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Abstract. Some properties of Legendre functions in an asymmetric interval (with respect to 
zero) with zero boundary values are obtained through variational methods. There are given 
some applications to the monotonicity and estimates of the first Dirichlet cigenvalue for moving 
bands on S2. 
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1. Introduction 

Legendre functions are a classical topic, still their behavior over the interval between 
two consecutive zeros does not seem to have been thoroughly investigated. For h E (0, 1) 
and a such that —h < a < 1 - h we consider the Dirichlet eigenvalue problem for the 
Legendre equation in (a, a + h) 

dr	dF 
—l(1—z

2 )_1+AF(z)=Oj	
(1) dz	dzi 

F(a) = F(a + h) = 0 J 

Let Ua > 0 denote the first eigenfunction of problem (1) corresponding to the first 
eigenvalue.\ = A, > 0. Then according to the variational principle (see [1:p.104]) 

-z2)[F'(z)]2dz 
A a = inf 

FEH, ra+h 
fa'	F2(z)dz 

where Ha =

 

W1 where  + h) is the standard Sobolev space. With some variational 
method, first we estimate the position of the "peak" of u a as well as get some quan-
titative results about the shape of Ua (see Theorem 1). Also, we prove that .X a is a 
decreasing function of a (see Theorem 2) which leads to some monotonicity property of 
the distance between two consecutive zeros of any Legendre function (see Corollary 1). 

As a type of special functions, Legendre functions are useful in applications. Among 
those we mention for example [8] where it is proved by differentiation through spherical 
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coordinates that among all equal-area spherical bands the first Dirichiet eigenvalue 
decreases as the band moves toward the north pole. If we treat these equal-area spherical 
bands through cylindrical coordinates (we think that for equal-area spherical bands it 
is natural to use this coordinate system), then the Legendre equation would appear. It 
follows that we could obtain not only the monotonicity of those first eigenvalues as a 
corollary of Theorem 2, but we also give some estimates for those smallest eigenvalues. 
In particular, we could locate (sharp in certain cases) the first Dirichlet eigenvalue of 
the equal-area spherical cap (which is the band containing the north pole, see Section 3) 
between n(n + 1) and (n + 1)(n + 2) with positive integer n depending only on the area 
(see Theorem 3). It turns out that we can get a universal lower bound depending only 
on the area of the above mentioned first eigenvalues. Moreover, by the same technique, 
we could also get similar results for the first Dirichiet eigenvalues on general surfaces of 
revolution (Section 4). 

2. Main results 
Denote the (unique) point in [a, a + h] which attains the maximum value of a(z) by ZO. 
Then first we will give some information about the position of z0 and the shape of ua: 

Theorem 1. 
(i) a + 1 h < z0 < M for a E (—h, 1 - h) where M	[an+(a+h) ] '' for 

a E [0,1—h) andM = '(a+h)fora E (—h,0), witha >1 satzsfyzng(a+h)2 

(ii) For a E [— I h, 1 + h), iia(z)	a(Z) for z E [a,a + h] where z is the 
reflection point of z with respect to z = a + 1h. 

(iii) For a E I h,0), u'(z) > Iu'(—z)I for z E (a,0). 

(iv) For a e [—h, 1 - h), u'a (a) < —u(a + h) = Iu(a + h)I. 

Proof. Fix a E [- 1 h, 1 - h). For convenience, we write A for Aa and u(z) for u. (z) 
here. Consider w(z) = u(—z) for z E [—a - h, —a]. Then 

[(1 - z 2 )w']'(z) + Aw(z) = 0 in (—a - h, —a) 

w(—a - h) = w(—a) = 0. 

We will complete the proof of Theorem 1 through the foiling Lemmas 1 - 5. 

Lemma 1. For a E [—h,1 - h), u'(z) >0 in (a,zo), u'(z) <0 in (zo,a + h) and 
u"(z) <0 in (a,a + h). 

Proof. Since [(1 - z 2 )u']'(z) = — Au(z) < 0, we know that (1 - z 2 )u'(z) is strictly 
decreasing in (a, a + h) which implies that u'(z) > 0 in (a, zo) and u'(z) < 0 in (z0 , a + h) 
by the fact that u'(zo) = 0. To prove that u"(z) < 0 in (a,a + h), first we consider 
the case a < 0. We see that in (a,0) the increasing of 1 - z 2 implies that u'(z) must 
be decreasing, hence u"(z) < 0 in (a,0). Similarly we could know that w"(z) < 0 in 
(—a - h,0) from (2) and it follows immediately that u"(z)< 0 in (0,a + h). Besides, 
a direct computation shows that u"(0) = — Au(0) < 0. In summary, if a < 0, we have 
u"(z) < 0 in (a, a + h). As for the case a> 0, taking account of the increasing of 1 - 
in (—a - h, —a) we get that w'(z) is decreasing hence w"(z) < 0 in (—a - h, —a). It 
follows that u"(z) <0 in (a,a + h)I
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Lemma 2. zo >a+h for aE(—h,1—h). 

Proof. First we reflect u(z) with respect to the line z	a + 1 h. Let z	2(a +
h) - z be the reflection point of z with respect to z = a + 1h and define t(z) u(z) 

for z E [a,a+h]. Then

[1 - (z)2]i"(z) + 2zt'(z) + )t(z) = 0	 (3)

or
- (z*)2]} + t(z)	 (3')

in (a,a + h) with t(a) = t(a + h) = 0. Now that u(z) satisfies (1) would imply 

j

a+ 4 h 
(1— z 2 )[u'(z)] 2 dz - - (a + 1h) 2 ]u'(a + 1 h)u(a + h) 

a+ 4h 

=f 
while (3') and t(a + h) = 0 imply

=
\j

j

a+h

 
[1— (z*)2] [t'(z) ] 2 dz + [1— (a + h) 2 ]t'(a + h)t(a + h) 

+4h 

a+h 
t2(z)dz. 

+ 4 h 

Suppose zo	a + 1 h. Then u'(a + .h) 0 and accordingly t'(a + h > 0. It follows
that

4 fa+lh 
(1 - z2 )[u '( z )1 2dz < 

j	
u(z) dz	 (4)

and

	

jaa+h 	

jI

a+h
(1 - z2)[t'(z)]2dz < 

ja+h

 1 -
(z] [t'(z)] 2 dz	 t2(z) dz.	(5) 

	

+4h	 +4h	 +h 

Since u(a+ 1 h) = t(a+ 1 h), so the function k defined by k(z) = u(z) for z E [a,a+ h] 
and k(z) = (z) for z E [a+ 1 h,a+ h] is in Ha. But from (4) -(5) we get 

-z2)Lk'(z)]2dz 
a+h 

fa	1c2(z)dz 

which contradicts the variational principle. Hence z0 > a + 1 hi
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Lemma 3. When a 2 0, then 20 < a +_a+h) and when a < 0, then z0 

where a > 1 satisfies (a + h) 2 < a—I 

Proof. First we consider the case a > 0. For z E (a, d + h) let x = 2a where a > 1 
satisfies (a + h) 2 <	Then for x (a'.(a + h)°), from (1), u(z(x)) would satisfy 

	

a+ I
a2 x2_ ( 2 )(1 - T2/a)7L11(T) + ax[(a - 1)x_( 2 1 a) - (a + 1)]u'(x) + .\u(x) = 0	(1') 

with u(x) = 0 at x = (a + h) a . Observe that the coefficient of u'(x) in (1') is non- 
negative. From [3: Theorem 2.1] it reveals that u'(x) <0 for x	( +( a-1-h) (a+h)a) 

+(a--h)° i/a It follows that u(z) is decreasing from z	a 
(	2	)	straightforward to z = a + h. 

Secondly, consider the case a < 0. We only transform (1) as in the previous case 
for z E (0,a + h) to (1') for x E (0,(a + h)'). Then we could know that u'(x) < 0 in 
(, (a + h)a ) and to get that i(z) is decreasing from z =	straightforward to 
z=a+hU 

Lemma 4. For each a E [—h, 1 - h) we have: 
(i) W(a) <—u'(a + h). 

(ii) u(z) < u(z) for z E (a,a+ h) where z is the reflection point of z with respect 
to z = a + h. 

Proof. Let t(z) be defined as in the proof of Lemma 2. We also define 
(z) = u(z) - t(z) = u(z) - u(z)	for z e [a,a + h]. 

Then
(z)	_(z*) 

C(z) —C(z) 

and for z E (a, a + h) it satisfies 
(1 - z2)(z) - 2zC( z ) +	( z) = 4(a + h){ [z -(a + h)]t"(z) + l()} 

with (a) = e(a + h) = 0. Since z0 > a + h, so	< zo and u(z) is increasing 
for z E [z, zo]. Hence (z) = u(z) - u(z) < 0 and '(z) W(z) + u ' (z) > 0 for 
z E [z,a + 1 h]. We claim that (z) 0 for z E (a, z). Then we would have (a) 0 
by the fact that (a) = 0. In fact, suppose there were a point z 1 e (a, z) and a constant 
8>0 such that (z) = 0 as well as (z) >0 for z E (z i - 6,z 1 ) c (a,z i ) and e(z) <0 
for z E (z,, z). Then (zi) < 0. These yield 

u(z) - t(z) = e(z) = — ( Z1) = 0 
u'(z) - t'(z) = '(z)	e(zi)	0. 

Obseive that 
fa+h

(1 - z2)[t'(z)12dz - 
ja+h

 
[1 - (z*)21 [t'(z)]2dz 

 

jall[( z) - 
z21 [t'(z)]2dz 

a+h d 
= - f	t(z)	{ [z - (z)2][—t'(z)] }dz - ([Z2  - (zfl2]t'(z)}t(zfl.
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Also, that u(z) satisfies (1) would yield 

	

(1 - z 2 )[u'(z)] 2 dz = A 	dz + [1 - ( zr )2]l(. )u(z). 

Moreover, from (3') and t(a + h) = 0 we have 

pa+h	 a+h 

J
[1 - ( z)2] [t'(z)] 2 dz	A]	t2(z)dz - ( 1— z) t'(zr) t(z). 

	

Adding the three identities together and taking into account	= t(zr) we get 

a+h 

	

fa 
(1 - z 2 )[u'(z) ] 2 dz + j	(1 - 

a+h 
= A	112(z)dz + 

f	
t2(z)dz] 

- f,+h t(z)	{ [z - (z*) 2 1 [—t'(z)] } dz	 (6)
dz 

	

+ (1.2	I	 I * — (z i ) ] [u (zr. ) - I (z )] u ( z i
.

) 
a+h 

<A 
[I z

u 2 (z)dz + f	
t2(z)dz] 

where the last inequality is due to u'(z) < I'(z) as well as that [z2 (Z * )2] and [—t'(z)] 
are both strictly increasing for z E (zr, a + h) (since z > z0 > a + h) and that t(z) is 
positive there. So the integrand of 

ja+h	d 
1(z) - { [z - (z )2] [—t'(z)] } dz 

dz 

is positive everywhere. Now we define a function 77 in [a, a + h} by i(z) = u(z) for 
z E [a,zfl and i(z) = 1(z) for z E [z,a + h] (recall that by assumption u(z) = t(zfl). 
It follows from (6) that

fah1(1 - z2)[77,(z)J2dz 

f
a+h 2 

a	rj (z)dz 

which would raise a contradiction as in the proof of Lemma 2. This proves our claim to 
be true, that is,

(z)=u(z)—u(z)<O for zE(a,a--h) 
= u'(a) + u'(a) = u'(a) + u'(a + h) < 0 

and the proof is completed I
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Lemma 5. If a E (—h,O), them u'(z) > ju'(-z)I for z e (a, 0). 

Proof. For z e (a, —a), define v(z) = u(z) - u(—z). Then v is an odd function and 

[(1 - z 2 )v']'(z) + .Xv(z) = 0	in (a, —a). 

Knowing that Z > a + 1 h > 0, we consider first the case 0 < z0 < — a. Since u'(z) > 0 
for z E (-zO,z0), so v(z) = u(z) - u(—z) < 0 and v'(z) = u'(z) + u'(—z) > 0 for 
z E (—zo,O). Also, a direct computation yields v'(—zo) = u'(—zo) >0. 

We claim that v(z) < 0 in (a, —z0 ). In fact, if there were a point z = - 21 E (a, -20) 

such that v(—z) = 0, then we would have u(—z i ) = u(z i ). Since the first eigenvalue of 
problem (1) is non-degenerate, it follows from a standard symmetrization argument that 
u(z) must be symmetric in (—z, z 1 ) and attain the maximum at z = 0 which induces 
a contradiction, hence the claim is true. Accordingly, [(1 - z 2 )v']'(z) = —Av(z) > 0 in 
(a, -20) which implies that (1 - z 2 )v'(z) is increasing in (a, —zo). 

Next we claim that v 1 (z) > 0 in (a, —z0 ). Indeed, if there were a point z = — z2 E 
(a, —z0 ) such that v'(—z2 ) = 0 and W(z) > 0 in (-22, -20), let rri(z) = W(z) in [—z2 , z21. 
Then ni is even and positive in (-22,22) and it satisfies 

[(1 - z 2 )rn]"(z) + AM(Z) = 0 for z E (—z2 , 22) with M(— Z2) = m(z2 ) = 0. 

Let w(z) = (1 - z 2 )rn(z) for z E ( — Z2, Z2). Then w(z) >0 for z E (0,z2 ) and satisfies 

w"	
+ Aw(z) - 

-	

w(z2) = 0	
(7) (z)	

-	
0 for z E (0, 22) with { W, (0) = M , (0) = 0. 

We see that (A, WW) is the first . eigenpair for the mixed boundary eigenvalue problem 
(7). On the other hand, let n(z) = u'(z. We define q(z) = (1— z 2 )n(z) for z E (0, 20] 
and q(z) = 0 for z E ( z0 , z2 ). Then q(zo) = 0, q will be a Lipschitz continuous function 
in (0, 22) and it would satisfy the differential equation in (7) for z E (0, z0 ). Since the 
infimum of the corresponding Rayleigh quotient for (7) in (0, z2 ) is attained by w(z) with 
value being A and the Rayleigh quotient of q(z) over (0,z2 ) equals A, too (notice that 
q(z)	0 in [zo, 22)), the variational principle tells that owing to that A is non-degenerate 
(see [2: p.164]), we would have q(z) cw(z) in (0, z2 ) for some non-zero constant c. 
But q'(0)= u'(0) 54 0 = cw'(0) raises a contradiction. Hence our claim is true, and 
we have v'(z) > 0 in (a. —zo). Thus u'(z) > —u'(—z) = Iu'(-z)I for z e (a, —zo). 
Moreover, we know that u'(z) > 0 and is strictly decreasing in (-20, zo), hence we also 
have ZL'(z) > u'(—z) = Itt'(—z)I for z E (—zo, 0). 

As for the case zo > —a notice that : now in (a, —a), u'(z) > 0 and is decreasing, it 
is easy to see the statement to be true U 

Through Lemmas 1 - 5 we have completed the proof of Theorem 1. Now we are 
going to apply Theorem 1 to prove the monotonicity of Aa: 

Theorem 2. If a < b are both in [—h,1 - h), then Aa > b• 

Proof. We write u for 7-ta in this proof for convenience. Set d = b - a > 0 and 
define j(z) = u(z - d) for z E (b,b + h). Then j fi Hb (recall that, for c E [—h, 1 - h),
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H = W 2 (c,c + h)). We see that Ha and Hb form a one-one correspondence via this 

	

translation. It is trivial that f,'	u 2 (z) dz = f" j 2 (z) dz. We will show that 

j

a+h	 b+h 
(1 - z2)Iu'(z)12dz > J	(1 - z2)1j'(z)2dz 
 b 

if a < b. Then the theorem will be true from the variational principle. 
First consider the case a < 0. Since zo > a+ h > 0, we have u'(z) > 0 for z E (a,0). 

Let
A = {z E (0,a+ h): u'(z)I = u'(a) for some a E (a,0)}. 

Then A is an open interval contained in (0,a + h). Write B = A + d to be the set 
translated from A by the distance d. Then we have 

-	jaa+h	
z2)[u'(z)]2dz -

	

b+h 
(1 - z2)[j'(z)]2dz

	

=+JA+ 	
( 1 - z2)[u'(z)]2dz (1. 0  (  

-

 (f

d 

+ J + f (1 - z2)[j'(z)]2dz 

	

a+d	B  

= 1+11 

>0 

where

'	(J° ± J) (1— z2)[tz'(z)]2dz - (J.+d + 
fB) 

(1 - z2)[j'(z)]2dz 

"=1 (1 - z2)[u'(z)12dz -
 f(dd+h)	

(1 -z2)[j'(z)]2dz. 
(Oa-fh)—A	 —B 

Now we prove that I > 0. In fact, for each a E (a, 0) we know that there exists a unique 
r E A such that u'(a) = u'(,)l = j'(a + d) = j.'(7 + d) I . Then 

(1° + L) (1 - z2)[uz)]2dz = Ja	
- a) + ( 1— T2)] [u'(a)]2da

and

f+

d

 d + L) (1 - z2)[j'(z)]2dz = la O	- (a+ d) 2 ] + [ 1 - (r + d) 2 ]}[j'(a + d)]2da. 

By Theorem 1 we know that a + T > 0 which implies 

[(1 - a2) + ( 1 - 2)] [ul(a)]2 - 11 - (a + T)2 +1 - (r + d) 2 ] [j ' (a + d)]2 

= [u'(a)] 2 [2ad + 27d + 2d2] 

2d[u'(a)1 2 [a + r - d]	 . 

>0
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for each d> 0. Hence I> 0. 
Next we prove that II > 0. In fact, for z E (0, a + h) - A, (1 - z 2 ) is decreasing, so 

II 
= 
f(1 - z2)[u1(z)]2dz -
 f(O

[1 - (z + d)2 ] ['(z + d)]2dz

	

,a+h)—A	 ,a-4-h)—A 

=
 f

{(i - z2) —[1— (z + d)2]}[u'(z)12dz 
(0a+h)—A 

>0. 

Secondly, consider the case a > 0. Since (1 - z 2 ) is decreasing in (a,a + h), the 
result is easily seen to be true as the previous computation in the proof of II> 0 I 

The technique of proving II > 0 in Theorem 2 could be used to get some general-
ization of Theorem 2. Also the monotonicity of Aa reveals that the distance between 
two consecutive zeros of any Legendre function would he shorter as the zeros get larger. 
We have the following 

Corollary 1. Let /a be the first eigenvalue of the Dirichiet- Sturm-Liouville oper-
ator 4-[p(z)] over (a,a + h) with p being positive and continuous in [a,a + h]. If p is 
decreasing in (a, a + h), then Ma will decrease with respect to a. 

Corollary 2. Suppose Pv is a solution of the differential equation in (1) over (-1, 1) 
with v(v + 1) = A, and P1 < P2 < p3 are consecutive zeros of Pu with m ^! yo where Yo 
is the largest non-positive zero of Pu Then /3 - P2 < P2 - P1 - 

Proof. If p3 - y2 ^! p2 - y i, then from Theorem 2 and "domain monotonicity 
of the first Dirichiet eigenvalues (see Li: p.iOO]), Pu would not satisfy the differential 
equation in (i) over both (P1 ,y2) and ( p2, p3 ) with the same A, which is a contradiction I 

3. Applications 

Denote by 52 the unit sphere in R3 . For a E [h, 1 - Ii), let Da be the spherical band 
on S2 parametrized according to cylindrical coordinates: 

b(z,9) = ((1 - z2)'"2 COS 6,(1 - 22)1/2 sin 0, z) 

for a < z <a + h and 0 < 9 < 27r. We see that each Da has the same area 27rh, that is 
the equal-area of Da implies the irrelevance of h to a. The Beltrami- Laplace operator 
on S2 in our coordinates is written as

3	1	3 
Ozi	39[1_z200] 

Due to the non-degeneracy of the first Dirichlet eigenvalue, the corresponding eigen-
function is independent of 9, SO Ua(Z) (in Section 1) is the eigenfunction corresponding 
to the first eigenvalue A. for the Laplacian in D. with Dirichlet boundary condition. 
Hence we know:
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Corollary 3. The first Dzrzchlet eigenvalue is decreasing as the spherical band 
moved toward the north pole. 

Now we will give some estimates of Aa. First we shall give a lower bound of the first 
Dirichlet eigenvaluc of the spherical cap D0 (defined later), which would turn out to be 
a universal lower bound of all A. for a E [-h, 1 - h). 

Let D0 be the spherical cap parametrized by b(z, 6) for z E (1 - h, 1] and 6 E [0, 27r). 
As before the first Dirichlet eigenfunction will be independent of 6. Let (Ao,uo) be 
the first eigenpair for the Laplacian in D0 with Dirichlet boundary condition. Then u0 
would satisfy the differential equation in (1) with the boundary conditions uo(1 - h) = 0 
and u(1) being finite (since Vu(z, 6) = (1 - z2)I/2u1(z)(_z cos6, —z sin6, (1 - z2)'12)). 
If we write A 0 = vo(vo + 1), then uo = CPv0 where c is a non-zero constant and Pu0 IS 
the Legendre function of degree 00 of the first kind [5: p.165] with u being chosen so 
that Pvo has z = 1 - h to be its largest zero in (-1, 1). The other boundary condition 
is naturally held by Pvo since p, 0 (z) = ( — v)(uo + 1)F(1 - 00, 0 + 2,2, iz) as well 
as F(1 - v0 , 00 + 2,2,0) = 1 where F is the herpergeometric series [5: p.193, 197, 238]. 
Now let P. be the Legendre polynomial of degree n, z denote the largest (the n-th) 
zero of P. in (-1, 1). Then we have 

Theorem 3. 

(i) lima-1-0 a = Ao and A 0 Aa for all a in [—h, 1 -h). 

(ii) 11 1 - h = zn for some integer n > 0, then A 0 = n(n + 1). 
(iii) If z,, < 1 - h < z,,.. 1 , then n(n + 1) < A 0 < (n + 1)(ri + 2). 

Proof. By a straight modification of [7, p. 551/Lemma] and the decreasing prop-
erty-of A. in Theorem 2, the result of statement (i) is established (also, sec [81). We 
need only to treat the latter half of the theorem. 

It is well known that P,, satisfies the differential equation in (1) over (-1,1) with 
A = An = n(n+1) and it has exactly n distinct zeros in (-1, 1) for n E N. Also, we could 
view (A n , Pn) as the first cigenpair of the differential equation in (1) over (Zn, 1) with 
Pn(zn) = 0, P,,(1) being finite. If 1 - h = Zn for some n, then t = CPn in [1 - h, 1] and 
A 0 = n(n + 1). On the other hand, from Sturm's Fundamental Theorem we know that 
Zn is increasing as n increases [4: p. 225]. If 1—hE (zn,zn+i) for some positive integer 
n, then P,, 1 would be a trial function for the Rayleigh quotient associated with A 0 over 
(1 - h, 1]. Similarly, u 0 would be a trial function for the Rayleigh quotient associated 
with An = ri(n + 1) over (Zn, 11. Hence we have n(n + 1) < A 0 < (n + 1)(ri + 2). This 
completes the proof I 

In [6], z,, is tabulated from ii = 2 to ii = 16: 

22	0.57735 27	0.94911 Z12	0.98156 
23	0.77460 Z8	0.96029 z13	0.98418 
24	0.86114 Z9	0.96816 Z4	0.98628 
25	0.90618 210	0.97390 Z15	0.98799 

0.93247 Z1 1	0.97823 216	0.98940.



1084	Chie-Ping Chu 

We observe that when 1 - h near 1 (that is, a small cap), .X 0 is very sensitive to h (or, 
to the area of the cap). Also, when 1 - h < z 2 , the lower bound will not be available. 
Hence in Theorem 4 we give another form of the lower bound of A by observing that 

.J'
a+h [f'(z)j2dz = A =	

. 2
fE!.I f:f()d	() 

(since it is the first Dirichiet eigenvalue of fH(z) + Af(z) = 0 in (a, a + h)). Also, we 
use the corresponding first eigenfunction sin	as a trial function of the Rayleigh 
quotient associated with A. to get an upper bound: 

Theorem 4. For a < 0, we have 

h 2
	

(2 —2 + 3)h2 1_(a+h)2<(_Aa<1_a(a+h)_	
62 ir) 

and for a > 0 we have

	

2  	 (27r2 + 3)/2 
1 - (a + h) < (h)2 Aa < 1 - a(a + h) - < 1 - a2. 62  

However, from Theorem 1 we could also give a somewhat improved lower bound. 
Letting c and M be as in Theorem 1, we have

Ir	1 

	

Corollary 4. A,,> min{1 - M2 , 1 -	 2 

Proof. Since (A,u) (this is the abbreviation of (A a , a ) is also the first eigenpair 
of the differential equation in (1) over (a, 20) with mixed boundary conditions u(a) = 
u'(zo) = 0, we have 

(min{ 1 - z, 1 - a2 }) fa [u'(z)] 2 dz < la ( i - z 2 )[u'(z)] 2 dz = A f u 2 (z) dz. 

Notice that

	

2	fZo[f!]vd 

	

[zo—a]	
inf fZOf2()d 

(since it is the first eigenvalue of f"(z) + clf(z) = 0 over (a,zo) with mixed boundary 
condition f(a) = f'(zo) = 0), where H is the Sobolev space consisting of functions in 
W"2 (a, z) that vanish at z = a. From Lemma 3 we know that Q >	 Hence 

Aa > ( rnin{1 - z, 1 - a2 })1 > (min{1 - M2 , 1 - a2))
L2(M—a)i 

and the corollary is proved I
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4. On general surfaces of revolution 

As in Section 3, a general surface of revolution S will be parametrized as (z, 0) = 
(p(z) cos O,p(z) sin 8,z) for 0 < 0 < 27r and z E I, with Riemannian measure being 
dA = v/dzd6 , g(z,9) = g(z) = p2 (z)(1 + (p'(z)) 2 ] where p(z) > 0 is a smooth function 
in an open interval I on the z-axis. We consider the Dirichlet eigenvalue problems for 
the "equal-area bands" on S: 

Let D be a band on S parametrized by 4(z,0) for 0 < 0 < 27r and z E (1i,1f) ç I. 
Then as before, on D,, the first Dirichlet eigenpair	would satisfy 

(
1 

1 + [(p'(z))2	
(z) =	u(z)	with u(/2) = u() = 0. 

After changing the variable by y(z) = f	dz with x being the lft end point of I, 
the area of

c+k 
D p. =27rf	/dz=21rf	dy=2irk 

with c = z'(/2), c + k = z 1( /2 *) and u(z(y)) would satisfy 

[p2(y)1] =	i(y)	in (c,c + k) 

with Dirichiet boundary condition. So

c+k 2 
= inf '___(y)[w'(y)l2dy 

wEH	c+k 
f	w2(y)dy 

and we could get similar results as in Section 3: 

Theorem 5. Let k = 2,r 
area D' as above. Then 

inf [p2(z)]()2 <A < sup 
zE(,) 

for each /2. 

Also, since y'(z) > 0 for z in I, we get 

Theorem 6. Suppose p is decreasing (increasing respectively) in I. Then ) is a 
decreasing (increasing respectively) function of u. Moreover, the distance of two con-
secutive zeros in I would be decreasing (increasing respectively) as the zeros go larger. 
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