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Complex 2-Normed Linear Spaces
and Extension of Linear 2-Functionals

S. N. Lal, S. Bhattacharya and C. Sreedhar

Abstract. The known concept of 2-normed real linear spaces is extended to 2-normed complex
linear spaces. This extension is not trivial. A Hahn-Banach type extension theorem for complex
linear 2-functionals is established and it is shown that it is not possible to get this result
from the known Hahn-Banach type extension theorem for real linear 2-functionals using the
Bohnenblust-Sobczyk technique directly as is done in the case of linear functionals. As an
application of our extension theorem, a 2-norm version of the Ascoli-Mazur theorem on tangent
functionals is established. Several examples and counter examples illustrate the results obtained
in the paper.
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1. Introduction

An area in the Euclidean plane is uniquely determined by three given points in the
plane and thus each 2-simplex has its area. A 3-simplex is determined by a quadruple
of distinct points in the Euclidean space and thus with each 3-simplex there is associated
a non-negative real number known as its volume. Menger [43] in 1928 gave a logical
generalisation of the distance function defined on pairs of points with the introduction
of an n-metric structure on a set which is a function defined on (n+1)-tuples of points.
There was not much activity on Menger’s n-metric structure for a considerable length
of time though from time to time some contributions were made to this theory, and its
applications including connections with variational calculus were studied (for details,
see Blumenthal [3] and Iseki [36]).

Parallel to the development of the notion of generalised metric, Vulich [44] intro-
duced in 1937 a notion of higher dimensional norm on linear spaces and as in the case of
Menger’s, this work also failed to attract the attention of the analysts till 1958 when the
work of Froda [30] appeared. However, significant developments began in 1962 when S.
Gähler [31] introduced the concept of 2-metric spaces axiomatising the concept of area
function of Euclidean triangles. In a subsequent paper Gähler [32] extended his idea of
2-metric spaces and introduced the concept of 2-normed real linear spaces. The 2-norm
‖x, y‖ of x, y in a real linear space represents two times the area of the triangle with
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sides x and y. With a 2-norm, a real linear space becomes a topological linear space
and Gähler proved the existence of 2-normed real linear spaces which are not normable.

The concepts of 2-metric and 2-normed real linear spaces have been investigated
extensively by Diminnie, Gähler and White [15, 18], Ehret [23], Freese and Gähler [29],
Gähler [31 - 34], Iseki [36], Lal and Das [38], Cho [5], Cho et al. [7 - 13], White [45]
and several others [1, 4, 6, 14, 16, 17, 19 - 22, 24 - 28, 35, 37, 39 - 41, 46] from different
points of view. In [45] White proved a Hahn-Banach type extension theorem for linear
2-functionals on 2-normed real linear spaces. It is interesting to note that until now the
study of 2-normed spaces was restricted only to real linear spaces. Here we introduce
the concept of 2-normed linear spaces on a field K, K being the field R of real numbers or
the field C of complex numbers, and prove the Hahn-Banach theorem for these spaces.
We then give an application of this extension theorem by establishing Theorem 5.1
embodying a necessary and sufficient condition for the existence of tangent 2-functionals.
Our Theorem 5.1 is a complex 2-norm version of the Ascoli-Mazur theorem [2, 42].
We conclude the paper by giving an example illustrating Theorem 5.1 which itself
demonstrates the necessity of development of the theory of 2-normed spaces.

It is important to note that the transition from real 2-normed linear spaces to
complex 2-normed linear spaces is not that obvious as in the case of normed linear
spaces. One of the reasons for this is that a complex normed linear space E remains a
real normed linear space when E is considered as a linear space over the real field, but
this does not hold in the case of complex 2-normed linear spaces E as in the latter case
x and ix (where x is any non-zero element of E) are linearly dependent, but when E
is considered over the real field, x and ix become linearly independent (see Definition
2.1).

2. Definition and examples

Let E be a linear space over the field K standing for the field of all real numbers R or
complex numbers C.

Definition 2.1. A mapping ‖·, ·‖ : E × E → R is called a 2-norm on E if for all
x, y, z ∈ E and α ∈ K

(i) ‖x, y‖ = 0 if and only if x, y are linearly dependent.

(ii) ‖x, y‖ = ‖y, x‖
(iii) ‖αx, y‖ = |α| ‖x, y‖
(iv) ‖x + y, z‖ ≤ ‖x, z‖+ ‖y, z‖.

The pair (E, ‖·, ·‖) is called a 2-normed linear space over K.

It may be noted that ‖x, y‖ ≥ 0 for all x, y ∈ E. We also note the following obvious
fact.

Lemma 2.1. For α ∈ K and x, y ∈ E, ‖αx + y, x‖ = ‖y, x‖.
Before giving some examples of complex 2-normed linear spaces we note the follow-

ing



Complex 2-Normed Linear Spaces 37

Lemma 2.2. If α, β ∈ Cn, α = (α1, . . . , αn) and β = (β1, . . . , βn), then

n∑
i,j=1
i<j

|αiβj − αjβi|2 = ‖α‖2‖β‖2 − |〈α, β〉|2

where 〈α, β〉 =
∑n

i=1 αiβ̄i and ‖α‖2 = 〈α, α〉.
Proof. Observe that

‖α‖2‖β‖2 − |〈α, β〉|2

=
n∑

i=1

|αi|2|βi|2 +
n∑

i,j=1
i 6=j

|αi|2|βj |2 −
n∑

i=j=1

αiᾱj β̄iβj −
n∑

i,j=1
i6=j

αiβ̄iᾱjβj

=
n∑

i,j=1
i 6=j

(|αi|2|βj |2 − αiβjαjβi

)

=
n∑

i,j=1
1<j

∣∣αiβj − αjβi

∣∣2

and the statement follows

Corollary. If α, β, γ ∈ Cn, then
√
‖α + β‖2‖γ‖2 − |〈α + β, γ〉|2 ≤

√
‖α‖2‖γ‖2 − |〈α, γ〉|2 +

√
‖β‖2‖γ‖2 − |〈β, γ〉|2.

Proof. The proof follows using Lemma 2.2 and the Minkowski inequality

Example 2.1. Let (X, 〈·, ·〉) be an inner product space over C and define

‖x, y‖ =
√
‖x‖2‖y‖2 − |〈x, y〉|2 (x, y ∈ X).

Then (X, ‖·, ·‖) is a complex 2-normed space.
Indeed, axioms (i) - (iii) of Definition 2.1 are easy to verify. In order to verify axiom

(iv) take x, y, z ∈ X and let B = {ei : i ∈ ∆} be a Hamel basis for X. Then x, y, z
are spanned by finitely many elements of B, say by {e1, . . . , en} ⊂ B. Consider the
linear subspace [e1, . . . , en] spanned by e1, . . . , en. By the Graham-Schmidt orthonor-
malization process, there exists an orthonormal set of vectors {f1, . . . , fn} such that
[f1, . . . , fn] = [e1, . . . , en]. Let now x =

∑n
i=1 αifi, y =

∑n
i=1 βifi, z =

∑n
i=1 γifi and

write α = (α1, . . . , αn), β = (β1, . . . , βn) and γ = (γ1, . . . , γn) where α, β, γ ∈ Cn. Then

‖x, z‖ =
√
‖α‖2‖γ‖2 − |〈α, γ〉|2

‖y, z‖ =
√
‖β‖2‖γ‖2 − |〈β, γ〉|2

‖x + y, z‖ =
√
‖α + β‖2‖γ‖2 − |〈α + β, γ〉|2.

Using the corollary of Lemma 2.2 it immediately follows that ‖x+y, z‖ ≤ ‖x, z‖+‖y, z‖
which is axiom (iv) of Definition 2.1. Thus it is established that (X, ‖·, ·‖) is a 2-normed
linear space
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Example 2.2. Let H1, . . . , Hn be inner product spaces over C, E = H1×· · ·×Hn,
∅ 6= D ⊂ C any subset and f1, . . . , fn : D → C functions such that, for some θ0 ∈ D,
fi(θ0) 6= 0 (1 ≤ i ≤ n). Let θ1, . . . , θm ∈ D and a0, a1, . . . , am ∈ R+, a0 6= 0. For
x, y ∈ E, x = (x1, . . . , xn) and y = (y1, . . . , yn), and θ ∈ D define F (x, y; θ) by

F (x, y; θ) =

(
n∑

i=1

‖xi‖2Hi
|fi(θ)|2

)(
n∑

i=1

‖yi‖2Hi
|fi(θ)|2

)
−

∣∣∣∣∣
n∑

i=1

〈xi, yi〉Hi
|fi(θ)|2

∣∣∣∣∣

2

(2.1)

where ‖ · ‖Hi
and 〈·, ·〉Hi

are the norm and scalar product in Hi, respectively, and define
‖x, y‖ by

‖x, y‖ = a0 sup
θ∈D

√
F (x, y; θ) +

m∑

i=1

ai

√
F (x, y; θi). (2.2)

Then (E, ‖·, ·‖) is a complex 2-normed linear space.
Indeed, the space

(
(f1(θ)H1)× · · · × (fn(θ)Hn),

n∑

i=1

〈fi(θ)xi, fi(θ)yi〉Hi

)

is an inner product space for every θ ∈ D. Applying the Cauchy-Schwarz inequality, it
immediately follows that F (x, y; θ) ≥ 0 for every x, y ∈ E and θ ∈ D. Proceeding as in
Example 2.1, it can be easily shown that for every x, y, z ∈ E and θ ∈ D

√
F (x + y, z; θ) ≤

√
F (x, z; θ) +

√
F (y, z; θ)

and therefore axiom (iv) in Definition 2.1 is satisfied. Axioms (ii) - (iii) are obvi-
ously satisfied. Now let us verify axiom (i). For this let x, y ∈ E be linearly de-
pendent. Then x = αy or y = αx for some α ∈ C. In both the cases, for every
θ ∈ D,

(
f1(θ)x1, . . . , fn(θ)xn

)
and

(
f1(θ)y1, . . . , fn(θ)yn

)
are linearly dependent in

(f1(θ)H1) × · · · × (fn(θ)Hn) and so F (x, y; θ) = 0 for every θ ∈ D which implies
‖x, y‖ = 0. Conversely, let ‖x, y‖ = 0. Then (2.2) implies F (x, y; θ) = 0 for every
θ ∈ D and so in particular F (x, y; θ0) = 0 which implies that

(
f1(θ0)x1, . . . , fn(θ0)xn

)
and

(
f1(θ0)y1, . . . , fn(θ0)yn

)
are linearly dependent in

(
f1(θ0)H1) × · · · × (fn(θ0)Hn

)
.

As fi(θ0) 6= 0 (1 ≤ i ≤ n) it follows that x = (x1, . . . , xn) and y = (y1, . . . , yn) are
linearly dependent in E. This completes the verification of axiom (i) and it follows that
(E, ‖·, ·‖) is a complex 2-normed linear space.

Remarks.
(i) Let θi (1 ≤ i ≤ m) be such that

∑m
i=1 ai

√
F (x, y; θi) = 0 ensures the linear

dependence of x and y in E. Then we may drop the condition fi(θ0) 6= 0 (1 ≤ i ≤ n)
for some θ0 ∈ D. In this case we may also take a0 = 0.

(ii) In the case of Example 2.1, ‖x + y, z‖2 + ‖x− y, z‖2 = 2‖x, z‖2 + 2‖y, z‖2 for
all x, y, z ∈ X. Indeed,

‖x + y, z‖2 + ‖x− y, z‖2 = 〈x + y, x + y〉〈z, z〉 − 〈x + y, z〉〈x + y, z〉
+ 〈x− y, x− y〉〈z, z〉 − 〈x− y, z〉〈x− y, z〉

= 2‖x, z‖2 + 2‖y, z‖2
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and the statement is proved.

(iii) The 2-norm identity in statement (ii) above is not necessarily satisfied for the
class of Example 2.2 if n > 1. Indeed, for this let us consider a special example in which
n = 3, H1 = H2 = H3 = C, D = [0, 2π], f1(θ) = 1, f2(θ) = cos θ, f3(θ) = sin θ, a0 = 1
and no θ1, . . . , θm are fixed, i.e. the second sum in (2.2) is absent. Set x = (1 + i, 1, i),
y = (1, i, 1) and z = (1− i, i, 1 + i). Then

F (x + y, z; θ) = 13− sin2 θ − 2 sin4 θ

F (x− y, z; θ) = 5 + 7 sin2 θ − 10 sin4 θ

F (x, z; θ) = 8− sin2 θ − 5 sin4 θ

F (y, z; θ) = 1 + 4 sin2 θ − sin4 θ.

Now ‖x + y, z‖ = supθ∈D

√
F (x + y, z; θ) =

√
13, ‖x − y, z‖ =

√
249/40, ‖x, z‖ =

√
8

and ‖y, z‖ = 2. Then, clearly,

769
40

= ‖x + y, z‖2 + ‖x− y, z‖2 6= 2‖x, z‖2 + 2‖y, z‖2 = 24

and the statement is shown by this special example.

Example 2.3. Let H be an inner product space over C, ∅ 6= D ⊂ C any subset,
{fn}∞n=1 a sequence of complex-valued functions on D such that, for some θ0 ∈ D,
fn(θ0) 6= 0 for every n ∈ N and supn∈N,θ∈D |fn(θ)| is finite. Let E be the set of all
sequences x = {xn} ∈ H such that supθ∈D

∑∞
n=1 ‖xn‖2|fn(θ)|2 is finite. For x =

{xn}, y = {yn} ∈ E, x = y if and only if xn = yn for every n. Define x+ y = {xn + yn}.
Since for every θ ∈ D and every n ∈ N

√√√√
n∑

i=1

‖xi + yi‖2|fi(θ)|2 ≤
√√√√

n∑

i=1

‖xi‖2|fi(θ)|2 +

√√√√
n∑

i=1

‖yi‖2|fi(θ)|2

we have x+y ∈ E. Thus E is a linear space over C. Define for every θ ∈ D and x, y ∈ E

F (x, y; θ) =

( ∞∑
n=1

‖xn‖2|fn(θ)|2
)( ∞∑

n=1

‖yn‖2|fn(θ)|2
)
−

∣∣∣∣∣
∞∑

n=1

〈xn, yn〉|fn(θ)|2
∣∣∣∣∣

2

.

Let a0 > 0, a1, . . . , am ∈ R+ and θ1, . . . , θm ∈ D. On E × E, define ‖·, ·‖ by

‖x, y‖ = a0 sup
θ∈D

√
F (x, y; θ) +

m∑

i=1

ai

√
F (x, y; θi).

Then (E, ‖·, ·‖) is a complex 2-normed linear space.
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3. Failure of the Bohnenblust-Sobczyk technique

In this section we show that the well-known method of obtaining a complex version of
the Hahn-Banach theorem for linear functionals fails in the case of linear 2-functionals.

Definition 3.1. Let M and N be two linear subspaces of a linear space E over the
field K.

(i) A mapping f : M ×N → K such that

f
(
α1x1 + β1y1, α2x2 + β2y2

)

= α1α2f(x1, x2) + β1α2f(y1, x2) + α1β2f(x1, y2) + β1β2f(y1, y2)

for all α1, α2, β1, β2 ∈ K, all x1, y1 ∈ M and x2, y2 ∈ N is called a linear 2-functional
with domain M ×N .

(ii) A mapping p : M ×N → R such that

p
(
αλx + (α− αλ)x′, βµy + (β − βµ)y′

)

≤ αβ|λµ|p(x, y) + α|λ|(β − βµ)p(x, y′)

+ (α− αλ)β|µ|p(x′, y) + (α− αλ)(β − βµ)p(x′, y′)

for all |λ|, |µ| ≤ 1, α, β ≥ 0, and x, x′ ∈ M , y, y′ ∈ N is called a convex 2-functional
with domain M ×N .

Definition 3.2. A linear 2-functional f : M ×N → K is called 2-bounded if there
exists k > 0 such that, for all (x, y) ∈ M × N , |f(x, y)| ≤ k ‖x, y‖. For a 2-bounded
linear 2-functional f with domain M × N the infimum over all k > 0 satisfying the
inequality above is called the norm of f and denoted by ‖f‖.

Proposition 3.1. Let E be a linear space over K and f a 2-bounded linear 2-
functional with domain M × N . Then f(x, y) = 0 for (x, y) ∈ M × N if x and y are
linearly dependent in E.

Proof. The proof follows directly from axioms Definition 2.1/(i) and Definition
3.2

Following arguments similar to those used in the proof of [45: Theorem 2.1] we can
establish the following

Proposition 3.2. Let E be a linear space over K and f a 2-bounded linear 2-
functional with domain M ×N . Then

‖f‖ = sup
(x,y)∈M×N
‖x,y‖6=0

|f(x, y)|
‖x, y‖ .

Hahn-Banach-type extension theorems for real linear functionals on real linear
spaces have been established by White [45], Ehret [23], Lal and Das [38] and Mabizela
[41]. We have shown in [37] that the result due to Mabizela [41] is essentially contained
in a theorem due to Lal and Das [38]. The result due to White is as follows:
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Theorem A (see [45]). Let M be a linear subspace of a real 2-normed linear space
E and let z ∈ E. Let f be a 2-bounded real linear 2-functional on M × [z]. Then there
exists a 2-bounded real linear 2-functional f̃ on E × [z] such that

(i) f̃(x, y) = f(x, y) for every (x, y) ∈ M × [z]

(ii) ‖f̃‖ = ‖f‖.
So far no result on the extension of complex linear 2-functionals on 2-normed com-

plex linear spaces has been obtained. In Example 3.1 we show that the Bohnenblust-
Sobczyk technique which is used for obtaining a complex version of the real Hahn-
Banach theorem fails in the case of linear 2-functionals.

By ER we denote the linear space E over the real field R. Before proceeding further
we note the following result due to Lal and Das [38].

Theorem B (see [38]). Let MR be a subspace of a real linear space ER and let
z ∈ ER. If p is a non-negative convex 2-functional on ER × ER and U is a linear 2-
functional on MR × [z]R with U(x, αz) ≤ p(x, αz) for every (x, αz) ∈ MR × [z]R, then
there exists a linear 2-functional Ũ on ER × [z]R with

(i) Ũ(x, αz) ≤ p(x, αz) for every (x, αz) ∈ ER × [z]R
(ii) Ũ(x, αz) = U(x, αz) for every (x, αz) ∈ MR × [z]R.

Example 3.1. In Example 2.2, let n = 3, H1 = H2 = H3 = C, D = [0, 1
2π],

f1(θ) = 1, f2(θ) = cos θ, f3(θ) = sin θ, a0 = a1 = 1 and θ1 = 1
2π. Consider the linear

subspace M = {(a, b, 0) : a, b ∈ C} ⊂ E and let z = (1, 0, 0). In Theorem B define the
convex 2-functional p on ER × ER by taking p(x, y) = ‖x, y‖. Note that ‖x, y‖ is not
a 2-norm on ER as x and ix for any x 6= 0 in ER are linearly independent although
‖x, ix‖ = 0.

Let f : M × [z] → C be defined by

f(x, y) = bd
(
x = (a, b, 0), y = dz

)
(3.1)

where a, b, d ∈ C. Clearly, f is a complex linear 2-functional on M× [z]. For x = (a, b, c)
and y = dz where a = θ + iϕ, b = α + iβ, c = γ + iδ, d = ξ + iη we first compute ‖x, y‖.
From (2.1) we have

F (x, y; θ)

=
[
(θ2 + ϕ2) + (α2 + β2) cos2 θ + (γ2 + δ2) sin2 θ

]
[ξ2 + η2]− |(θ + iϕ)(ξ − iη)|2

= (ξ2 + η2)
[
(α2 + β2) cos2 θ + (γ2 + δ2) sin2 θ

]

= |d|2
[
|b|2 cos2 θ + |c|2 sin2 θ

]

and therefore

sup
θ∈D

F (x, y; θ) =
{ |d|2|b|2 if |b| ≥ |c|
|d|2|c|2 if |b| < |c|.

Now from (2.2) we have

‖x, y‖ =
{ |d|(|b|+ |c|) if |b| ≥ |c|

2|d| |c| if |b| < |c|. (3.2)
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From (3.1) - (3.2) it is clear that |f(x, y)| = ‖x, y‖ for every (x, y) ∈ M× [z], that is, f is
a 2-bounded complex linear 2-functional on M×[z] with ‖f‖ = 1. Bohnenblust-Sobczyk
technique suggests that to get an extension f̃ on E× [z] using Theorem B, we get a real
linear 2-functional U on MR× [z]R where U(x, y) = Re f(x, y) = Re bd for x = (a, b, 0) ∈
MR and y = dz ∈ [z]R. In view of (3.2) it is clear that |U(x, y)| ≤ ‖x, y‖ = p(x, y) for
every (x, y) ∈ MR × [z]R. Now using Theorem B we get an extension Ũ on ER × [z]R of
U .

To get the required extension f̃ on E × [z] define

f̃(x, y) = Ũ(x, y)− iŨ(ix, y)
(
(x, y) ∈ E × [z]

)
.

We claim that f̃ is not necessarily a complex linear 2-functional on E × [z]. To see this
we consider the extension Ũ of U on ER × [z]R defined by

Ũ(x, y) = αξ − βη + γξ − δη (3.7)

where x = (θ + iϕ, α + iβ, γ + iδ) and y = (ξ + iη)z. Note that

|Ũ(x, y)| ≤ |αξ − βη|+ |γξ − δη|
≤

√
ξ2 + η2

(√
α2 + β2 +

√
γ2 + δ2

)

= |d|(|b|+ |c|)
= ‖x, y‖

by (3.2) and thus |Ũ(x, y)| ≤ p(x, y) for every (x, y) ∈ ER × [z]R. Now take x = (0, 0, 1)
and y = z. Then

f̃(x, y) = Ũ(x, y)− iŨ(ix, y) = 1

f̃(ix, iy) = Ũ(ix, iz)− iŨ(−x, iz) = 1

and this shows that f̃(ix, iy) 6= −f̃(x, y) from which it follows that f̃ is not a complex
linear 2-functional on E × [z].

4. The Hahn-Banach theorem for 2-functionals

The counter example in Example 3.1 demonstrated the failure of the Bohnenblust-
Sobczyk technique in obtaining directly the extension of 2-bounded complex linear
2-functionals. We now establish the following complex version of White’s extension
theorem.

Theorem 4.1. Let M be a linear subspace of a 2-normed linear space E over K
and z ∈ E. If f is a 2-bounded linear 2-functional on M × [z] (or on [z] ×M), then
there exists a 2-bounded linear 2-functional F on E × [z] (or on [z]× E) satisfying

‖F‖ = ‖f‖ (4.1)
F (x, αz) = f(x, αz) for all (x, αz) ∈ M × [z] (4.2)
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(or F (αz, x) = f(αz, x) for all (αz, x) ∈ [z]×M).

Before establishing the theorem we would like to remark that in its proof given
below we have used the complex version of the Hahn-Banach theorem, and the latter
is derived from the Hahn-Banach theorem for real linear spaces using the Bohnenblust-
Sobczyk technique. Thus, as shown in the counter Example 3.1, although one is unable
to use the Bohnenblust-Sobczyk technique directly to get the complex version of White’s
extension theorem, the Bohnenblust-Sobczyk technique enters into the proof through
back doors.

Proof of Theorem 4.1. Let f be defined on M × [z] (the case with [z] ×M as
domain of f follows similarly).

If z = 0, then by Proposition 3.1 f(x, zy) = 0 for every (x, zy) ∈ M × [z] and by
defining F on E × [z] by F (x, αz) = 0 for every (x, αz) ∈ E × [z], the theorem follows.

Now let z 6= 0. For an index set I, let {z} ∪ {yi : i ∈ I} be a Hamel basis for E. If
N is the linear subspace of E generated by {yi : i ∈ I}, then E = [z] ⊕ N . Denote a
mapping ‖ · ‖ on N by ‖x‖ = ‖x, z‖ for every x ∈ N . Then (N, ‖ · ‖) is a normed linear
space over K. We now consider two cases separately.

Case 1: z 6∈ M . Clearly, M ⊂ N . The functional f̃ on M defined by f̃(x) = f(x, z)
is linear and |f̃(x)| = |f(x, z)| ≤ ‖f‖ ‖x, z‖ = ‖f‖ ‖x‖, that is, f̃ is bounded on M . Now
by Proposition 3.2

‖f‖ = sup
(x,αz)∈M×[z]
‖x,αz‖6=0

|f(x, αz)|
‖x, αz‖ = sup

x∈M
‖x‖6=0

|f̃(x)|
‖x‖ = ‖f̃‖

which means the norm of f̃ on M . Appealing to the Hahn-Banach theorem we get a
bounded linear functional F̃ on N with

‖F̃‖ = ‖f̃‖ = ‖f‖
F̃ = f̃ on M.

(4.3)

Define F on E × [z] by

F (x, αz) =
{

αF̃ (x) if x ∈ N

αF̃ (y) if x = βz + y, β ∈ K and y ∈ N (as E = [z]⊕N).

This is a well-defined linear 2-functional on E × [z]. For (x, αz) ∈ M × [z], F (x, αz) =
αF̃ (x) = αf̃(x) = f(x, αz) and F satisfies (4.2). Again, for x ∈ E let x = βz + y where
β ∈ K and y ∈ N . For α ∈ K, using (4.3) and Lemma 2.1 we have

|F (x, αz)| = |αF̃ (y)| ≤ |α| ‖f‖ ‖y‖
= |α| ‖f‖ ‖y, z‖ = |α| ‖f‖ ‖βz + y, z‖ = ‖f‖ ‖x, αz‖

and it follows that F is a 2-bounded linear 2-functional on E × [z] with ‖F‖ = ‖f‖ and
(4.1) holds. Thus, in Case 1, the theorem is established.
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Case 2: z ∈ M . Clearly, J = M ∩ N is a linear subspace of E and z 6∈ J . Using
the arguments of Case 1 for f restricted to J × [z], we get a bounded linear 2-functional
F on E × [z] satisfying ‖F‖ = ‖f‖ and

F (x, αz) = f(x, αz)
(
(x, αz) ∈ J × [z]

)
. (4.4)

Now let (x, αz) ∈ M × [z]. Then as E = [z]⊕N , x = βz + y where β ∈ K and y ∈ N .
Since x, z ∈ M , it follows that y ∈ M and so y ∈ J and therefore, using (4.4),

F (x, αz) = F (βz + y, αz) = αF (y, z)

= αβf(z, z) + αf(y, z) = f(βz + y, αz) = f(x, αz)

that is, F (x, αz) = f(x, αz) for all (x, αz) ∈ M × [z]. This completes the proof of the
theorem in Case 2 and the theorem is completely established

5. A 2-norm version of the Ascoli-Mazur theorem

In this section we give an application of Theorem 4.1. For establishing the main result
of this section viz. Theorem 5.1 which is a 2-norm version of the Ascoli-Mazur theorem
(see, e.g., [2, 42]) using Theorem 4.1, we need some definitions and results which are
given below.

Proposition 5.1 (cf. [11: Lemma 2.1]). Let (E, ‖·, ·‖) be a 2-normed linear space
over K. For all x, y, z ∈ E, limh→0+

‖x+hy,z‖−‖x,z‖
h and limh→0−

‖x+hy,z‖−‖x,z‖
h exist.

Proof. Let x, y, z ∈ E. Observe that

‖x + h2y, z‖ − ‖x, z‖
h2

≤ ‖x + h1y, z‖ − ‖x, z‖
h1

for 0 < h2 < h1

and
‖x + hy, z‖ − ‖x, z‖

h
≥ −‖y, z‖ for h > 0.

Hence

lim
h→0+

‖x + hy, z‖ − ‖x, z‖
h

= inf
h>0

‖x + hy, z‖ − ‖x, z‖
h

.

The second part of the proposition follows similarly

Definition 5.1. Let (E, ‖·, ·‖) be a 2-normed linear space over K. For x, y, z ∈ E
we define

T1±(x, z)(y) = lim
h→0±

‖x + hy, z‖ − ‖x, z‖
h

.

The following proposition can be easily established.
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Proposition 5.2. Let (E, ‖·, ·‖) be a 2-normed linear space over K. Then, for all
x, y, z, y1, y2 ∈ E and α = |α|eiθ ∈ K :

(i) −‖y, z‖ ≤ T1+(x, z)(y) ≤ ‖y, z‖
(ii) T1+(x, z)(y) = −T1−(x, z)(y)
(iii) T1+(x, z)(y1 + y2) ≤ T1+(x, z)(y1) + T1+(x, z)(y2)
(iv) T1+(x, z)(αy) = |α|T1+(x, z)(eiθy)
(v) T1+(x, z)(x) = ‖x, z‖
(vi) T1+(x, z)(αx) = |α| cos θT1+(x, z)(x).

Definition 5.2. Let E be a 2-normed linear space over K and A ⊂ E a subset.
Then a ∈ A is called an

(i) internal point if for all x ∈ E there exists an εx > 0 such that a + δx ∈ A for
|δ| ≤ εx.

(ii) bounding point if a is neither an internal point of A nor of E \A.

Definition 5.3. Let A be a subset of a 2-normed linear space E, x a bounding
point of A and z ∈ E fixed. A 2-bounded linear 2-functional f on E × [z] is said to be
tangent to A at x along z if there exists a number c ∈ R such that Re f(A × [z]) ≤ c
and Re f(x, z) = c.

In order to prove Theorem 5.1 we need the following

Lemma 5.1. Let (E, ‖·, ·‖) be a 2-normed linear space over K, let 0 6= z ∈ E and
set A = {x ∈ E : ‖x, z‖ ≤ 1}. Then:

(i) x is an internal point of A if and only if ‖x, z‖ < 1
(ii) x is a bounding point of A if and only if ‖x, z‖ = 1.

Proof. If x is an internal point of A, then there exists εx > 0 such that x+εxx ∈ A
which gives ‖x + εxx, z‖ ≤ 1 and then ‖x, z‖ < 1. Conversely, let x be such that
‖x, z‖ < 1. Write ε = 1 − ‖x, z‖, let y ∈ E and choose δ such that |δ| ‖y, z‖ < 1

2ε.
Then ‖x + δy, z‖ < 1 − ε + 1

2ε < 1 and so x + δy ∈ A. Thus for all y ∈ E there exists
ε′x > 0 (ε′x = 1

2ε‖y, z‖ if ‖y, z‖ 6= 0) such that, for any δ with |δ| ≤ ε′x, x+δy ∈ A. Note
that when ‖y, z‖ = 0, then ‖x + δy, z‖ ≤ ‖x, z‖ < 1 for all δ ∈ C and so x + δy ∈ A.
Hence for all x such that ‖x, z‖ < 1, x is an internal point of A.

Let now x be an internal point of E \ A. Then, by the definition of A, ‖x, z‖ > 1.
Conversely, let ‖x, z‖ > 1. Let y ∈ E be such that ‖y, z‖ 6= 0 and define εy = ‖x,z‖−1

2‖y,z‖ .
Suppose, if possible, x + δy ∈ A for |δ| ≤ εy. Then ‖x + δy, z‖ ≤ 1 and we have

‖x, z‖ ≤ ‖x, z‖ − 1
2‖y, z‖ ‖y, z‖+ 1

which yields ‖x, z‖ ≤ 1, a result in contradiction to our hypothesis. Consequently,
x + δy ∈ E \ A for |δ| ≤ εy and then x is an internal point of E \ A. When y ∈ E
is such that ‖y, z‖ = 0, then y = αz for some α ∈ K. In this case, for any δ ∈ C,
‖x+ δy, z‖ = ‖x, z‖ > 1 which implies x+ δy ∈ E \A, and so also x is an internal point
of E \A.

From what we have established above and Definition 5.2 it is now clear that x is a
bounding point of A if and only if ‖x, z‖ = 1. This completes the proof
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Theorem 5.1. Let (E, ‖·, ·‖) be a 2-normed linear space over K, let 0 6= z ∈ E (to
avoid the trivial case) and set A = {x ∈ E : ‖x, z‖ ≤ 1}. If x is a bounding point of A,
then a 2-bounded linear 2-functional f on E × [z] with f(x, z) = 1 is tangent to A at x
along z if and only if

−T1+(x, z)(−y) ≤ Re f(y, z) ≤ T1+(x, z)(y) (5.1)

for all y ∈ E. Conversely, if x is a bounding point of A and y is any point in E such
that

−T1+(x, z)(−y) ≤ c ≤ T1+(x, z)(y) (5.2)

for some c ∈ R, then there exists a 2-bounded linear 2-functional f on E × [z] which is
tangent to A at x along z with f(x, z) = 1 and Re f(y, z) = c.

Proof. Let x be a bounding point of A and let f be a 2-bounded linear 2-functional
on E × [z] which is tangent to A at x along z with f(x, z) = 1. Then using Lemma 5.1
we have as ‖x, z‖ = 1

Re f(y, z) =
1 + Re hf(y, z)− 1

h

=
f(x, z) + Re f(hy, z)− ‖x, z‖

h

=
Re f(x + hy, z)− ‖x, z‖

h

≤ ‖x + hy, z‖ − ‖x, z‖
h

.

Taking limit as h → 0+, the above inequality gives

Re f(y, z) ≤ T1+(x, z)(y) (5.3)

for all y ∈ E. Clearly, then −T1+(x, z)(−y) ≤ Re f(y, z). Combining this with (5.3),
(5.1) follows.

Conversely, let f satisfy (5.1). Using Proposition 5.2/(i) we have Re f(y, z) ≤
T1+(x, z)(y) ≤ ‖y, z‖ ≤ 1 for y ∈ A. Thus f is such that f(x, z) = 1 and Re f(y, z) ≤ 1
for all y ∈ A and so f is tangent to A at x along z. This completes the proof of the first
part of the theorem.

Now let x be a bounding point of A and y ∈ E any point such that (5.2) holds. We
are required to prove that there is a 2-bounded linear 2-functional f on E × [z] such
that

f(x, z) = 1 = ‖x, z‖
Re f(y, z) = c

Re f(y′, z) ≤ 1 (y′ ∈ A)





. (5.4)

Consider the linear subspace [x, y] spanned by x and y.
Case 1: x, y linearly dependent. Write y = αx where α = |α|eiθ. Then [x, y] = [x]

and by Proposition 5.2/(v)-(vi)

T1+(x, z)(y) = |α| cos θT1+(x, z)(x) = |α| cos θ‖x, z‖ = |α| cos θ.
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Using Lemma 5.1, similarly we can show that

−T1+(x, z)(−y) = |α| cos θ.

Hypothesis (5.2) now clearly implies |α| cos θ = c. Define f0 on [x]× [z] by f0(ax, bz) =
ab. Then f0 is a linear 2-functional on [x] × [z] and 2-bounded with ‖f0‖ = 1, as
|f0(ax, bz)| = |a| |b| ‖x, z‖ = ‖ax, bz‖. Clearly, f0(x, z) = 1 and f0(y, z) = f0(αx, z) =
αf0(x, z) = |α|eiθ which gives Re f0(y, z) = |α| cos θ = c. Appealing to the extension
Theorem 4.1, we get a 2-bounded linear 2-functional f on E × [z] such that ‖f‖ = 1,
f(ax, bz) = f0(ax, bz) = ab for all (ax, bz) ∈ [x] × [z]. This establishes that we have a
2-bounded linear 2-functional f on E × [z] such that (5.4)1−2 hold. For y′ ∈ A we have
|f(y′, z)| ≤ ‖f‖ ‖y′, z‖ ≤ 1 and (5.4)3 follows.

Case 2: x, y linearly independent. Then define f1 on [x, y]R by

f1(αx + βy) = α + βc (α, β ∈ R).

This is a real linear functional on [x, y]R. Define p on [x, y, ix, iy]R by

p
(
αx + βy + iγx + iδy

)
=

∥∥(α + iγ)x + (β + iδ)y, z
∥∥ (α, β, γ, δ ∈ R).

Then p is a semi-norm on [x, y, ix, iy]R. We claim that

|f1(αx + βy)| ≤ p(αx + βy) (α, β ∈ R).

Equivalently, we show that

|α + βc| ≤ ‖αx + βy, z‖ (α, β ∈ R). (5.5)

For α = 0, (5.5) is |β| |c| ≤ |β| ‖y, z‖ which for β = 0 is trivially true and for β 6= 0
can be written as |c| ≤ ‖y, z‖. Suppose, if possible, that |c| > ‖y, z‖. Then, using the
second half of Proposition 5.2/(i) and hypothesis (5.2), |c| > T1+(x, z)(y) ≥ c, that is,
|c| > c which implies that c is negative and can be written as c = −d where d > 0.
Then d > ‖y, z‖ = ‖ − y, z‖ ≥ T1+(x, z)(−y) and therefore c < −T1+(x, z)(−y). By
hypothesis −T1+(x, z)(−y) ≤ c and so c < c which is impossible. Thus we have shown
that if α = 0, then (5.5) holds for every β ∈ R.

Let now α 6= 0. Then (5.5) is equivalent to |1 + β
αc| ≤ ‖x + β

αy, z‖ for every β ∈ R.
Thus in order to establish (5.5) it is sufficient to show that

|1 + γc| ≤ ‖x + γy, z‖ (γ ∈ R).

If γ = 0, this holds trivially as ‖x, z‖ = 1. Now let γ 6= 0 and suppose that the inequality
we have to show is false. Then there exists γ 6= 0 such that

|1 + γc| − 1 > ‖x + γy, z‖ − ‖x, z‖. (5.6)

For γ > 0, using the fact that

T1+(x, z)(y) = inf
h>0

‖x + hy, z‖ − ‖x, z‖
h

,
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(5.6) implies
|1 + γc| − 1 > γT1+(x, z)(y) ≥ γc,

that is |1 + γc| > 1 + γc. For γ < 0, (5.6) implies

|1 + γc| − 1 > −γT1+(x, z)(−y) ≥ (−γ)(−c),

that is |1 + γc| > 1 + γc again. Thus whether γ > 0 or γ < 0, always |1 + γc| > 1 + γc
which implies 1 + γc < 0. Hence |1 + γc| > ‖x + γy, z‖ which first implies −1 − γc >
|γ| ‖y, z‖ − ‖x, z‖ and then, using Proposition 5.2(i) and (5.2),

−γc > |γ| ‖y, z‖ ≥ |γ|T1+(x, z)(y) ≥ |γ|c

which is possible only if c < 0. Again observe that

−γc > |γ| ‖y, z‖ = |γ| ‖ − y, z‖ ≥ |γ|T1+(x, z)(−y) ≥ −|γ|c,

that is, γ(−c) > |γ|(−c) which implies that γ > |γ| as c < 0. But this inequality cannot
hold. Hence (5.5) is true for every α, β ∈ R, that is, f1 is a real linear functional on
[x, y]R satisfying

|f1(αx + βy)| ≤ p(αx + βy) (α, β ∈ R).

Appealing to the Hahn-Banach theorem we get a real linear functional f2 on [x, y, ix, iy]R
satisfying

f2(αx + βy) = f1(αx + βy) = α + βc

|f2(αx + βy + iγx + iδy)| ≤ p(αx + βy + iγx + iδy)

}
(α, β, γ, δ ∈ R), (5.7)

that is
|f2(αx + βy)| ≤ ‖αx + βy, z‖ (α, β ∈ C). (5.8)

Define now f3 on [x, y] by
f3(u) = f2(u)− if2(iu).

This is a complex linear functional on [x, y], and for u ∈ [x, y], if f3(u) = eiθ|f3(u)|, we
have

|f3(u)| = e−iθf3(u) = f3(e−iθu) = f2(e−iθu) ≤ ‖e−iθu, z‖
using (5.8). Hence

|f3(u)| ≤ ‖u, z‖ (u ∈ [x, y]). (5.9)

Now define f0 on [x, y]× [z] by

f0(αx + βy, γz) = γf3(αx + βy) (α, β, γ ∈ C). (5.10)

Then f0 is a complex linear 2-functional on [x, y]× [z] and

f3(x) = f2(x)− if2(ix) = 1− if2(ix)
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as f2(x) = 1 by (5.7). Using (5.9) we get

|f3(x)| =
√

1 + f2
2 (ix) ≤ ‖x, z‖ = 1

which implies that f2(ix) = 0 and so f3(x) = 1. Hence

f0(x, z) = f3(x) = ‖x, z‖ = 1

Re f0(y, z) = Re f3(y) = f2(y) = c (by (5.7), (5.10))

|f0(αx + βy, γz)| = |γ| |f3(αx + βy)| ≤ ‖αx + βy, γz‖ (by (5.9), (5.10))





(5.11)

for every α, β, γ ∈ C. It is now clear that f0 is a 2-bounded linear 2-functional on
[x, y] × [z] and ‖f0‖ = 1. Appealing to Theorem 4.1 we get a 2-bounded linear 2-
functional f on E × [z] such that ‖f‖ = 1 and f(αx + βy, γz) = f0(αx + βy, γz).
Furthermore, f(x, z) = f0(x, z) = 1 using (5.11)1, Re f(y, z) = Re f0(y, z) = c using
(5.11)2, and |f(u, γz)| ≤ ‖u, γz‖ for every (u, γz) ∈ E × [z]. Thus for every u ∈ A,
|f(u, z)| ≤ 1 and it follows that f is tangent to A at x along z with f(x, z) = 1 and
Re f(y, z) = c. This completes the proof of the theorem

The following example illustrates Theorem 5.1.

Example 5.1. Consider the space (R3, ‖·, ·‖) where for x = (x1, x2, x3) and y =
(y1, y2, y3)

‖x, y‖ =
√

(x2
1 + x2

2 + x2
3)(y

2
1 + y2

2 + y2
3)− (x1y1 + x2y2 + x3y3)2.

Write e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) and take z = e3. Then

A = {x ∈ E : ‖x, z‖ ≤ 1} = {x ∈ R3 : x2
1 + x2

2 ≤ 1}

which is the right circular cylinder with its axis along the direction of e3 and radius 1.
A point of the type x = (sin θ, cos θ, x3) (θ ∈ [0, 2π]) is a bounding point for A (see
Lemma 5.1) as ‖x, z‖ =

√
x2

1 + x2
2 = 1. Note that here x is any point on the surface of

the cylinder A.
We now construct a 2-bounded linear 2-functional f on R3× [z] with ‖f‖ > 0. Write

f(e1, e3) = a and f(e2, e3) = b where 0 6= a, b ∈ R. For α ∈ R and x = (x1, x2, x3) ∈ R3

define
f(x, αz) = α(x1a + x2b).

Note that f is a linear 2-functional on R3× [z]. We claim that ‖f‖ =
√

a2 + b2. Observe
that

|f(x, αz)| ≤ |α|
√

x2
1 + x2

2

√
a2 + b2 =

√
a2 + b2‖x, αz‖

and therefore f is a 2-bounded linear 2-functional with ‖f‖ ≤ √
a2 + b2. Taking x1 = a

and x2 = b we have

|f(x, z)| = a2 + b2 ≤ ‖f‖ ‖x, z‖ =
√

a2 + b2‖f‖
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and therefore
√

a2 + b2 ≤ ‖f‖. Thus it follows that ‖f‖ =
√

a2 + b2 > 0.

Now write a = γ sin ϕ and b = γ cosϕ for some ϕ ∈ [0, 2π]. Then

f(x, αz) = αγ(x1 sinϕ + x2 cos ϕ) (5.12)

is the required 2-bounded linear 2-functional on R3 × [z] with ‖f‖ =
√

a2 + b2 = γ > 0.
For the bounding point x = (sin θ, cos θ, x3) of A and y = (y1, y2, y3) ∈ R3 we have

‖x + hy, z‖ =
√

(sin θ + hy1)2 + (cos θ + hy2)2

=
√

[1 + 2h(y1 sin θ + y2 cos θ) + terms involving higher powers of h]

and therefore (remember that ‖x, z‖ = 1)

T1+(x, z)(y) = lim
h→0+

‖x + hy, z‖ − ‖x, z‖
h

= y1 sin θ + y2 cos θ.

Thus
T1+(x, z)(y) = y1 sin θ + y2 cos θ

T1+(x, z)(−y) = −y1 sin θ − y2 cos θ

}
. (5.13)

Let now x = (sin θ, cos θ, x3) (θ ∈ [0, 2π], x3 ∈ R) be a bounding point of A, and
let f(x, z) = 1. Then from (5.12) we get cos(ϕ − θ) = 1

γ . Suppose now that f is
tangent to A at x along z. Then, for every y = (y1, y2, y3) ∈ A, f(y, z) ≤ 1 or
γ(y1 sin ϕ + y2 cosϕ) ≤ 1. The second inequality is in particular true for y1 = sin ϕ and
y2 = cos ϕ as (sin ϕ, cos ϕ, y3) ∈ A for every y3 ∈ R. Consequently, γ ≤ 1 which in view
of cos(ϕ− θ) = 1

γ implies cos(ϕ− θ) ≥ 1. As we always have cos(ϕ− θ) ≤ 1, it follows
cos(ϕ− θ) = 1

γ = 1, that is, γ = 1. Hence ‖f‖ = γ = 1 and ϕ− θ = 2nπ where n ∈ Z.
Using (5.12) we get f(y, z) = y1 sin θ + y2 cos θ and then from (5.13) it follows that

−T1+(x, z)(−y) = f(y, z) = T1+(x, z)(y) (y ∈ R3).

Note that for the right circular cylinder y2
1 +y2

2 = 1 the tangent plane at (sin θ, cos θ, x3)
(the bounding point of A) is y1 sin θ + y2 cos θ = 1.

Now let f be a 2-bounded linear 2-functional on R3 × [z] with f(x, z) = 1 and

−T1+(x, z)(−y) ≤ f(y, z) ≤ T1+(x, z)(y) (y ∈ R3). (5.14)

We have already seen that f(x, z) = 1 implies cos(ϕ − θ) = 1
γ . From (5.12) - (5.14) it

follows that

y1 sin θ + y2 cos θ = γ(y1 sin ϕ + y2 cos ϕ)
(
y = (y1, y2, y3) ∈ R3

)
.

Choosing y1 = sin ϕ, y2 = cos ϕ and any y3 ∈ R, we have cos(ϕ−θ) = γ. From here and
cos(ϕ−θ) = 1

γ it follows that γ = 1, and so ‖f‖ = 1 and ϕ = 2nπ+θ where n ∈ Z. From



Complex 2-Normed Linear Spaces 51

(5.12) we have immediately f(y, z) = y1 sin θ + y2 cos θ and so for y = (y1, y2, y3) ∈ A,
that is for

√
y2
1 + y2

2 ≤ 1,

f(y, z) = y1 sin θ + y2 cos θ =
√

y2
1 + y2

2 sin(θ + ψ) ≤ 1

where cos ψ = y1/
√

y2
1 + y2

2 and sin ψ = y2/
√

y2
1 + y2

2 . Thus we have shown that the
2-bounded linear 2-functional f on R3 × [z] with f(x, z) = 1 and satisfying (5.14) for
every y ∈ R3 satisfies f(y, z) ≤ 1 for every y ∈ A. Hence f is tangent to A at x along
z. This completes the illustration of the first part of the theorem.

We now illustrate the converse part of the theorem. Hypothesis (5.2) in view of
(5.13) implies that y1 sin θ+y2 cos θ = c. Now consider the 2-bounded linear 2-functional
f from R3 × [z] defined by

f(y′, αz) = α(y′1 sin θ + y′2 cos θ) (5.15)

for every y′ = (y′1, y
′
2, y

′
3) ∈ R3. Then

f(y, z) = y1 sin θ + y2 cos θ = c

f(x, z) = sin2 θ + cos2 θ = 1

}

and for y′ ∈ A, that is for
√

y′21 + y′22 ≤ 1,

f(y′, z) = y′1 sin θ + y′2 cos θ =
√

y′21 + y′22 sin(θ + ψ) ≤ 1

where cos ψ = y′1/
√

y′21 + y′22 and sin ψ = y′2/
√

y′21 + y′22 . Thus, if x is a bounding
point of A and y is any point in R3 such that (5.2) holds, then the 2-bounded linear
2-functional f defined by (5.15) on R3× [z] is tangent to A at x along z with f(x, z) = 1
and f(y, z) = c. This completes the illustration of the theorem
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