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A Nonlinear Boundary Value Problem
for a Nonlinear Ordinary Differential Operator
in Weighted Sobolev Spaces

N. T. Long, B. T. Dung and T. M. Thuyet

Abstract. We use the Galerkin and compactness method in appropriate weighted Sobolev
spaces to prove the existence of a unique weak solution of the nonlinear boundary valued
problem

- L A M(z,u'(z)) + f(z,u(z)) = F(z) (0<z<1)
V |lim,_.g+:c"/pu'(z)| < 400
M(1,4' (1)) + h(u(1)) =0
where v > 0,p > 2 are given constants and f, F,h, M are given functions.
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1. Introduction

We consider the nonlinear boundary value problem

—LiM(z,u'(z)) + f(z,u(z)) = F(z) (0<z<1)

zY dzx

lim; —o,z7/Pu'(z)| < +00 (1.1)
M(1,4'(1)) + h(u(1)) =0

where

v > 0 and p > 2 are given constants

f, F, h are given functions
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M : (0,1) x R — R satisfies the Carathéodory condition and is monotonically
increasing with respect to the second variable.

In the case of v = 0 the problem

—LiM(x,u'(x)) + f(z,u(z)) = F(z) (0<z<1)

z¥ dz
M(1,4'(1)) + 1G(1)sinu(1) =0

is related to the buckling of a nonlinear elastic bar with specific weight ~¢ immersed in
a fluid with specific weight v, that Tucsnak [1] has constructed in the case of

flz,u) = F(z) = [ = A+ (v0 = m)g(z) - G'(1)] sinu

where A > 0 is a constant, g and G are given functions with some mechanical meaning,
and u(z) is the angle between the tangent of the bar in the buckled state of a point
with curvilinear abscissa z and vertical axis Oy. Then, in the case of ¢ = const and
M(z,u') = M(u') being monotonically increasing and sufficiently smooth Tucsnak has
studiced the bifurcation of integral equations equivalent to problems (1.1) and (1.2)
depending on a parameter A.

We note that problem (1.1) with v = 0 and v'M(z,u') > C,|«'|P (p > 1,C, > 0)
independent of z had becn considered in (2]. In 6] problem (1.1) with p = 2, M(z,u') =
z7u’ with v > 0 and the boundary condition u'(1) + hju(1) = hy with given constants
hy > 0 and h; has been studied. At least, in [3, 4] the nonlinear Bessel differéntial
equation

—%%M(zu'(z)) +ul—u=0 (z>0) - (1.3)

has been studied.

In this paper we use the Galerkin and compactness method in appropriate weighted
Sobolev spaces to prove the existence of a unique weak solution of problem (1.1). The
results obtained here generalize those of [1 - 4, 6].

2. Preliminary results, notations, function spaces

Put 2 = (0,1) and p’ = ;;Ll. We omit the definitions of the usual function spaces

C™(Q), LP(R), H™(Q) and W™P(Q). We denote by LE(Q) = LP the class of all

measurable functions u defined on §2 for which
lullp,y < o0 (1<p<oo) (2.1)
where

Il = ([ #hueraz) (1< o0

llztlloo,+ = ess sup |u(z)|
0<z<1
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and were we identify functions that are equal almost everywhere on §2. The elements
of L? are thus actually equivalence classes of measurable functions satisfying (2.1), two
functions being equivalent if they are equal a.e. in 2. Then L? is also a Banach space
with respect to the norm || - ||,,4. In particular, L? is a Hilbert space with usual scalar

product (u,v) = fol z7u(z)v(z) dz and norm |lul2,y = y/(u,u). We denote by
W) P(Q) = WP = {veL?:v'elLl} (1 <p<o0)
the real Banach space with respect to the norm
1
Wollipy = (0155 + V'3 5) 7 (1 <p <o)
llvlli,c0,y = max {"”"00,'1: "”,noory}

with derivatives in the sense of distributions (8]. In defining the function space W.1-?(Q)
with weight 7, we can also define W.'?(2) as the completion of the space

S = {u €C'(Q): Nullipy < °°}

with respect to the norm || - ||1,p,y (sec Adams [8]).

The following imbedding inequality will be used in the sequence.

Lemma 2.1. For everyu € C'(Q), v > 0 and p > 1 we have

lull? ., < Ju(L)IP + Ky |l'|IF
lu(1)] < Azllullip~

1 2.2
z7 |u(z)] < Ksllullpy (22)
lull3,y € Kallullp o ()P + 1215 )7 (p>2-7
where ' -
- -1 -
Ky = (557
Ky = (v+p)?
K = max{27,(y +2p - 1)7}
. - p-1 1
Ke = Ks(i55-n7) -
Proof. (i) Integrating by parts in the following integral, we get
lu(1)I? ’ - :
= 2O P [y ptuay(z) da
149 14+ 0 (23)
_ P p
14y 149
where by using the Holder ihequa]ity
l ) .
I} =. / 23 u/(z) 2" u(z) P 2u(z) dz | < ' llp. a2 (2.4)
0
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It follows that
(T +Dlllf 5 < TP + pllu'llp 4 llul23
Using the Hélder inequality

1 1 ., . '
abS—e"’a”+—,e” bP (e>0,a>0,6>0)
p P
it follows that
(L Dlully < (P + 7Pl + (p ~ De? [[ull®,

where (p — 1)6”[ = v. Hence (2.2), is deduced.
(i) Similarly, it follows from (2.3), (2.4) and the Holder inequality with ¢ = 1 that

lu(D)IP = L+ NNullp +pI < P+ Nlull, + 115, (2.5)

Hence (2.2), is deduced.
(iii) We have for all z € [0, 1]

2@l = ()P - [ (—g(mu(yn")dy
¥ u(y) P 2u(y)u'(y) dy

~ (P - T )Py — p /

z
where by using the Holder inequality the later integral in the right-hand side is estimated
as

<l 5H 1w T,

/y”|U(y)|”'2u(y)u'(y)dy

Taking together we deduce that

2V |u(2)P < [u(1)1P + plluflb S ' llp,q-
We again use the Holder inequality with € = 1 to get from (2.5) that
(@) < (p+lell}  + 1155 + (P = DllullZ, + ]2 .

Hence (2.2); is proved.
(iv) Let p> 2 — 1; and p > 1. We have from (2.2); that

1 . [
lull2 ., = / 23 |u(2) |27 [u(@)|dz < Kaulls pn / 27 u(z)dz.  (26)
0 0

On the other hand, using the Holder inequality we obtain the inequalities

()P < 27! [lu(l)l” + ( / ' |u'(y)i"dy)p]

1
< or! [lu(l)l” +(1-z)P! / Iu'(y)l"dy]
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1 P )
(/ z7|u(x)|dz> < / z(”_')7|u(:c)|pdz:.
0 0

Hence, Taking together we deduce that

(/01 z;’f|u(z)|dx)p

27 uDP | opet [ L6 g
< ———+2F / 2P~ — )P ld:z:‘/ [u'(y)|Pdy.
oy T Sy e

Inverting the variables of integration z and y in the last integral we estimate that

integral as
1 1
[ e -ertan [y
0

/ ! (y) P dy / (=07(1 - 2y~ da
< [ W [ s

. L — yl-{»(p DRI y)|Pdy
T

and note that y'*(P=1Y < y7 for all y € [0,1) and p > 2 — % Then (2.2), is deduced
from (2.6) - (2.8) &

and

(2.7)

(2.8)

Remark 1. The results (2.2), 2 proves that ([u(1)[P + |[«/|I2,)7 and |ful|, 5 arc
two equivalent norms on W ?(Q) and

1 -
el iy S WOOP + 1 < (14 KD (2.9)

for all w € W} P(Q2).

Lemma 2.2. The imbedding W) ?(Q) — L2(Q) (p > 1) is continuous if p > 2— %,
and compact if p > 2.

Proof. Forp > 2- {; the continuity of the imbedding W):P(Q) — L2(Q) is deduced
from (2.2)4 and (2.9). For p > 2 we have W)P(Q) — W13(Q) — L2(2) and on the
other hand the imbedding W 2(Q) — L2(Q) is compact see [3]). chcc Wir(Q) =
L2(Q) is also compact §

Remark 2. We also note that

lim zvu(z) =0 (u € WIP(Q)) (2.10)

z—04

(see [7: p. 128/Lemma 5.40). On the other hand, by W'?(g,1) — C° [e 1) (0<e <)
and

cr lullweceny < leelhpy (ue WP 0<e<) (2.11)
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it follows that
ulle) € CO(le,1])  (0<e<1). (2.12)

From (2.10) and (2.12) we deduce that
ru € CUQ)  (ue WP (Q)). : (2.13)

Put H = L2(Q) and V = W P(Q) withp > 1and p > 2 - ’; From the result of
Lemma 2.2 with p > 2 — %, V is continuously embedded into H. Furthermore, V is

dense in H since C*(Q) is dense in H; identifying H with H' (the dual of H), we have
V — H — V'. On the other hand, the notation (-,-) is used for the pairing between V
and V'. :

3. Theorem on existence and uniqueness

We assume that p > 2 and formulate the hypotheses
(My) M : (0,1] xR — R satisfies the Carathéodory condition, i.e. M(-,y) is measur-
able on (0, 1] for every y € R and M(z, ") is continuous on R for a.e. z € (0,1].

(M2) There cxist a constant C; > 0 and a function ¢, € L'(Q) such that yM(z,y) >
Crzyl” = g1 (z)I.

(M3) There exist e constant C; > 0 and a function g, with z~ 7(]2 c L? () and
limz o, 2z~ |q2(z)| < oo such that |M(z,y)| < Coz?|y|P~! + lqz(r)l

(M) M is monotonically increasing with respect to the second varlable re. (M(z y)
—-M(z,9))(y —g)>0forall y,5 € R and ae. € Q.

Furthermore, we formulate the hypotheses

(F1) f: Q xR — R satisfies the Carathéodory condition.

(F2) There exist constants 03 >0and 1 <r < pand a function g3 € L1(Q) such
that yf(z,y) + Csly|" > —|g3(z)| for all y € R and a.e. z € Q.

(F3) There exist a constant Cy > 0 and a function ¢4 € L?,'(Q) such that |f(z,y)| <
CalylP7! + |qa(z)| for all y € R and a.c. € §.

Finally, we formulate the hypothesis

(Hy) For h € C°(R; R) there exist two constants Cs, C§ > 0 with uh(u) > Cslul”—C'
for all u € R.

Suppose that
FeV'. 3.1)

Remark 3. In hypothesis (F;), 7 = p still holds if C3 > 0 is sufficiently small (scé
Remark 6).

The weak solution of problem (1.1) is formed from the following variational
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Problem. Find u € V such that

/0 M(z,u'(z))v'(z)dz + h(u(1))v(1) + (f(z,u(z)),v) = (F,v) (3.2)

forallve V.

Remark 4. By (2.13), the terms u(1) and v(1) appearing in (3.2) are defined for
every u,v € V. We obtain (3.2) by formally multiplying both sides of (1.1); by zYv € V

and then integrating by parts when taking conditions (1.1); 3, (2.10) and hypothesis
(M3).

Then we have the following

Theorern 1. Let F € V' and let hypotheses (M) - (My), (Fy) - (F3) and (H,) hold.
Then the variational problem (3.2) has a solution. Furthermore, if M(z,"), f(z,-),h are
non-decreasing, i.c.

(M(z,y) - M(z,9))(y - §) 20
(f(zry)—f(zlg))(y—g)zo (33)
(h(y) = R(§))(y —9) 2 0

for ally,j € R and a.e. = € Q where two of the three inequalities above are strict in the
case y # 4, then the solution 1s unique.

On the other hand, uniqueness of the solution also holds if condition (3.3) is replaced
by the hypothesis

(A,) There ezist constants Cs,C7,Cs > 0 with 0 < Cy < min {Cg, %} such that
(i) (M(z,y) — M(2,9))(y = §) 2 Cozly — §
(i) (f(z,9) — f=. ) -9) 2 ~Crly - gl
(iii) (h(y) — (@) (y - 9) = Csly — 417,
for ally,y € R and a.e. z € Q.

Proof. Since V is separable there exists a sequence of linear independent elements
{w;} which is total in V. We find u, under the form

Um = Zcmjwj (34)

i=1

where ¢m;j satisfy the nonlinear equation system

/0 M(z, u'm(z))w;(z)dz + h(um(1)w;(1) + (f(z, um(2)), w;) = (Fw;). (3.5)

By.the Brouwer lemma (see {8: p. 53/Lemma 4.3) it follows from hypotheses (M;) -
(M3), (F1) - (F3) and (H,) that system (3.4) - (3.5) has a solution u,,. Multiplying the
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jt* equation of system (3.5) by c¢m; and then adding these equations for j = 1,2,...,m
we have

/‘; M(:l:,u'm(:r))u'm(x)dz + h(um(1))um(1) + (f(z,um(z)), um) = (F,um). (3.6)

By using hypotheses (M;), (F2), (H;) and (2.9), (3.1) we obtain

1 |
Colluml? ., < Cs / 2" fum(2)"dz
0

(3.7)
+ [[1Fllv lfumllipy + Cs + llaallr ) + Hgslh .~
where Cy = &“l{:c;(fc’l Using the Holder inequality
1,1
ab< —efa® + =7 W (61 0,620,620
p P
we get the inequality
1 1 ot '
IFllv llumllypy < ;Efllumllf,p,7 + e PAIFIE (3.8)
where %Ef = %Q. We also note that |u,|" < £e§/r|um|” + —£7" for all €2 > 0. Hence
pe
we have :
C/l Mum(z)7dr < Cs e fumll + 1ot LT (39)
z7|um(z)| dzx —eb'"lu — .
3 o m = '3p 2 mllp,y 1+7p£;/p—r
where C;ge’z’/r = £¢. Combining (3.7) - (3.9) we obtain
”um"l,p.'y <C (310)

where C' is a constant independent of m. From hypothesis (M3) and (3.10) it follows
that
ll2™% M(z, um)llr < Callll?) + 127" gall o < C. (3.11)

On the other hand, it follows from hypothesis (F3) and (3.10) that

Iz f(z,um)ll o < CallumlZ5 + lgallpr v < C (3.12)

where C is a constant independent of m.

By means of (3.10), (3.11) and Lemma 2.2 the sequence {u,} has a subsequence
still denoted by {um,} such that
Um — U in V weakly
Um — U in H strongly and a.e. in Q } . - (3.13)
2P M(z,u') = x  in L weakly
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Note that because the embedding W!?(e,1) — C%[e,1]) (0 < € < 1) is compact, by
(2.11) and (3.10) {um} has a subsequence still denoted {um} such that um|[c1] = e,y
in C°((e,1]). Hence

m(1 1
um(1) = u(l) } (3.14)
h(um(1)) — h(u(1))
On the other hand, it follows from hypothesis (F;) and (3.13), that
:r:f’f(:c,um) — Ig'f(x,u) ae €. (3.15)

We shall need the following lemma, the proof of which can be found in [9].

Lemma 3.1. Let Q be an open bounded set of RN and G,Gr € LI(Q) (1 < g < 0)
such that Gm — G a.e. in Q anid ||GmllLe() < C, with C being a constant independent
of m. Then G, — G weakly in LI(Q).

Applying Lemma 3.1 with N =1, ¢ =p, Q =90, G = zvl’f(az,um) and G =
z# f(z,u) we deduce from (3.12) and (3.15) that '

a:f'f(:c,um) — zf’f(x,u) weakly in L?. (3.16)

If we pass to the limit in equation (3.5) we find without difficulty from (3.13)3, (3.14),
and (3.16) that u satisfies the equation

/0 z%xv'(x) dz + h(u(1))v(1) + (f(z,u),v) = (F,v)‘ (3.17)

for all u € V. So we shall prove the existence of the solution of the.\_/ariational problem
(3.2) if we show that x = z7% M(z,v'). From (3.4) and (3.5) we can deduce

/0 M(z,u', (2))ul.(z) dz
= —h(um(1))um(1) = (f(z,um(z)),um) + (F,um).

(3.18)

By using (3.13)1,2, (3.14), (3.16) and (3.17) and passing to the limit in (3.18) as m —
+o00 we have

lim AM(I,tt%(&:))u%(:c)di:/o 27 x(z)u'(z) dz. (3.19)

m—+oo

We deduce from (3.13); 3 and (3.19) that
i

lim | (M(z,u;,(z)) — M(z,6(x))) (um(z) — 8(z))dz

m—+o0

=/0 (z%x(z)—M(z,B(x))) (u'(z)— 9(9:))d.1: o
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for all 8 € L. Using the monotonicity property of M, we obtain

/0 (z7 x(z) — M(z,6(x))) (u'(z) — 8(z))dz > 0

for all 6 € L?. If we choose here § = u' — Aw with A > 0 and w € L% and let A — 04,

we easily deduce that y = I_%M(I, u') and the existence proof is completed.

To prove uniqueness let © and v be two solutions of the variational problem (3.2).
Then w = u — v satisfies the equality

/0 (M(z,u'(z)) — M(z,v'(z)))w'(z)dz
+(h(u(1)) = h(u(1))w(1) + (f(z,u) = f(z,v),w) =0.

If (3.3) holds, then evidently u = v. If hypothesis (A}) holds, by (3.20) and (2.7) we

have

(3.20)

Collw'[l} o + Cslw(1)” < Crllwll},,

and ' ‘
, o G\ ket
Callw'l, + Calw(FF 2 min { o, T L (B W1, + o)1)

’1 Py

) Cs
> min {CB, A—l} [w],,

respectively, and since 0 < C7 < min {Cg, %} we deduce that w = 0. Theorem 1 is
proved completely B

Remark 5. In |3}, corresponding to p = 2 and v = 1, we have proved that the
nonlinear Bessel differential equation (1.4) associated with the boundary conditions
#(0) = 1 and u(+00) = 0 has at least one solution. Wherein, the nonlinear term u? — u
is non-monotonic. One of the solutions above is constructed from the boundary value
problem (1.4) in the interval a < z < b associated with the boundary condition u(a) = 1
and u(b) = 0 wherein z; < a < b < z;4; and T;,Tiy) are two consecutive zeros of the
first order Bessel function Jp. Formation of a counterexample for the function f(z,u)
not satisfying the assumption to be monotonically increasing with respect u to so that
the solution of (3.2) is not unique is an open problem.

Remark 6. Theorem 1 still holds if hypothesis (F2) is replaced by the hypothesis

(F4) There exist a constant C3 with 0 < C3 < min {Cs, %} and a function g3 € L}
such that yf(z,y) + Csly|? > —|gs(z)| for all y € R and a.c. £ € Q.

In fact, from hypotheses (M2), (F2’), (H;) and (3.1), (3.6) we can obtain the following
inequality similar to (3.7)
Cillumlip,« + Cslum(1)P
< Callumll} 5 + I1F v lumllpy + lgalize () + llaslh .y + Cs.
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Choosing Cj such that 0 < C; < C} < min {Cs, %} it follows from (2.2), 3 that -

lemllf oy S UFllv llemllspy + Nl ) + llgslli,y + Cs.

( C;) min{C,, Cs}

1- 23
Cs 1+ K,

Hence, we obtain (3.10).

Remark 7. In Theorem 1 hypotheses (M2), (My), (F5), (H,) are implied by hy-
pothesis (A;). Indeed, it follows from (A;) that

(My) yM(z,y) > Ciz|yf? — |G ()]

(F2) yf(z,y) + CalylP > —|g3(z)|
(Hy) yh(y) > Csly? = Ci

where
— 4 3
Cl = Ce - 6—' >0
p
—_— eP ) —p' +p' ,
Ca=Cr+—>0 Gi(z) = =2~ Flp()l" e L'
. P > and z_)p,

— - ~ £ g
Co=Com >0 @(z) = - lu@P € L}
~1 e—p' p'

Cs = e |R(0)}

From the condition 0 < C7; < min{Cg,%} we obtain the condition 0 < 53 <

min {a, %} with € > 0 sufficiently small. We then have the following

Theorem 2. Let F € V' and let hypotheses (M;), (M3), (F1), (F3), (A1) hold.
Then problem (3.2) has a unique solution.

Remark 8. Theorem 2 still holds if hypothesis (A;) is implied by the following
hypothesis '

(A2) There exist constants Cs,C7,Cs with 0 < Cg < —rkl- min{Cs, C+} such that, for
2
ally,y € Rand a.e. z € Q.

(i) (M(z,y) - M(z,9))(y — §) 2 Coz"ly — §I7
(1) (f(z,y) = f(z,9)(y - §) > Caly — gl
(i) (h(y) = h(@)(v ~ §) 2 ~Csly - 4I”.
In fact, from (3.1), (3.6) and hypotheses (A2), (M), (M3), (F1), (F3) we obtain

min{C1 s C, } ”um”’;,Pﬁ

~ .p, EF P o _ _~
< (CoR7 + =) lumll? NEIG: + 1oy + ldalh.y + C

Lpy

+T
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for all ¢ > 0 where

—~ P
Cr=Cs— —
P

—_— EP _ E_pl g ,
Cs=Cr =~ Gi(2) = =z Flga(a)l?
~ P and ,

= —_— ~ E_ 1]
Cs =Cat ) @3(z) = 7|(14($)|p
Gl = S o)

5 p,

It follows from the condition 0 < Cs < rlp' min{Cs,C7} that there exists ¢ > 0 such

that min{a,a;} > CsKP + %. Hence we obtain that |[um|l1 p,+ < C where C is a
constant independent of m. We then have the following

Theorem 3. Let (3.1) and let hypotheses (Az), (My), (M3), (F), (F3) hold. Then

problem (3.2) has e unique solution.
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