++ 8 + 1 + Z2k+2+8+3 
AZ2 k + l n+4t+3 = Z2 +2 0+ 8 ,+ 5 + Z2&+2n+8,+7. 

in view of (4.3). Hence we obtain (4.1) with k+ 1 instead of k and two extended (k+ 1)-
sequences, one with the old Mj for j < k and one with the old y j for j k - 1 and /4 
instead of Ak, and both with suitable f1 k+i,/4 1 U 

Remark 4.3. 
1. Further special cases of relations (4.1) besides of (4.3) are 

A 2 Z20 + 1 = AZ40+ 1 + Z80+5 + Z8n+7 
A 2 Z20 + 1 = AZ40+3 + Z80+1 + Z8+3. 

2. Dividing (4.1) by A" and considering the case k - c we obtain the expansion 
00 

'7	 1'7 '2n+I =

	

	 (4.4) 

t=1 

so long as the series is converging. This is always the case for positive p, q. r but also 
for some complex coefficients: 

Proposition 4.4. The series (4.4) converges for complex p, q, r provided that 


C = max {Ip I, Il + In, i} < IAI  

where A = p + q + r. 

Proof. 1. In order to show the convergence of series (4.4) first we shall prove that 

IZ k I	C'	 (4.6)
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for 1 < k < 2 (C E N0 ). For this reason we shall show by induction that 

iz2+j i	C''	 (4.7) 

for 0 < j < 2'. This inequality is true for £ = 0,j E {0, 1} according to Z 1 = 1	C and

1Z2 1 = p < C. Assume that (4.7) is valid for a fixed E. Then we have 

= ii iZ2+ i	ipiC'	C' 

	

Z2 L+1+ 2	<i q i IZ2+ i i + I I I iZ2+j+i I	(l q I + r I)C	C' 

for j < 2' and j < 2', respectively, i.e. (4.7) with e + 1 instead of £ so that (4.7) is 
proved. This implies inequality (4.6) in view of C > 1. 

	

2. Now, from (4.6) and pt <2t+1 we obtain I Z2i+in+J C'	for n + 1 <2m 
in view of 2'n + i, < 2'(n + 1) <	This yields	Z2+1	J	' ()'

so that according to (4.5) the series in (4.4) converges U 

Fork = 2' +j we immediately obtain from (4.7) and 2' k 2: 

Corollary 4.5. The polynomials Zk (k E N) can be estimated by 

fZk I < CkC	 (4.8) 

with c = In 2 
In the case p = q = r = 1 we can state the following curious connection between 

the numbers Y = Z(1, 1, 1) and the Fibonacci numbers Fk (k E No): 

Proposition 4.6. With the notation m. = .(2k+1 +(i)') (kENo) the numbers 
Ymk = Zmk (1, 1,1) are the Fibonacci numbers Fk. These have the extrernal property 
Yn<Ym k forn<mk and k>2. 

Proof. In view of m0 = rn 1 = 1 and (1.2) the first assertion is valid for k = 0 and 
k = 1. According to 

	

2	+ (_ 1 )k = 2k +(_l)k_1 +2(2 k-1  + (_l)k_2) 

and (1.1) with p = q = r = 1 the numbers Ymk satisfy the difference equation 

mk	mkI + Ym k2	 (49) 

for k > 2 which proves the first assertion. 
In order to prove the second assertion it suffices to consider odd indices since Y2 

Y, and to consider (4.2) in the specialization 

= Y. + Y2n+1 }

	
(4.10) 

= Yn+I + Y2n+I
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The assertion is valid for n < rn 2 = 3 where Y3 = 2 (cf. Table 3). We assume that it is 
valid for n < ink_I with k > 3. In the case that k is even we choose £ = ( 2k_1 -2) 

and have
Mk-2 = £ + 1 

ink_i = 2t + 1 

M k = V +3. 

Hence 4n + 1 < V+3 3 implies n £, i.e. ri < t+1  as well as 2n + 1 2 + 1, and 
4n+3 <4e+3 implies n <, i.e. n+1 <+1 as wellas 2n+1 < 2+ 1. In the case 
that k is odd we choose € = (2k_1 - 1) and obtain 

= £ 
- -	mk_1=2€+1 

M k = 4€ +1. 

Hence 4n+1 <4e+1 implies  < £as well as2n+1 <2€+1, and 4n+3 < 4€+1 implies 
+ 1 <€ as well as 2n+ 1 <2€+ 1. In both cases equations (4.9) and (4.10) show that 

the second assertion is also valid for n <ink so that it is proved by induction I 

It can be shown analogously by induction that Y < Ym k for ink < n <	k-2 and

k > 3, but we can extend this inequality a second time by means of (3.6).. Introducing 
numbers ink (k E N) by 2k -	= 2k-1 + 112 k, i.e. by 

Tflk = 1(5 .	- (i)k) 

we have Ym k = Yjjj ,, according to (3.6). Obviously, 2k-is ink < 2k2 < Tiik< 2k 
and Mk = ink if and only if k = 2, Now, the foregoing remarks and equation (3.6) 
imply: 

Corollary 4.7 For a fixed k E N the Fibonacci number Fk is equal to the maximum 
Of Y, for 1 < n < 2k which is attained in this interval exactly for both n = ink and 
Ti = ink.	 - 

The extremal properties in Proposition 4.6 and in Corollary 4.7 can be checked for 
the first indices by means of Table 3 where the Fibonacci numbers Ym k are underlined 
and the Fibonacci numbers YTF, are labelled by an overhead bar. 

1 2 I	3 4 1	5 6 7 8 I	9 10 11 12 13 14 15 16 

11 I2 1I21I4325 3 41 

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

54 73 9 572 75 37451 

35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 

_J6 9 1110 11j12 9 912T11 1011 96 

n 65 67 69 71 73 75 ' 77 79 81 83 85 87 89 91 93 ' 95 

Yn 7 11 14 13 15 . 18 . 17 , 13 14 19 21 18 17 , 19 16 11

Table 3: The first numbers Y = Z(1,1,1) 
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5. Generating functions 

It is useful to construct the generating function 

C(t) =	Z - ' (5.1) 

of the sequence Z,.	In view of (4.8) the series converges for hi < 1.	The recursions 
(1.1) easily imply the functional equation 

G(i) = 1 —r + (r +pi + qi 2 )G(i 2 ) (5.2) 
and therefore by iteration for arbitrary n E No 

n—i k—i	 n—I 
G(i) = (1— r) E fl(r +pi2' + q121+') + G(t 2 ") fl (r +pt2' + qt2'+'). 

k=0 j=0	 j=0 

As usual the products are defined by 1 in the cases k	0 and n = 0. For Itl < 1 we 
have G(t 2 ") —* G(0) = 1 as n —* oo. Hence for Ill < 1 we get in the case Iri < 1 

co k—i 

G(t) =(1 _r)H (r+pi 2' +qt2'+') (5.3) 
k=0 j=0 

and in the case r = 1

G(t) - H (i + p12 	+ q12' +1)
(5.4) 

However, if we write (5.2) in the form 

G(t) - 1 = p1 + qi 2 + (r + p1 + qi 2 ) (G(1 2.) — 1) 
we get

CO	 k—i 
G(i) = 1 +	t2k + qt2') H (r + p12' + qj2') (5.5) 

for arbitrary r and again for Itl < 1. Summarizing these results we have proved: 
Proposition 5.1. For itl < 1 the generating function (5.1) has the representation 

(5.5).	In the case Irl < 1 it can also be represented by (5.3) and in the case r = 1 by 
(5.4). 

Concerning the different representations (5.4) and (5.5) in the case r = 1 cf. [6:	p. 
2331.

Moreover, we consider the generating functions 

F(t).= L Yt'	and	H(t) =	Wnt". (5.6) 

where Y = Z(1, q, 1) and Wn = wn(q) so that F(t) = G(t) from (5.1) with p = r = 1 
and (5.2) specializes to

F(t) = (1 + I + qt 2 ) F(i 2 ) . (5.7) 
According to (2.18) and (4.8) the series for H(t) converges for Itl < 1, too.
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Proposition 5.2. The generating function H from (5.6) satisfies the equation 

H(t) = F(t) - 1 + (1 + t + qt 2 ) H(t 2 )	 ( 5.8) 
and it can be represented by the series 

H(t) = F(t)	(i_ F(t2k))	 (5.9) 

which converges for Jil < 1. 
Proof. Equation (5.8) follows from (2.16) and (5.6) by straitforward calculations, 

and (5.9) follows from (5.7) and (5.8) in view of H(0) = 0 and F(0) = 1 I 
Let us mention that series (5.9) can be written in the form 

H(t) =	(F(t) 
k=0	

- F(t2k))	 (5.10) 

where the quotients
F(t)	k-I 

F(t2k) = 11(1 +t 2' + qt2'+') 
j=0 

are polynomials. It is also possible to eliminate F(t) out of (5.7) and (5.8), but then 
H(t4 ) appears in the equation. 

6. Explicit representations 
We begin with very special representations. In our representations we need the dyadic 
sum-of-digits function v(j) and its complement z(k) = e - v(k) for 2" < k < 2 with 
j E No and e, k E N, i.e. v(j) denotes the number of is and 1i(k) the number of Os in the 
dyadic representation of j resp. k. Obviously, we have the initial values v(0) = (1) = 0 
and the recursions 

v(2j)=v(j)
and	 .	(6.1) v(2) + 1) = z(j) + 1 J	i(2k + 1) = M(k)	J 

Moreover, we put 40) = 0 which is compatible with the last equation of (6.1). Since 
Z2 t k = p'Zk it suffices to consider odd k only. 

Proposition 6.1. For k E N the polynomials Z2k+I have the representations 

I qP(k).l(k)	for p = 0 
Z2k+I = p	r(S)+1 for q = 0	 (6.2) 

I
 

pp(k) q v(k) for r = 0. 
Proof. From (1.1) and (4.2) we immediately obtain 

	

rZ2,1	 ( qZ+ 1 for p = 0 

	

Z4k+l = rZ+ i	and	Z4k+3 = PZ2 k+ l for q = 0	(6.3) 

	

I.. pZ2k + 1	 I. qZ2k+l for r = 0. 
In view of Z3 = pr + q equations (6.2) are valid for k = 1. If they are valid for a fixed 
k E N, then also for 2k resp. 2k + 1 instead of k in view of (6.1) and (6.3). Hence the 
proposition is proved by induction I
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Remark 6.2. In view of (1.2) the first and last equations of (6.2) remain valid 
for k = 0. In the case r 0 we have Z. = for all n E N. We even can 
use Proposition 2.1 for q = 0 and Proposition 3.1 for r = 0 if for j = 0 we interpret 
qXo = p - r resp. rUo = p - q. 

In order to deal with the general case we need some preparations. It can easily be 
seen that

2' —1 

H (i+pt 2')= >pv(k)tk 
j=0	 k=0 

and, more generally,

2-1 /v(k)—I 

H (r + p,t 2' ) =	r v( k) I II	m) tk	 (6.4) 
j=0	 k=0	 '720 

where the indices 7km E No are defined by 

k = 2( k ) I + ... + 2' + 2°	 .	(6.5) 

with 7ko < Yk < 7k <	For another generalization we need 

Definition 6.3. We say that the ordered pair (i, k) E No x No belongs to the relation 
w(z,k), if  = 0 or if {7iO,yii,...,7j,(i)i} C {7ko,7k1,...,7k(k)_I}. 

By means of this definition we find that 

p(k)-1 

II (p + qt'")	pv(k)_&(l)qv(l)tl	 (6.6) 
M=0 

Choosing p3 = p + qj2' we obtain 

t—i 

H (r + pt 2' + qt2' ' )	H (r +p3t22) =	s1et'"	(6.7) 
j=0	 j=0	 k=0 (i,k) 

according to (6.4) and (6.5) where we have used the abbreviation 

S1kt = re_p_t(i)qt(i) .	 (6.8) 

	

Proposition 6.4. For n 	N the solution of problem (1.1) —(1.2) has the repre-




sentation
Zn+i =	S +	 ( 6.9) 


i+k=n-2 

where 2' a <	(i, k E No) and a prime at sums shall mean that (z, k) must belong 
tow(i,k) and that k2 t -1.	 .
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Proof. Comparing (5.1) with (5.5) we see that Z,+ 1 is the coefficient of t in the 
polynomial

(-2	 (-1 

(Pt 2t-1 + qt 2 t ) 11 (r + pt2' + qj2)+') + t2 JJ (r + pt2 + qt 2'+'	(6.10) 

since the product in (5.5) is a polynomial in t of degree >Y 2 = 2k+I - 2. It is 
possible to replace (6.10) by 

(1 + pt2')	(r + pt 2' + qt2)+') 

because the difference is a polynomial in t of degree 2' - 2 which gives no contribution 
to the coefficient in question. Now, (67) immediately implies (6.9)1 

Remark 6.5. 
1. In accordance with Corollary 3.2 the first sum of (6.9) is a homogeneous poly-

nomial of degree e and the last sum is such a polynomial of degree e + 1. 
2. In view of i + k = ri —2' and n <2'', the restriction k < 2' - 1 is automatically 

satisfied in the second sum of (6.9). 
By means of (2.11), it follows from (6.9) with q = px: 
Corollary 6.6. For n E N the polynomial w,. i has the representation 

w+ 1 (x) =	 + ( + 1)	 (6.11) 
x+k=n	 i+k=n-2' 

with the same restrictions as in Proposition 6.4. 
Comparing (6.9) and (6.11) with (2.18) in the case  = r = 1, x = q and  = 2'+j-1 

we obtain the simplification
=	qV(I)	 (6.12) 

i+k=j- I 

where j E N, (i, k) E w(i, k) and 1', = Z,(1, q, 1), but a further restriction with respect 
to k is not required. 

In the special case r = 1 we can derive another type of representations. For conve-
nience we use the notation z = zn(p,q) = Zn (p,q,1) for n E N0 . If we introduce new 
parameters a and 6 as solutions of e 2 - X + q = 0 so that 

p=a+13'i 
q/3	

(6.13) 
=a  

we can write system (1.1) with r = 1 in the form 

Z2k = (a + 13)zk 
Z2k+I	af3Zk+Zk+I 

and every Zn is a symmetric polynomial with respect to a and 3. The generating 
function (5.4) supplies a representation for Zn:
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Proposition 6.7. The polynomial z,. has the representation 

n-I 
= 

1: aP(J)/3l'(flIJ)	 (6.14) 
j=o 

where a and [3 are determined by (6.13) and v(j) by (6.1). 

Proof. In view of (6.13) we have 1 + pt + qt 2	(1 + at)(1 + )3t) so that the

generating function (5.4) has the form 

G(t) = H(1 +at2')fl(l +fit2) 

for I tl < 1. Owing to

	

00	00 

H (1 +	=	tk	 (6.15) 

we obtain

G(t) =	a	t	13v(k) t' 

and hence, by means of the Cauchy product and (5.1), representation (6.14)1 
Solving (6.13) with respect to p and q it is possible in (6.14) to express Zn explicitly 

by means of the parameters p and q. 

Examples 6.8. 
1. In the special case 6 = 1 and therefore a = q, p = q + 1 formula (6.14) reduces 

to a representation of Sn = zn (q + 1,q) in [2]. 
2. In the special case q = 1, i.e. [3 = , formula (6.14) simplifies to 

Zn(p, 1) 
=

(6.16) 

where
(6.17) 

and, in particular for p = 2, i.e. a = 1, (6.16) implies Z(2. 1) = rn which also follows 
immediately from (1.1) with p = 2, q = r = 1 and (1.2). For p ^! 2 we can put 
p = 2 cosh r with real r so that a = e±r and 

z(2coshr,1) =	cosh [r(v(j) - zi(n —1_j))]. (6.18) 

For —2 p 2 we can put p = 2cos p with real p so that a = e	and 

zn(2 cos p,1) =	cos [(j ) - v(n —1_j))].	 (6.19)
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Of course, representations (6.18) and (6.19) are also valid for complex r resp. p. 
3. A last special case is  = 1 which concerns the polynomials 1',, = Z,(l,q, 1) = 

z.(1, q). Formula (6.14) yields the representation 

n—I 

Yn = : i: &'(i - a)&(fl_1_J)	 (6.20)

j=0 

where

(6.21) 

From (2.18) and (6.20) also a representation for w,-, can be obtained, but we do not deal 
with that case. 

Finally, we want to give a third type of representátidn for Y Z(1, q, 1) = z(l, q) 
where once more it suffices to consider odd n only. From (2.10) with p r = 1 and 
(2.18) with x q we obtain 

Y2 1+ 2 A+ J = (q(e - A) + 1)Y2	- qY	 (6.22) 

for 0 j < 2 < 2. As in (6.5), an arbitrary positive odd integer can be written in the 
form

nk = 2' + 2-' + ... + 2' + 20 
with Yo = 1 < -y < -y < ... (k E N0 ) and -y3 E N. For a fixed sequence yj we introduce 
the notation

	

+i	(jEN). 
Then, with e = Yk, A = 7k--1 and j = k-2, (6.22) can be written as 

l"nk =nlk Ynk_l —qYfl _ 2	 (6.23) 

for k > 21 Since no = 1 and n 1 = 2 + 1 we have the initial values Y,, 0 = 1 and 
Y,,, = qy + 1 = hi; cf. (2.10) with p= j = land e = Yi 

Proposition 6.9. For. k E No the polynomial Y,, = Z(1, q, 1) has the representa-
tion

lk/21 
=	 (6.24) 

i=0 
where the sum runs over all indices with 1 < z 1 < i 2 < ... < k under the condition that 
ij is odd or even for j odd or even, respectively. 

Proof. In view of the initial values, (6.24) is valid for k = 0 and k = 1. If (6.24) is 
valid up to a fixed k, then we obtain from (6.23) 

lk/21	 l(k+I)/21 
=

	

	
17k-2j 71k+I +	( — q)37,Ij, 7i2	. 77k+12


j=0 

and these sums can be gathered up as one single sum (6.24) with k + 1 instead of k 
since	< k - 1 in the second sum 
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The first sums (6.24) with k > 2 read 

Yn2 = 1777 - q 

Yn3 = T/1172173 - q(i + 173) 

= 171172173174 - q(171 172 + l71 174 + 173174) + q2. 

By means of (2.18) and (6.24) it is possible to derive also a representation for w, but 
we are not concerned with that. 
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