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Abstract. Let E be the class of functions 1(z) = z + a 0 + a_ 1 z 1 + ... analytic and univalent 
in Izi > 1. In this paper we investigate the problem to maximize ?a_ 1 in two subclasses of 
E: (i) the class of all functions f E E which omit two given values +w 1 (0 < 1 wi I < 2) and 
(ii) the class of all functions I E E. with ao = 0 which map onto regions of prescribed width 
b1 =.b (0 < b < 4) in the direction of the imaginary axis. We solve these problems by applying a 
variational method to a coefficient problem in two subclasses of univalent Bieberbach-Eilenberg 
functions which are equivalent to these problems. 
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functions 
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1. Introduction and results 

Let us denote by E the usual class of functions f = f(z) analytic and univalent in 
IzI > 1 which have series development about infinity beginning

(1)  

Let b1 denote the width of the smallest parallel strip parallel to the real axis containing 
the set E1 of all points omitted by f. Let Eb denote the subclass of E consisting of all 
functions f for which b1 ^: b for given b E (0, 4). We denote by E the class of functions 
I E Eb with the normalization a0 = 0. 

Our main purpose is to treat the extremal problem 

max Ra_1. 
fE1 

Clearly, for the limiting cases b = 0 and b = 4 problem (2) has the uniquely determined 
solutions f(z) = z + and f(z) = z - , respectively, as simple consequence of the area 
theorem. 

It is evident that there must exist a solution of problem (2). Its existence can be 
shown by usual compactness and kernel convergence arguments of conformal mapping 
theory. 
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To motivate extrcmal problem (2), let us mention its application in connection with 
the well-known process of iterated horizontal slit-mappings of simply-connected domains 
for the approximation of the horizontal slits-mapping of a multiply-connected domain 
due to H. Grötzsch [4] and G. M. Goluzin [3]: Let f denote the inverse function of 
1 E E. Consider the function 

f(w) +	= W + C_1W +	(c_i = 1 a_i) 

which maps f({I z I > 1}) into the exterior of the horizontal slit [-2,2]. Extremal 
problem (2) is equivalent to

min c_ 1 .	 (3)fEE 
A lower estimate of the minimum in (3) depending on b and the logarithmic capacity 
R (= 1) of E1 was derived in [4: p. 33] and more explicitly in [1: p. 237/Formula 
(4.37)] to prove the convergence of the iteration process mentioned above. 

Let us now keep two points WI (0 < j wl I < 2) fixed, where 0 < arg w 1 < without 
loss of generality. We denote by E(+w i ) the class of all functions I E E which omit the 
points ±w 1 . To solve problem (2), first we shall treat the problem 

max	a_1	 (4) 
JEE(±wi) 

which has an interest of its own. The existence of such a maximum is immediate 
by standard arguments of conformal mapping theory. We investigate problem (4) by 
applying a special variational method to a coefficient problem in a subclass of univalent 
Bieberbach-Eilenberg functions which is equivalent to (4). 

Clearly, every extremal function of (2) is (up to translation and reflection on the 
real axis under which Ra_ 1 and b1 are invariant) also an extremal function of (4) for a 
suitable point w 1 = u+i (u 2 0) which we shall characterize by an additional variation 
preserving the class Eb. 

Our purpose is to prove the following theorems. 
Theorem 1. Let f(z) = z + a0 + a_ 1 z ... be an extremal function of (4). Then 

w = 1(z) defines w as a univalent function of ( = z + 1 which satisfies the differential 
equation

dw2 = (2_4 d( 2	 (5) 

in the exterior of the line segment [-2,2] with some complex constant wo 0 ±w i and 
some constant p 2 2. These unknown constants satisfy the three relations 

J
^ [(w - w sin2 O) 4 ]dO = 0	 (6)

0 

10

"/2 
[(w - w sin2 9) 4 ]d6 = f f/2(p2 —4 sin

	

6)4d8 if p > 2	(7) 

	

 <2	 ifp=2 
r/2	w cos 2 8	 ,'p2 - T2 I	 IdO=—/ 

Jo	[(W - w sin2 8) j	J2	T2 4 ) 
2 dT	 (8)
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by a suitable choice of the branch of the square root, and we have 

= '(p2 -2 + W2 - wg).	 (9) 

Further, E1 is made up of finitely many trajectory arcs of the quadratic differential 

WW0d2	 (10)
W2 T W 

and E1 does not separate the plane. 

Case I: p > 2. The zeros ±w0 of (10) are image points of w = 1(z) corresponding 
to ±p = z+, and Ej consists of ±w, and a single analytic curve through 0 connecting 
±w 1 , which is symmetric with respect to the origin andhomoiópic (in the complex plane 
punctured at ±w 0 and ±w,) to the line segment (—w i ,w i ). The exiremal function I 
is uniquely determined. Case I certainly occurs if Iw I l is sufficiently close to 2 and 
c < ^w1 < 2 - c for arbitrarily given c € (0, 1). 

Case II: p = 2. Ej consists of the points ±WO, ±w 1 and the union Cj of at most 
three analytic curves which is symmetric to the origin and connects —w 1 , —wo, w 0 with 
w 1 , plus some extra slit (if any) joining into ±wo, respectively (see Fig. 1). The exiremal 
function f is uniquely determined if and only if equality in (7) holds, that is, E 1 has no 
extra slits. Case II certainly occurs ifQw i is sufficiently close to 0 and c < w 1 < 2—c 
for arbitrarily given c E (0, 1).

WI 

-WI 

Figure 1 (p = 2) 

Remark 1. Evidently, for the limiting case 1w, I = 2, the class E(±w i ) consists only 
of the function f(z) = z +	which maps IzI > 1 onto the exterior of the line segment 
[—w,,w i ). Evidently, this function is extremal for (4) with 1a_1	1 -(w,)2 and 
may be taken as solution of (5) in the limiting case w0 -+	as p - cx. 

Let us emphasize the case of purely imaginary w 1 which allows an explicit solution 
of (4) in
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Theorem 2. Let c E (0,2) be given and I e E(±zc), f(z) = z + ao +a- 1 z + 
Then

Ra_j < 1 - c 2 .	 ( 11) 

Equality in (11) holds if and only if f maps Izi > 1 onto the exterior of a cross which 
consists of the line segment [-ic, ic] and some segment on the real axis. There exists 
infinitely many such mappings. 

Remark 2. There is a close connection to the G arabedi an- Schiffer inequality of 
Grunsky-type derived iii [21 which involves values omitted by f e E(±w i ). By setting 
U = - v = w 1 ,rn = 1,A0 = 0 and A l = z, the Garabedian-Schiffer inequality (26) in [8: 
p. 108/ Theorem 4.51 yields

a_ < 1 +	 ( 12) 

Applying [8: p. 115/Theorern4.61, equality in (12) holds for a function f E E(±wi) 
if and only if E1 consists of trajectory arcs of the quadratic differential (10), where 
wo = 0. From this and (6) we conclude w 1 = mc and hence, the sharp inequality (11) 
follows together with the equality assertion. Thus inequality (12) is best possible if 
wo = 0. We remark that Grunsky-type inequalities are sharp only if the numerator of 
the quadratic differential ha.s no Odd order zero. For estimates related to (12), see [8: 
p. 117/Theorem 4.71. 

In order to integrate the differential equation (5), we have to know the parameters 
w0 and t. Conversely, the given points +w 1 and if ji = 2 the zeros ±wo of (10) must lie 
on the extremal continuum E1 which consists of trajectory arcs of (10). The condition 
that the trajectory arcs through ±w 1 and possibly ±wo hang together to form one single 
continuum is a very restrictive condition on the unknown parameters in (5) and leads 
to the very implicit set of relations (6) - (8). The analysis of the quadratic differential 
(10) and relations (6) and (8) enables us to get estimates of the zeros ±WO of (10) and 
the extremal continuum E1 in 

Theorem 3. Let 0< 1w1] <2,0< argw 1 <and f(z) = z + 00 + a_ 1 z	be
an extremal function of (4). Then in all cases (i > 2) 

I0<argw<min(ir,argwi) 
WOE =w -ir<arg(w-w i )	 (13) 

(.	arg(w-w 2 )<r	J 

where Z is an unbounded domain in the first quadrant whose boundary is formed by two 
or three line segments and one segment of an hyperbola, 

E1 cVU(-D)	 (14)

except for the points 0 and ±w 1 where 

= 1. 1 0 < argw <argWi and arg(w 2 - w 2 ) < mr} 

and we have the inequality 

1 - 1 ' w 1 )2 < Qa_ 1 < 1 + R(w).	 (15)
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In particular, if p = 2, then

argwi <argw < min( ir,argw1) jw 

—ir<arg(w—w 1 )	 (16) 
arg(w — w 2 ) < ir + argw1 

where Z* C 2 is a bounded domain whose boundary is formed by two or three line 
segments and one segment of an hyperbola (see Fig. 2). 

Figure 2 (Z C Z C D) 

Remark 3. Inequality (15) is asymptotically sharp for Rw 1 —i 0. In view of Cases 
I and II of Theorem 1, estimates (13), (14) and (16) are also asymptotically sharp in the 
following sense: Let c E (0, 1) be given arbitrarily. If e < w 1 < 2 — e and wi I - 2, 
then y - no, IwoI —* no and, by (13), argw 0 — 0. If w 1 is close by ic(0 S c 2), then 
by (14) the extrema.l continuum E1 is (in the sense of the Euclidian metric) close to the 
cross consisting of the line segment [ — ic, icj and the real axis. By Theorem 2 and (13), 
we have w 0 = 0 if and only if w 1 is purely imaginary. In particular, if Rw1 > 0 and 
w 1 - zc (e c 2 — ), then by (16) Iwol - 0 and argwo - r. 

Theorem 4. Let 1(z) = z + a_ 1 z + be an extremal function of (2). Then 
bf = b, and f is (up to a translation and reflection on the real axis) a solution of (4) 
for some

w1 =u+ib	(0<u<(4_b2))	 . (17) 

and w = f(z) defines w as a univalent function of ( = z + which satisfies the differ-
ential equation (5) in the exterior of the line segment [-2,2] where 

w=w—ivw 1	(0<v<b)	 (18)

and p > 2. The unknown real constants u, v, p, satisfy equations (6) — (8) and we have 

= l(,2 — 2 — vb).	 (19) 

w0EZ= 

Furthermore, E1 is a single analytic curve not passing through ±wo which is symmetric 
to the origin and joins ±w 1 perpendicular to the lines ^I'w = ±b, respectively (see 
Figure 3), and	 - 

E1 cTU(—T)	 (20)



WI 

0 _
W 0 

-WI

Ow0 
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except for the points 0, ±w 1 where T is the open triangle with vertices 0, Rwi, WI. 

Figure 3 (jz > 2 and b1 = b) 

Remark 4. A simple calculation shows that, in view of (17) and (18), for given 

u E ( 0 , / iiib2 ) the left-hand side of (6) is a continuously decreasing function of v> 0 

changing sign once. Therefore, for given w 1 = u + ib the points ±wo satisfying (18) 
are uniquely determined by (6) such that v and by (7) and (19) also /2 and Ra_ 1 may 
be considered as functions of u. The unicity of a solution of problem (2) remains an 
open problem, because it is not clear whether a_ 1 can have several maxima. 

2. Proofs 

Throughout this section let us denote by d 2 the quadratic differential (10). 

Proof of Theorem 1. A function F = F(Z) is called a Bieberbach - Ezlenberg 
function if it is analytic and univalent in U {Z IZ  < 11, so that it has a series 
development about the origin beginning 

	

F(Z)=b 1 Z+b2 Z2 +b3 Z 3 +	 ( 21) 

and is such that F(Z 1 )F(Z2 ) 1 for any Z1, Z2 EU. Observe that each such function 
omits the values ±1. We will denote this class of Bieberbach-Eilenberg functions by E. 
It is well known that lb i I < 1 for all F E E, with equality if and only if F(Z) = eaZ, 
real.

In view of the following, the crucial point is the observation that the function 

W = 1 ,1 (W 	 (22) 

has a single-valued inverse in the exterior of a continuum passing through ±WI. By 
substitutions (22) and Z = , each function W = F(Z) E e having series development 
(21) with b 1 = MLI defines a function w = 1(z) E (±w 1 ) having series development (1) 
and conversely, where

b2 
a0 = --

	

b1	 (23) 2 

	

a_i = (bi	

-	
+ b.
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Therefore, problem (4) is equivalent to maximize 

[()2 _
 13 - 	— +b]	 (24) 

over all functions F E E with prescribed first coefficient b 1 = We shall solve problem 
(24) by applying a standard technique for constrained variation within the class E based 
on the implicit function theorem (see [5] for a more detailed discussion). 

Let F(Z) = b 1 Z +	E E, Z 1 , Z2 E U and e, e 2 be any complex numbers. Using [6: 
p. 8/Theorem 2.21 (after small modification); for all sufficiently small  = mnax([E 1 ], JE2 1) 
there exists a function F(Z) = bZ +	E E such that 

F*(Z) = F(Z) +	T(Z,Z,e,F) + o(e)	 (25) 

where

F(Z)	__________ 
(Z,Zn,En,F) = E(F(z) - F(Z,1 ) - 1— F(Z)F(Z)) 

(F(Z,) \ZF'(Z)	

(Zn F'(Zn 
F(Z) \Z2F'(Z) 

EflZnFI(Zn)2) Z - Zn+En )2) 1 

and

b	b 1 +	EnB(Zn, F) + o(e)	 (26) 

where
- b1 1/ F(Z) \2 

B(Z,F)_	
LzF'Z) 

Suppose B(Z, F)	0 for an extremal F. Then F(Z)	1 w i Z and the function 
1(z) = z + 

( ) 2 
E (±w 1 ) corresponding with F were an extremal function of (4) 

which maps I zI > 1 onto the exterior of an ellipse with focal points at ±w 1 . A suitable 
rotational variation applied to f leads to a contradiction to the extremality of f . Thus 
B(Z, F) 0, and the method of Lagrange multiplier is applicable to (24): Define 

%P(F) = .\b1 + (
) 2 -	

+ b	 (27) 

for F E E where .A is a complex constant. Let F(Z) be extremal for (24). Then

(28) 

for some complex Lagrange multiplier \ and all (nearby) functions F*	 E. Here,
"nearby" is in the sense of convergence on compact subsets of U. Applying [6: p.
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12/Theorem 4.11, after a calculation we therefore get: The extrernal F satisfies the 
differential equation

\	 l 1 
[b(w+ 	

)2 —4b _)bI] 
dW2 
-W_ = [(z+ 

1 
)2 _-2_2ti(F)+.\bij dZ2 -_	(29)

Z	 Z2 

where the right-hand side is real and non-negative for IZI = 1. By the substitutions 
Z and (22), W = F(Z) defines a function w = f(z) E (±w,) which maps I z I > 1 
onto the exterior of a continuum E1 having no interior (see 16: p. 13/Theorem 4.2)). 
Since w2 — w = ( . ) 2 (W-- y)2, we have = and hence from (29), w = f(z) 

defines w as a univalent function of ( = z + satisfying the differential equation (5) 
where, in view of (23), (27) and b 1 =

=	
+	1	 (30) 

and
IL 2 = 2 + 2a_ 1 + ! Awl.	 (31) 

Because the right-hand side of (5) is real and non-negative for ( E [-2,2], it follows 
that p 2 > 4. Combining (30) and (31), we get (9). The continuum E1 is the image of 
1-2,2] under the mapping ( —* w defined by ( = z + 1 and w = f(z). 

We now analyze the continuum E1 more carefully. If p > 2, then the right-hand side 
of (5) has simple zeros at ±,u and hence the continuum E1 will not contain the critical 
points ±wo. If it = 2, then E1 must contain the points ±wo. We see that E1 contains 
the points ±w1 and may or may not contain the points ±wo. Except for these points it 
must consist of analytic arcs which are trajectories of d 2 . Clearly, w' 54 w '. Thus d112 
has three or four finite critical points. At the simple poles +w1, exactly one trajectory 
leaves. At ±wo exactly three or four leave at equal angles depending on whether w 0 54 0 

or w0 = 0. Obviously, d 2 is invariant under reflection with respect to the origin. Thus 
0 e E1 and E1 consists of either: 

(,u > 2) the points ±w1 and a single analytic curve not passing through +wo, which 
is symmetric to the origin 

or:
= 2) the points +w0, ±Wi and the union C1 of at most three analytic curves, 

which is symmetric to the origin and connects the points — w1, — WO, w0 with wi, 
plus possibly one analytic slit leaving at ±w0. 

To derive relations (6) - (8) we observe first that f dQ over any segment of E1 is real 
and any path can be altered homotopically in the complex plane punctured at the four 
points +wo and +w1 without changing the integral of d. 

Next we show that if J is the line segment [—w,wi] , then either fdil over .1 is 
real, or there are four disjoint subintervalls of J for which f dQ is real. First, suppose 

> 2. Then either Ej is homotopic (in the complex plane punctured at ±wo arid ±w1) 
to J, or the three trajectories leaving ±wo must cross the line segment (0, +w1). The 
above assertion therefore holds. On the other hand, if p = 2, then E1 is homnotopic to 
I or else the segments of Ej from 0 to ±wo and from . ±wo to ±wi, together with a
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third trajectory from ±wo to some point of (0, ±w i ), make up two paths homotopic to 
disjoint segments of the line segment (0, ±w i ). Again the conclusion follows. 

Let I = 1w 1 sin 0 1 ,w 1 sin 021 be any segment of the line segment [0,w i ]. Then 
92	2	22 0) 1. 

	

dQ = f9 (w -	sin 0)2d0. This is the weighted mean value of complex nrn- u 
bers on a segment of an hyperbola. Two such disjoint integrals could be real only if w 
and w 2 both are real, that is, wo is either real or purely imaginary and w 1 is purely 
imaginary. Analyzing the qualitative nature of the trajectories of d11 2 we conclude 
wo = 0, and therefore E1 consists of the segment [—w 1 ,w 1 ] on the imaginary axis plus 
some segment on the real axis. Otherwise, if wo 54 0 were real, then the only trajectory 
connecting the points ±w 1 is the line segment [—w 1 ,w 1 ] having capacity < 1 which is 
a contradiction. On the other hand, if wo 4 0 were purely imaginary, then the only 
trajectory from ±w 1 is the segment from ±w i to ±wo on the imaginary axis. Moreover, 
the real axis is also a trajectory. Hence, no bounded E1 can satisfy the requirements, 
and this case cannot occur. 

Therefore, we have shown	= 0 or, equivalently, (6). 
This is only one relation among three real unknowns. Suppose p > 2. Then from 

(5) the integral of dQ around Ej in the w-plane will equal the integral around [-2,2] 
in the (-plane. In view of the fact that E1 is symmetric to the origin and hornotopic to 
the line segment [—w 1 ,w 1 ], we therefore get relation (7), where equality holds. Suppose 
p = 2. Then E1 passes through ±wo and equation (5) simplifies to d = d( in the 
exterior of the segment [-2,2]. This segment has "open ends" at ±2, i.e. dQ changes 
sign if we change directions at those points. The integral of dQ around (-2,2), starting 
at -2, will be the same as the integral of dQ around E1 in the w-plane, starting at the 
"open end" which will be —w0 or the tip of the possibly "extra' 2 slit joining into —w0. 
That is, we therefore must have 

R[(w _wsin2 o)]do+I+ +I_ 2 

where L. ? 0 and 1+ ^! 0 are the integrals of df along Ej from the tip of a possibly 
"extra" slit to —w 0 and from w0 to the tip of another possibly "extra" slit, respectively. 
This implies the inequality in (7) with equality only if the "extra" slits are of zero length. 

A third relation is obtained from (5) with the help of the observation that ( = 
corresponds to w = ±wo, respectively. Thus, the integral of dQ in the (-plane along

	

the line segment 1	[2, ji] must equal the integral of dQ in the w-plane along L, the 
image of 1 by the mapping ( - w. Sincs I lies along an orthogonal trajectory, L must 
be an orthogonal trajectory of (10) from some point 0 ±Wi of E1 to w 0 . This integral 
is purely imaginary, while the integral along any part of E1 is real. Hence 

2	2' 

is
df= Ifp 

-T\
dT	(32) 

 - 2	r2_4/ 

where by Cauchy's integral theorem we may integrate along any analytic curve S which 
connects the point 0 or w 1 , of Ej with w 0 . Choosing S as the line segments [0,wo], 
relation (32) is equivalent to (8).
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By using the General Coefficient Theorem [8: p. 246/Theorem 8.121, we see that 
if p > 2, or [L = 2 and E1 has no extra slits, then the extremal function is uniquely 
determined, and if p = 2 and E1 has some extra slit, then there are infinitely many 
extremal function and at least one for which E1 is symmetric to the origin. 

It only remains to show that Cases I and II can occur actually. For proving this we 
use a continuity argument. 

First we consider the Case I. Assuming that Case I would not occur if 1w, I is close 
to 2 and c < w 1 < 2—c for arbitrarily given c E (0, 1). Then there exists a sequence of 
points wi, with wi, —* 2 for which the corresponding sequence of extremal functions 
f,, E E(±w i ,) of (4) (or a suitable subsequence of it) converge locally uniformly.in 
Izi > 1 to a limit function f E E fulfilling b1 > 0. Moreover, every function w = f(z) 
defines w as a univalent function of ( = z + which satisfies the differential equation 

IV 2 — O,yi  

—  2 dw= d2 ( 2 (33) 
1.n 

in the exterior of the line segment [-2,2] with some complex constants wo E E1,, , 
54 W2 We may assume wo,, —* w 0 . From (33) we infer that the limit function w = f(z) 
defines w as a univalent function of ( = z+ which must satisfy the differential equation 

	

Idw2 =d 2	 (34) 

in the exterior of the line segment [-2,2] with 0 < argw 1 < 11, Iwij = 2 and, since 
bf > 0 we have w 0 54 ±w 1 . Therefore ±wo,±w 1 E E1 and E1 must be a trajectory 
of (10). Because of 1 w, I = 2 and ±w 1 E E1 , the continuum E1 must have diameter 
4 and hence, the limit function f maps jzj > 1 onto the exterior of the line segment 
Ej = [—w 1 ,w 1 ]. This leads to a contradiction because [—w i ,w i ] for 0 < argw 1 < is 
no trajectory of (10). 

Finally, we consider the remaining Case II. Assuming that Case II would riot occur 
if Rw j is close to 0 and c < Qcwj < 2 — c for arbitrarily given c E (0, 1). Then there 
exists a sequence of points Wl,n —* w 1 ic (0 < c < 2) for which the sequence of 
extremal functions f, e E(+w 1 ) of (4) (or a suitable subsequence of it) converge 
locally uniformly in zI > 1 to a limit function f E E fulfilling b1 > 0. Moreover, every 
function w = f(z) defines w as a univalent function of ( = z + which satisfies the 
differential equation

(2	2 

— W dw2 = (2	d(2	 (35) 

in the exterior of the line segment [-2,2] with p, > 2 and some complex constants
Besides, in view of (7), we must have 

j

r/2 

{(w	— wnsin28)]d9>2	 (36) 

for all n. There are only two possible cases to distinguish: either both sequences {w} 
and {p,} are bounded, where we may assume wo,, ' w0 and p,	p, or unbounded.
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From (35) we infer that the limit function w = f(z) defines w as a univalent function of 
( z + which must satisfy either the differential equation (5) in the exterior of the 
line segment [-2,2] with i 2, w1 = icE Ej (0< c < 2) and w0 ±w1, or 

Adw 2 - d(2 (37) 
-W 2 - (2 4 

in the exterior of the line segment [-2,2]. Because of f 1 (oo) = 1 the constant A in (37) 
is equal to 1. The second case may be excluded. Indeed, integreting (37) we easily see 
that E1 is the line segment [—ic, ic] having capacity < 1 which is a contradiction. 
Hence, the first case must occur. The limit function f maps Izi > 1 onto the exterior 
of a cross which consists of the line segment [—ic, ic] and some segment on the real axis 
(see the proof of Theorem 2). In particular, we have W0 = 0 and 

j

ir/2 
[(w - w sin 2 8) 4 ]d8 = c < 2.	 (38)

Letting n tend to infinity, from (36) we get a contradiction to (38). This completes the 
proof of Theorem 1 I 

Proof of Theorem 2. Let w1 = zc (0 < c < 2) and f be an extremal function of 
(4). Because of (6) we must have 

L

ir/2 
[(w + C 2 Sfl2 8) 4 ]dO = 	0.	 (39)

Suppose (w) > 0 (< 0). Clearly, the quantity [W +c2 sin  0] has the constant positive 
(negative) imaginary part (w). The square root of this quantity would lie in the first 
(fourth) quadrant. Hence, the imaginary part of [w + c2 sin2 81 4 could never change 
sign and the integral average in (39) could never be zero. Thus, w must be real. From 
this we can conclude w0 = 0 by analyzing the qualitative nature of the trajectories of 
(10) which we have already accomplished in the proof of Theorem 1. Therefore, f maps 
I zI > 1 onto the exterior of a cross which consists of the line segment [—ic, ic] and some 
segment on the real axis. As the Case II of Theorem 1, all such mappings are extremal 
functions. The analytic representation of such (odd) one is given by (55) and (56), and 
from (57) we get (11). This proves Theorem 2 I 

By (5), the trajectories of (10) are the images of the trajectories of the quadratic 
differential

f2	2
d( '
	 (40)

through that function
(41) 

defined by w = f(z) and ( = z + 1 . Obviously, the trajectories of (40) are sym-



metric with respect to the real and imaginary axis. If i > 2, then the line segments 
some analytic curve r which lies in ^z >0 and connects the

points ±p, and —r are critical trajectories of (40). Hence, the complement of the union
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of all these critical trajectories and all critical points of (40) and (10), respectively, is 
composed of one ring domain and two end domains. Evidently, if p = 2, then the trajec-
tories of (40) are lines parallel to the real axis and hence, the complement of the union 
of all these critical trajectories and all critical points of (40) and (10), respectively, is 
composed of two end domains. These domains are covered exactly once by a certain 
family of trajectories. In the case of end domains these trajectories are open Jordan 
arcs which tangent to horizontal lines near infinity, while in the case of a ring domain 
these trajectories are closed Jordan curves. 

Let ( = g(w) be the inverse function of (41). Through ( = g(w) the continuum 
E1 is mapped onto the exterior of the line segment [-2,2]. Because this parallel slit 
mapping is uniquely determined and we may assume that E1 is symmetric to the origin, 
we can conclude that ( = g(w) is an odd function. Hence, co = 0 and the critical 
trajectories g((p, )) and g((—oc, — yi)) of (10) are tangent to the positive and negative 
real axis at infinity, respectively. 

Remark 5. The following is evident on topological grunds: If p > 2, then on 
every analytic curve -y connecting any two points of E1 = g([-2, 2]) there exists at least 
one intermediate point on -y at which some trajectory of (10) is tangent to y. This 
assertion is also true, if -y tends from any point of g(±F) and is tangent to the real axis 
at infinity. On the other hand, if p = 2, then on every analytic curve -y connecting any 
two points of the union U of all critical trajectories of (10) there exists at least one 
intermediate point on -y at which some trajectory of (10) is tangent to -y. This assertion 
is also true, if y tends from any point of U and is tangent to the real axis at infinity. 

Proof of Theorem 3. First we shall prove estimates (13) and (16). Since 0,w 1 E 
E1 , as Remark 5 there is at least one point rw 1 (0 < T < 1) on the line segment 
-y = (0,w i ) at which some trajectory of (10) is tangent to y. This implies by (10) that 
the quantity w 2 _ r 2 w is real positive; that is, 

> T(W) J•	
(42) 

By assumption, 1 ( w?) > 0 and hence, from the equation in (42) we get 

0 < (w) = r21(w) < (w)	 (43) 

and, combining the two relations in (42), 

cot(2argwo)= 
(wg 

R(w) 
) 
> 

(w 
(w) 

) 
= cot(2 arg w 1 ).	 (44) 

Therefore, from (43) and (44) we conclude 

wo	= {w: 0 < argw < argw 1 and arg(w 2 - w 2 ) < ir}.	(45) 

To continue the estimate of wo, we next use the fact that, in view of (32), the 
imaginary part of fS dQ is negative or equal to zero according as p > 2 or p = 2, where
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we may integrate along any analytic curve S that connects the point 0 or w 1 of E1 with 
w0 . To do this we have to estimate the sign of	dIl on V. 

First let S be the line segment [0, wO], w0 E V. The imaginary part of fsdQ 
becomes a function 4 of w 0 for which

w2 

alwol

[O W	 dw	
(46) C'.  

-	0 [(w _w 2 )(w _w2)] 

holds. The argument of the differential dw in (46) is equal to 2argwo - arg(w 2 - w2) 
where in view of (45) we have 

2argwo - r <argdc < 2argwo - argw.	 (47) 

If wo E V and argwo > M , then (47) implies	oI > 0 and therefore, since 4(0) = 0, 
we have 4(wo) > 0. Hence, in every case (ji > 2) the zero w 0 E V of (10) must satisfy 

argwo < f ir.	 (48) 

On the other hand, if w 0 E V and argw0 < 1 argw 1 , then (47) implies <0 andalivol 
therefore, since (0) = 0, we have (w0 ) < 0. Hence, if the zero w0 E V of (10) is a 
branching point of Ef , then it must satisfy 

argw i <argwo < .ir.	 (49) 

Next let now S be the line segment [w 1 , wo[, w0 E V. The imaginary part of fS d
 becomes a function 'I' of w 0 for which 

.wo 

5-1—W0 1'
	

J	IwoI	, dw	 (50) 
-	[(w - w 2 )(w - w2)] 

holds. In order to show that the derivative in (50) is negative we shall estimate the 
argument of the differential dw in (50). In view of (45) and w E 5, we have 

argdw = argwo - [arg(w + w0 ) + arg(w + w i )] + argwo - 

where —ir < argd < 0. This implies	< 0 (w 0 E V) and hence, 'I' is a decreasing
function of Iwol for fixed argwo E (0,argwi). 

Now we estimate the sign of ''(w0 )	dl in V. Let arg(wo - w i ) = -. In
view of w E 5, we have 

argdcl = —ir + I [arg(w + w0 ) + arg(w + w1)) 

where —27r < argdl < — it. This implies 

'I'(wo) > 0	(wo E V,arg(wo - w i ) = —fir).	 (51)
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Let now w0 E V be a point on that segment of the hyperbola 	(w - ivw i ) 12 (v > 
0) which tends from w 1 . For the estimate of the sign of '11 (w 0 )	'a j', ° dQ it is more
convenient to integrate from w 1 to w0 along this segment of the hyperbola. Since 

arg(w - w 2 ) = argw 1 - 
arg(w 2 - w 2 ) = argw i + 17r 

argdw=--arg(1_i_) (v>0) 

along this path of integration, we have 

argdQ = -ir - arg(1 - i-)	(v >0) 

where -ir < argdQ < 0. This implies 

'11(wo) <0	(w0 E V.arg(w -w) = r + argw i ).	(52) 

As we saw, iF is a decreasing function of Iwol for fixed argw 0 E (0,argw i ). Hence, 
from (51) and (52) we conclude that if 

wo E V,arg(wo - w i ) -r	and	wo E D,arg(w - w) ^ ir + argw1, 

then '11(wo) > 0 and '1'(wo) < 0, respectively. Hence the zero w0 E V of (10) must 
satisfy - < arg(wo - w 1 ). This together with (48) gives (13). Besides, if the the zero 
W O E V of (10) is a branching point of E1 , then it must satisfy - < arg(wo - w i ) arid 
arg(w 2 - w) < 11 + argw 1 . This together with (49) gives (16). 

Next we shall prove estimate (14). First, from (10) we conclude that E1 intersects 
the real axis at the origin under the angle a(0) = argw 1 - argwo. By (13), it follows 
0 < (0) <argw 1 . Hence E1 and V have common points. 

Suppose the assertion in (14) is false. Then E1 and the boundary of Vu(-V) must 
have at least one common point zb 54 0, ±w 1 . By symmetry, there are only three cases 
to consider: 

Case 1. Suppose z = TOWI (0 < ro < 1). Then, as Remark 5, there are at least 
two points r1 w 1 and 7-2 w 1 (0 < ri < To < r2 < 1) at which some trajectories of (10) are 
tangent to the line segment y = (0, w 1 ). But this contradicts the fact that the equation 
in (42) has exactly one solution r on (0, 1). 

Case 2. Suppose tS = ro (To > 0). Then, as Remark 5, there are at least two points 
T1 and (0 < 7-1 < r0 < r2 ) at which some trajectories of (10) are tangent to the half line 

w = r (r > 0). This implies by (10) that the quantities [(T?—wg)(r _j 2 )I (i	1,2)
are real positive. Therefore, its imaginary parts must be equal to zero or, equivalently, 

(wiffj 2 ) + r(w - w) = 0	(i = 1, 2).	 (53) 

From here it follows that	Wiij 2 ) = (w - w) = 0 in contradiction to (13). 
Case 3. Suppose tS = (w? + To)2 (r0 > 0) he a point on that segment of the 

hyperbola 7 : to = (w + T) 12. (T > 0) which tends from w 1 . Then, as Remark 5, there
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are at least two points (w ? + r1 ) and (w + T2) (0 < r1 < ro < r2 ) on -y at which 
some trajectories of (10) are tangent to -y. This implies by (10) that the quantities 
[(w 2 - wg + T)(72 + Ti)] (2* = 1,2) are real positive. Therefore, its imaginary parts 
must be equal to zero or, equivalently, 

(wi1 2 ) + r,(w) = 0	(i = 1, 2).	 (54)

From here it follows that3w3T2 ) = (w) = 0 in contradiction to (13). 
As we have just seen, all three cases lead to a contradiction. Thus (14) must hold. 
It only remains to prove inequality (15). Let 0 < Iwil < 2. We shall first construct 

a suitable slit mapping g E E(+w i ) as follows: The function w = g(z) (I z I > 1) given 
by	

w= +ñ)	 (55) 
WI 

and
1	I w iI/	1"

(56) 
z 

has a series development z + b_ 1 z' + ... about infinity where. 

	

= 1 + (w 2 - kui 1 2 )	 (57) 

and maps JzJ > 1 onto a domain whose exterior consists of the line segment [—w1,w1] 
plus two analytic slits s and —s. In particular, if w 1 = ic (0 < c < 2), then .s U (—s) is 
a segment on the real axis, such that g maps IzI > 1 onto the exterior of a cross. 

Let 0 < argw 1 < , Iwil < 2 and 1(z) = z + ao+ a_ 1 z ' ... be an extremal function 
of (4). Then by (57) we have lRb_ 1 = 1 - (w 1 ) 2	a_1. Suppose Rb_ 1 = 
Then g is also an extremal function of (4) in contradiction to (14). Thus the left 
inequality in (15) must hold. The right inequality in (15) has already been established 
in Remark 2 This completes the proof of Theorem 31 

Proof of Theorem 4. First we show that b1 = b in the extremal case. Suppose 
bf > b. Then, by applying the method of interior, rotational and slit variation to f, we 
get 1(z) = z + 1 where bj = 0 which is a contradiction. Furthermore, every extremal 
function of (2) is (up to translation and reflection on the real axis) also an extremal 
function of (4) for a suitable point 

w 1 =u+ib	(0u(4_b2)) 

which we shall characterize by an additional variation preserving the class Eb. In view 
of Remark 1 and Theorem 2, from the left inequality in (15) we can conclude that (17) 
must hold. 

Define
(F)= ()2_+b
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for F(Z) = b 1 Z + b2 Z2 + b3Z3... E E. As we have seen at the beginning of the proof 
of Theorem 1, problem (2) is equivalent to maximize 

R-11(F)
	

(58) 

over the class of all functions F E E such that N i =	= 
In the following we use variations (25) and (26) to construct variations which pre-

serve this subclass. Let F E E be an extremal function of (58), and Z 1 , Z2 E U and 
E1,E2 be any complex numbers. Choose Z2 E U such that B(Z2 ,F) 0 0. Then, for suf-
ficiently smalle = max (I c iI, E 21) there exists a function F*(Z) = bZ+ E with the 
asymptotic development (25), where 62 can be chosen as a continuously differentiable 
function of El such that

b=bj+E1.	 (59) 

This last step is based on the implicit function theorem and is a standard technique for 
constrained variation. Combining (25), (26) and (59) to eliminate 62 in (25) and taking 
into account that F is a solution of (29), after a calculation we obtain from (25) 

= IJ?.1(F) - (c i )(JA) + o(e)	 (60) 

where A is the Lagrange multiplier involved in (29). Because of the extremality of F, we 
have	F*) < RI(F), and (60) gives IRA = 0. In view of (30) and (13), this implies 
(18).

From (10) and (18) we can conclude that the extremal E1 joins into ±w1 under the 
angle [arg(+w 1 ) - arg(w - w)] = ir. In view of the last equation (with the upper 
sign) and Theorem 3, we see that (16) and therefore p = 2 cannot hold. Thus p > 2. 

By Theorem 1, the unknown real constants u,v in (17),(18) and p satisfy equations 
(6) - (8). Inserting (17), (18) into (9), we get (19). 

It only remains to prove (20). Suppose the assertion in (20) is false. Then E1 and 
the boundary of TU(-'r) must have at least one common point tS 0, +WI. In view of 
(14) and by symmetry, there is only to consider the case 7,b = w1 - iTo (0 < ro < As 
Remark 5, there is at least one point w = w1 — ir (0 < T < To) at which sonic trajectory 
of (10) is tangent to the line segment -y = 1w1 , mS]. This implies by (10) that the quantity 
[(w2 - w)(2 - T2 )J is real negative for w = w, - ir (0 < r < 7-0 ). Therefore, its 
imaginary part must be equal to zero or, in view of (17) and (18), equivalently uvr2 = 0. 
But this is obviously a contradiction. Thus (20) must hold and Theorem 4 is proved 
completely I 

As a final remark, we observe that the estimates of the extremal continuum E1 
given in Theorems 3 and 4 can be refined on. Moreover, the considerations could be 
extended to investigate further geometric properties, as convexity and curvature of the 
extremal E1 . In view of that, we refer to the paper [7] in which the author investigates 
a continuum containing three given points with minimal transfinite diameter.
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