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A Sequence of Integro-Differential Equations
Approximating a

Viscous Porous Medium Equation

K. Oelschläger

Abstract. We consider a sequence of particular integro-differential equations, whose solutions
ρN converge as N → ∞ to the solution ρ of a viscous porous medium equation. First, it is
demonstrated that under suitable regularity conditions the functions ρN are smooth uniformly
in N ∈ N. Furthermore, an asymptotic expansion for ρN as N → ∞ is provided, which
precisely describes the convergence to ρ. The results of this paper are needed in particular for
the numerical simulation of a viscous porous medium equation by a particle method.
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1. Introduction

In this paper we study the solutions ρN (N ∈ N) of some sequence of particular integro-
differential equations, namely

∂tρN (x, t) = 1
2∆ρN (x, t) +∇ · (ρN (x, t)∇(ρN (·, t) ∗ φN )(x)

)

ρN (x, 0) = ρ0(x)

}
(

t≥0
x∈Rd

)
(1.1)

where ∗ denotes convolution. For different N the equations in (1.1) differ in the inter-
action kernel φN . We suppose

φN (x) = θd
Nφ1(θNx) (x ∈ Rd, N ∈ N) (1.2)

where φ1 is some smooth, symmetric probability density, i.e.,

φ1 ∈ C∞b (Rd) with φ1 ≥ 0,

∫

Rd

dxφ1(x) = 1, φ1(x) = φ1(−x) (x ∈ Rd) (1.3)

and the scaling coefficients θN satisfy

lim
N→∞

θN = ∞. (1.4)
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Additionally, we assume that the initial state ρ0 of ρN is non-negative and smooth.
We are interested in the regularity of the functions ρN and in their asymptotics as

N →∞. In particular, we shall demonstrate that regularity holds uniformly in N ∈ N.
Moreover, we shall provide an expansion representing ρN as N → ∞. As far as the
asymptotics is concerned, we note that (1.2) - (1.4) yield limN→∞ φN = δ0 in S(Rd),
where δa is Dirac’s delta function concentrated at a ∈ Rd. Therefore, from (1.1) we
formally obtain the convergence of ρN to the solution ρ of

∂tρ(x, t) = 1
2∆ρ(x, t) +∇ · (ρ(x, t)∇ρ(x, t)

)

= 1
2∆ρ(x, t) + 1

2∆ρ2(x, t)

ρ(x, 0) = ρ0(x)





(t ≥ 0, x ∈ Rd). (1.5)

The partial differential equation (1.5) is a simple nonlinear reaction-diffusion equa-
tion, namely a porous medium equation with an additional linear viscous term. Results
of classical analysis imply that the regularity properties of ρ0 are preserved by (1.5), i.e.,
its solution ρ(·, t) is non-negative and smooth for any t ≥ 0 (cf. Remark (i) in Section
2). Our considerations will show that uniformly in N ∈ N the functions ρN are also
non-negative and smooth. These regularity properties will turn out to be essential for
the derivation of the asymptotic expansion

ρN ' ρ + θ−2
N ρ{1} + θ−4

N ρ{2} + . . . (N large) (1.6)

where ρ{1}, ρ{2}, . . . are smooth, too. In particular, (1.6) specifies the rate of convergence
of ρN to ρ.

The present paper is part of a more extensive study of general systems of reaction-
diffusion equations extending the simple example (1.5). Such systems are often used
as mathematical models for the time evolution of large collections of many components
or particles, which belong to a few different species, such that within each species the
components are of the same kind. Typical examples arise in population biology, fluid dy-
namics or in spatially inhomogeneous, reacting chemical systems. In these cases systems
of reaction-diffusion equations serve as models for particular many-particle systems with
interaction, and they typically describe the dynamics of population-, mass-, velocity- or
energy densities.

To study the correctness of these models we derived convergence results for the
empirical processes of several types of mathematically idealized many-particle systems.
In our studies particular emphasis was given to so-called moderately interacting many-
particle systems, which are characterized by the property that the range of the interac-
tion between the particles is both large in comparison to the typical distance between
neighbouring particles and small with respect to the size of the whole system (cf. [9 -
13]). In these papers the respective dynamics of the particle positions is given in terms
of coupled stochastic differential equations (cf. [9 - 11]) or ordinary differential equations
(cf. [12, 13]). As central objects of our investigations we chose the empirical processes
of the various species, which for any time give equal positive mass to the positions of
the particles of the respective species. Aiming at a characterization of the empirical
processes for large particle numbers we introduced for any N ∈ N one particular many-
particle system consisting of approximately N particles. To retain finiteness of the



A Sequence of Integro-Differential Equations 57

empirical processes as N →∞ we also defined the mass of individual particles as 1
N . As

result we demonstrate in [9 - 13] the convergence of the measure-valued empirical pro-
cesses to the components of the solution of some particular system of reaction-diffusion
equations.

We note that equation (1.5) appears in [9, 10] as limit dynamics. The time evolution
of the positions Xk

N (·) (k = 1, . . . , N) of the particles in the associated N -particle system
is defined by

dXk
N (t) = − 1

N

N∑

l=1

∇κN

(
Xk

N (t)−X l
N (t)

)
dt + dW k(t) (k = 1, . . . , N). (1.7)

Here W k denote independent, standard Rd-valued Brownian motions. Moreover, the
interaction potential κN is obtained by the scaling

κN (x) = Nβκ1(Nβ/dx) (x ∈ Rd, N ∈ N) (1.8)

from a fixed function κ1, which has the same properties as φ1 (cf. (1.3)). In the sys-
tem with N particles the typical distance between neighbouring particles is O(N− 1

d ),
whereas the size of the whole system is O(1) as N → ∞. Therefore, to match the
above mentioned characterization of moderate interaction we suppose β ∈ (0, 1) for the
scaling parameter β. We note that the empirical processes for the N -particle systems(
(X1

N (·), . . . , XN
N (·)), which as indicated above converge to the solution ρ of (1.5) as

N →∞, are given by

t → XN (t) = 1
N

N∑

k=1

δXk
N

(t) (t ≥ 0, N ∈ N),

i.e., they take values in the space of probability measures on Rd.
The convergence results in [9 - 13] suggest to utilize particle methods based on the

many-particle systems in those papers to solve or simulate the corresponding systems
of reaction-diffusion equations numerically. The analysis of such simulations, in partic-
ular, of their convergence properties, leads to additional problems, which are related to
discretizations of space and/or time. Those problems did not arise in [9 - 13], where
by working with finitely many particles only the mass of the respective populations is
discretized.

To handle such problems related to the numerical simulation of moderately inter-
acting many-particle systems in a less complicated example we investigate in [15] a
particle-method based on (1.7) in order to solve (1.5). In the analysis of the simulation
procedure the solutions ρN of (1.1) appear as auxiliary functions, which are used as
intermediate objects between the empirical processes of the many-particle systems and
their limit ρ. In particular, both main results of the present paper, i.e., the regularity
of ρN uniformly in N and expansion (1.6), are needed in [15].

It is expected that analogues of our results here also hold for extensions of (1.1),
which are related to systems (S) of reaction-diffusion equations like those appearing in
[11]. Hence, for any such system (S) we may find a sequence of systems (SN ) (N ∈ N)
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of integro-differential equations, whose solutions ρN are smooth uniformly in N ∈ N,
and admit an expansion like (1.6), where now ρ solves (S).

In the literature many more contributions on the derivation of (1.5) or closely related
partial differential equations as limit dynamics of interacting many-particle systems are
available. For example, in [16] or in an extension [2] a modification of (1.7) with short-
range interaction corresponding to the case β = 1 is studied in the limit N → ∞, i.e.,
in the hydrodynamic limit. In these papers the limit dynamics is given by

∂tρ = ∇ · (D(ρ)∇ρ
)
, (1.9)

which is a generalized porous medium equation. The functional D is determined in the
framework of statistical physics and, in particular, depends on details of the interaction
potential corresponding to the function κ1 in (1.8). Other interacting many-particle
systems, especially systems on a discrete lattice like Zd, which also have partial differ-
ential equations like (1.9) as limit dynamics, are discussed in [7]. In particular, that
book contains an exhaustive bibliography on the subject of interacting many-particle
systems.

We conclude this introduction by presenting some notation, which will be utilized
later on. In particular, we shall employ the summation convention, i.e., indices appear-
ing twice in a product are summed from 1 to d.

We denote by C,C ′, . . . positive, finite constants, which may vary from place to
place. In general, these constants are independent of N or other variables being involved
in the respective calculations. If however the dependence on particular parameters
α1, . . . , αM is to be emphasized, the notation C(α1, . . . , αM ) is employed. To be able
to refer to particular constants later in calculations we also use C1(. . .), C2(. . .), . . . .
Without explicit hints we shall apply the notations | · | and ‖ · ‖... for norms of both R-
and Rn-valued objects, where n > 1. For example,

‖∇⊗mf‖2 =
( ∫

Rd

dx |∇⊗mf(x)|2
) 1

2

=

( ∫

Rd

dx

d∑

i1,...,im=1

∣∣∣ ∂m

∂i1 · · · ∂im

f(x)
∣∣∣
2
) 1

2

=

(
d∑

i1,...,im=1

∥∥∥ ∂m

∂i1 · · · ∂im

f
∥∥∥

2

2

) 1
2

denotes the L2-norm of the tensor of all partial derivatives of order m of some sufficiently
smooth and integrable real-valued function f on Rd.

To quantify regularity properties of real-valued functions we primarily shall utilize
Sobolev norms given by

‖f‖(k) =
( k∑

m=0

‖∇⊗mf‖22
) 1

2

(k ∈ N0) (1.10)
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for any f , where the right side is well defined. The corresponding Sobolev spaces are

H2
k(Rd) =

{
f : Rd → R| ‖f‖(k) < ∞}

.

Additionally, certain weighted Sobolev norms, namely

‖f‖(k,α) =
( k∑

m=0

∫

Rd

dy (1 + |y|α)|∇⊗mf(y)|2
) 1

2

(k ∈ N0, α > 0) (1.11)

are used. We note that L∞-norms may be estimated by employing Sobolev’s inequality

m∑
r=0

‖∇⊗rf‖∞ ≤ C(d,m, p)‖f‖(p+m)

(
f ∈ H2

p+m(Rd), m ∈ N0, p > d
2

)
. (1.12)

Furthermore, by [1: Theorem 2.21] we conclude that

a sequence fn : Rd → R (n ∈ N) satisfying supn∈N‖fn‖(k+1,α) < ∞
for some k ∈ N0 and some α > 0 is relatively compact in H2

k(Rd)

}
. (1.13)

To simplify our calculations involving norms ‖ · ‖(k) we often shall utilize the relations

‖f‖(k) ≤
{

C1(k)
(‖f‖22 + ‖(−∆)

k
2 f‖22

) 1
2 if k is even

C1(k)
(‖f‖22 + ‖∇(−∆)

k−1
2 f‖22

) 1
2 if k is odd.

(1.14)

As abbreviation for integrals we occasionally shall apply the notation

〈f, g〉 =
∫

Rd

dx f(x)g(x),

whenever the right side is well-defined for functions f and g.
In the next section we shall present our results. Their proofs can be found in Section

3. Finally, two appendices in Sections 4 and 5 contain a formal derivation of expansion
(1.6) and the proof of (3.63), respectively.

2. Results

Before presenting the precise formulation of our results, we mention some assumptions
about φ1, which according to (1.2) is the basis for the interaction kernels φN , and the
initial state ρ0 of the solutions ρN (N ∈ N) and ρ of (1.1) and (1.5), respectively. φ1

is supposed to be a convolution product

φ1 = φr
1 ∗ φr

1 (2.1)

where φr
1 is a smooth, symmetric probability density, i.e.,

φr
1 ∈ C∞b (Rd) with φr

1 ≥ 0,

∫

Rd

dxφr
1(x) = 1, φr

1(x) = φr
1(−x) (x ∈ Rd). (2.2)
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Furthermore, we assume that φ1 has bounded moments of all orders, i.e.,
∫

Rd

dx |x|mφ1(x) < ∞ (m ∈ N). (2.3)

Obviously, (1.3) is an immediate consequence of (2.1) and (2.2). Analogously to (1.2)
we also introduce rescaled versions of φr

1, namely

φr
N (x) = θd

Nφr
1(θNx) (x ∈ Rd, N ∈ N). (2.4)

The functions φr
N (N ∈ N) satisfy similar relations as φr

1, namely

φr
N ∈ C∞b (Rd), φr

N ≥ 0,

∫

Rd

dx φr
N (x) = 1, φr

N (x) = φr
N (−x) (x ∈ Rd) (2.5)

and
φN = φr

N ∗ φr
N (N ∈ N) (2.6)

which immediately follow from (1.2), (2.1), (2.2) and (2.4).
As far as the initial state of ρ and ρN (N ∈ N) is concerned, we suppose that ρ0 is

a smooth probability density, i.e.,

ρ0 ≥ 0,

∫

Rd

dx ρ0(x) = 1 (2.7)

‖ρ0‖(m,1) < ∞ (m ∈ N0). (2.8)

We remark that (2.7) is assumed in view of the application of the results of the present
paper in [15], where this assumption also appears. Whereas the positivity of ρ0 is
essential for our calculations, e.g., for the derivation of the positivity of ρN (·, t) (t ≥
0, N ∈ N; cf. (2.11)), the second part of (2.7) is only a normalization condition, which
might be replaced by

∫
Rd dx ρ0(x) < ∞. The regularity hypothesis (2.8), which by

(1.10) - (1.12) yields
ρ0 ∈ C∞b (Rd), (2.9)

would not be needed in this strength. However, it allows to work in a C∞-environment,
where essentially all functions related to ρN or ρ are arbitrarily smooth.

Now, we may formulate our result about uniform regularity of the functions ρN (N
∈ N).

Theorem 1. Suppose that the interaction kernels φN (N ∈ N) are determined by
(1.2), (1.4) and (2.1)− (2.3). Moreover, assume that the initial state ρ0 of (1.1) satisfies
(2.7)− (2.8). Then, for any N ∈ N there exists a unique solution ρN of (1.1) satisfying

ρN ∈ C∞b (Rd × [0, T ]) (T > 0, N ∈ N). (2.10)

For any fixed time these functions ρN are probability densities, i.e.,

ρN (·, t) ≥ 0,

∫

Rd

dx ρN (x, t) = 1 (t ≥ 0, N ∈ N). (2.11)
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Furthermore, they are regular uniformly in N ∈ N, i.e.,

sup
t≤T,N∈N

‖ρN (·, t)‖(m,1) < ∞ (m ∈ N0, T > 0) (2.12)

and therefore

sup
x∈Rd,t≤T,N∈N

∣∣∇⊗m∂k
t ρN (x, t)

∣∣ < ∞ (m, k ∈ N0, T > 0). (2.13)

To demonstrate a simple convergence of ρN to the solution ρ of (1.5) as N → ∞,
we can apply (1.1) - (1.4), (2.10) and (2.13). However, for our considerations in [15] we
need more information about that convergence. This additional knowledge is provided
by

Theorem 2. For N ∈ N let ρN be the solution of (1.1), where the initial state ρ0

and the interaction kernel φN satisfy the same conditions as in Theorem 1. Then, there
exist functions ρ{r} ∈ C∞(Rd × [0,∞)) (r ∈ N) such that

ρ{r} ∈ C∞b (Rd × [0, T ]) (T > 0, r ∈ N) (2.14)

which solve

∂tρ{r}(x, t) =
(Lρ,tρ{r}(·, t)

)
(x) + Gr(ρ, ρ{1}, . . . , ρ{r−1}, x, t)

ρ{r}(x, 0) = 0
(
x ∈ Rd, t ≥ 0, r ∈ N)

}
(2.15)

where
(Lρ,tf)(x) = 1

2∆f(x) +∇ · (f(x)∇ρ(x, t)
)

+∇ · (ρ(x, t)∇f
)

(
x ∈ Rd, t ≥ 0, f ∈ C2

b (Rd)
) (2.16)

and

Gr

(
ρ, ρ{1}, . . . , ρ{r−1}, x, t

)
= (2.17)

∑
p,q=0,1,...,r−1

p+q≤r

∑
0≤l1,...,ld≤2(r−p−q)
l1+...+ld=2(r−p−q)

σ∗(l1, . . . , ld;φ1)∇·
(

ρ{p}(x, t)∇∂2(r−p−q)

∂l1
1 · · · ∂ld

d

ρ{q}(x, t)
)

(
x ∈ Rd, t ≥ 0, r ∈ N)

.

In (2.15)− (2.17) the function ρ = ρ{0} is the solution of (1.5). Moreover, we employed

σ∗(l1, ..., ld;φ1) = 1
l1!···ld!

∫

Rd

dy yl1
1 · · · yld

d φ1(y) (l1, ..., ld ∈ N0). (2.18)

Using ρ, ρ{1}, ρ{2}, . . . we can expand ρN as in (1.6). More precisely, for any L ∈ N0

we get

sup
x∈Rd,t≤T,N∈N

θ2L+2
N

∣∣∣∣∇⊗m∂k
t

(
ρN (x, t)− ρ(x, t)−

L∑
r=1

θ−2r
N ρ{r}(x, t)

)∣∣∣∣ < ∞ (2.19)
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for m, k ∈ N0 and T > 0.

Remarks.

(i) The limit dynamics (1.5) with the initial state ρ0 satisfying (2.7) - (2.8) repre-
sents a simple nonlinear parabolic problem and may be handled quite well by classical
methods, which can be found, e.g., in [5, 8]. In particular, by using existence and
uniqueness theorems for classical solutions of parabolic equations and the maximum
principle it can be verified that (1.5) has a unique smooth solution ρ with

ρ ∈ C∞b (Rd × [0, T ]) (T > 0) (2.20)

such that for any t the function ρ(·, t) is a probability density, i.e.,

ρ(·, t) ≥ 0,

∫

Rd

dx ρ(x, t) = 1 (t ≥ 0). (2.21)

Furthermore, we observe

‖(−∆)mρ(·, t)‖22 = 〈(−∆)2mρ(·, t), ρ(·, t)〉
≤ ‖(−∆)2mρ(·, t)‖∞〈ρ(·, t), 1〉 (m ∈ N0, t ≥ 0). (2.22)

To justify the neglect of the boundary terms in integration by parts in (2.22) we may
replace for fixed t ≥ 0 the function ρ(·, t) by ρ[η](·, t) = ρ(·, t)ψη(·), where ψη(x) =
ψ0(|x| − η) (x ∈ Rd, η ≥ 1) with ψ0 ∈ C∞b (R), ψ′0 ≤ 0, ψ0(u) = 1 if u ≤ 0 and
ψ0(u) = 0 if u ≥ 1. Obviously, since ρ[η](x, t) = 0, if |x| ≥ η+1, the arguments in (2.22)
hold for ρ[η](·, t), and also with (2.20) and (2.21) imply

sup
η≥1

‖(−∆)mρ[η](·, t)‖2 < ∞ (m ∈ N0).

Since
lim

η→∞
∇⊗mρ[η](x, t) = ∇⊗mρ(x, t) (x ∈ Rd,m ∈ N0)

the validity of (2.22) for ρ(·, t) follows in the limit η → ∞. Now, (1.14) and (2.20) -
(2.22) imply

sup
t≤T

‖ρ(·, t)‖(m) < ∞ (m ∈ N0, T > 0). (2.23)

(ii) The N -dependent nonlinear integro-differential equations in (1.1) are McKean-
Vlasov equations as considered, e.g., in [6]. The results in that paper ensure for fixed
N ∈ N the unique existence of a weak, i.e., measure-valued solution ρN = ρN (t) (t ≥ 0)
of (1.1). In particular, since ρ0 is a probability density (cf. (2.7)), ρN is associated
to the solution XN = XN (t) (t ≥ 0) of a nonlinear martingale problem, i.e., ρN (t)
coincides with the law of XN (t) for any t ≥ 0. Consequently, ρN takes values in the
space of probability measures, i.e.,

〈ρN (t), 1〉 = 1, 〈ρN (t), f〉 ≥ 0
(
f ∈ L∞(Rd), f ≥ 0, t ≥ 0

)
. (2.24)
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By these relations and the smoothness of φN (cf. (1.2) - (1.3)) the drift vector ∇(ρN (t)∗
φN )(x) (x ∈ Rd, t ≥ 0) in (1.1) and its partial derivatives of all orders are bounded
uniformly in x ∈ Rd and t ≥ 0 independently of further regularity properties of ρN .
Therefore, (2.9) and in particular the fact that 1

2∆−∂t, which determines the principal
part of (1.1), has a Gaussian fundamental solution (cf. (3.35)) imply that the measure
ρN (t) is absolutely continuous with respect to Lebesgue measure for any t ≥ 0 and also
satisfies the smoothness property (2.10). Of course, (2.11) then immediately follows
from (2.24).

(iii) For the function φ1, which determines the interaction kernel φN , we use only
a few assumptions, namely (2.1) - (2.3). However, in our considerations in [15] apart
from the results of the present paper further ingredients from [9 - 13] are employed.
As a consequence, additional regularity properties of φ1 have to be supposed in that
paper. As far as the calculations here are concerned, the presence of the diffusive term
∆ρN (x, t) in (1.1) will turn out to be very advantageous. In particular, to estimate the
right sides of (3.2) - (3.3), which is a crucial part of the proofs of our results, we obtain
contributions (3.4) and (3.14), which ultimately allow to use for fixed m the L2-norms
of ∇(−∆)mρN (·, t) and ∇(−∆)m(ρN (·, t)∗φr

N ), respectively, in the remaining estimates
of the terms on the right sides of (3.2) and (3.3). As a consequence, calculations like
those in [12: Section 4/(ii)], which would necessitate further regularity properties of φ1,
are not required in the present paper.

(iv) Also, as a consequence of the diffusive part ∆ρN (x, t) in (1.1) it is expected
that ρN is smooth for t > 0, even if the initial state ρ0 is not regular at all. However,
then results holding uniformly in t ∈ [0, T ] (T > 0), like (2.12), (2.13) and (2.19) cannot
be valid any more.

(v) Of course, it would be interesting to consider also the non-diffusive case, where
1
2∆ρN (x, t) is missing in (1.1), and to look for appropriate extensions of Theorems 1 -
3. An exact application of the analysis of the present paper obviously is not feasible in
that situation, cf. e.g. the derivation of (3.23). Nevertheless, it should be possible to
find a suitable modification of our method, at least if the considerations are restricted
to a sufficiently small finite time interval, and if additional assumptions on ρ0 and φ1

are used. This presumption is supported in particular by the results in [14], where the
convergence of another sequence of integro-differential equations without diffusion to a
nonlinear wave equation is proved. In the considerations in [14] it is essential that the
limit dynamics is hyperbolic, i.e., like the parabolic partial differential equation (1.5)
possesses certain regularity properties.

(vi) The smoothness of φr
1 (cf. (2.2)) ensures unique existence of a smooth solution

ρN of (1.1) for any fixed N ∈ N (cf. Remark (ii)). On the other hand, the calculations
in the proofs of Theorems 1 and 2 turn out to be completely independent of smoothness
properties of φr

1 or φ1. This observation can be employed to deduce the subsequent
extension of our previous results to more general interaction kernels.

Theorem 3. Suppose that the interaction kernels φN (N ∈ N) are determined by
(1.2), (1.4), (2.1), (2.3) and

φr
1 ≥ 0,

∫

Rd

dx φr
1(x) = 1, φr

1(x) = φr
1(−x) (x ∈ Rd) (2.2)∗
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instead of (2.2). Furthermore, assume that ρ0 satisfies (2.7) − (2.8). Then, for any
T ′ > 0 some N(T ′) ∈ N may be chosen, such that for N ≥ N(T ′) there exists a unique
solution ρN of (1.1) in [0, T ′] satisfying

ρN ∈ C∞b (Rd × [0, T ′])
(
N ≥ N(T ′)

)
(2.25)

and

ρN (·, t) ≥ 0,

∫

Rd

dx ρN (x, t) = 1
(
t ∈ [0, T ′], N ≥ N(T ′)

)
. (2.26)

These functions are regular uniformly in N ≥ N(T ′), i.e.,

sup
t≤T ′,N≥N(T ′)

‖ρN (·, t)‖(m,1) < ∞ (m ∈ N0) (2.27)

and therefore

sup
x∈Rd,t≤T ′,N≥N(T ′)

|∇⊗m∂k
t ρN (x, t)| < ∞ (m, k ∈ N0). (2.28)

Moreover, for L ∈ N0 they may be expanded as

sup
x∈Rd

t≤T ′,N≥N(T ′)

θ2L+2
N

∣∣∣∣∇⊗m∂k
t

(
ρN (x, t)− ρ(x, t)−

L∑
r=1

θ−2r
N ρ{r}(x, t)

)∣∣∣∣ < ∞ (2.29)

for m, k ∈ N0, where ρ, ρ{1}, ρ{2}, ... are described in Theorem 2.

As final part of this section we state an auxiliary result needed for the proof of
Theorem 2. It will be used, in particular, to clarify the relation between the term
∇(ρN (·, t) ∗ φN ) in (1.1) and ∇ρN (·, t).

Lemma 1. Let f ∈ C∞b (Rd) and let φN be some kernel described by (1.2), (1.4), (2.3)
and

φ1 ≥ 0,

∫

Rd

dx φ1(x) = 1, φ1(x) = φ1(−x) (x ∈ Rd).

Then, for any L ∈ N0 the function f ∗ φN may be expanded as

(f ∗ φN )(x) = f(x)

+
L∑

l=1

θ−2l
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, . . . , ld;φ1)
∂2l

∂l1
1 · · · ∂ld

d

f(x)

+ θ−2L−2
N RN,L(f ; φ1)(x)

(2.30)

where σ∗(. . .) is defined by (2.18) and

sup
N∈N

‖∇⊗mRN,L(f ; φ1)‖∞ ≤ C(f, m, L) < ∞ (m,L ∈ N0).

As function of f the constant C(f, m,L) depends only on the L∞-norms of f and its
partial derivatives of order ≤ m + 2L + 3.

In a slightly modified version Lemma 1 can be found in [10], where it is also proved
for d = 1. The extension to d > 1 is obvious. We note that for d > 1 the right side of
the version of (2.30) in [10] is not complete. Indeed, in [10] we have forgotten all those
contributions, where lk is odd for some k = 1, . . . , d.
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3. Proofs

A first part of this section contains the derivation of our basic result Theorem 1. In
the second part Theorem 2 will be deduced. We note that the proofs of Theorems
1 and 2 are not independent. As mentioned at the end of the proof of Theorem 1
there exist 0 < T 0

∗ < T 1
∗ < . . . such that successively both theorems are deduced in

[0, T 0
∗ ], [T 0

∗ , T 1
∗ ], . . . Finally, in this section we shall present the proof of Theorem 3.

3.1 Proof of Theorem 1. For verification of (2.10) and (2.11) we refer to Remark
(ii) in Section 2. As in the derivation of (2.23) these relations and (1.14) may be applied
to get additionally

supt≤T ‖ρN (·, t)‖(m) < ∞ (m ∈ N0, T > 0, N ∈ N).

Furthermore, (2.8) and the arguments from Remark (ii) in Section 2 immediately yield

supt≤T ‖ρN (·, t)‖(m,1) < ∞ (m ∈ N0, T > 0, N ∈ N).

In particular, these regularity properties, (2.10) and (2.11) ensure that for any fixed
N ∈ N the subsequent calculations in Subsections 3.1 and 3.2 for the proofs of Theorems
1 and 2 are justified. More precisely, we do not have to care about the existence of any
of the partial derivatives or integrals involving ρN , which will appear.

For convenience, our considerations will be restricted to a finite time interval [0, T ],
where T ∈ (0,∞). To simplify notation we also shall perform the subsequent calcula-
tions for d even. Apart from some minor notational changes the calculations would be
the same for d odd.

First, we employ (1.1) to determine a description of the evolution of quantities like
‖(−∆)mρN (·, t)‖2 (m ∈ N0), which by (1.14) appear in upper bounds to the Sobolev
norms ‖ρN (·, t)‖(k) (k ∈ N0, t ≥ 0) of ρN . It will turn out to be convenient to study
also the expressions ‖(−∆)m(ρN (·, t) ∗ φr

N )‖2, where φr
N is defined in (2.4). Hence, we

shall compute

d

dt

∥∥(−∆)mρN (·, t)∥∥2

2
and

d

dt

∥∥(−∆)m(ρN (·, t) ∗ φr
N )

∥∥2

2

for m ∈ N0.

By (1.1) we first obtain the relation

∂t(−∆)mρN (x, t)

= 1
2 (−∆)m∆ρN (x, t) + (−∆)m∇ ·

(
ρN (x, t)∇(ρN (·, t) ∗ φN )(x)

)

= − 1
2 (−∆)m+1ρN (x, t) +∇i

(
ρN (x, t)(−∆)m∇i(ρN (·, t) ∗ φN )(x)

)

− 2m∇i

(
∇i1ρN (x, t)(−∆)m−1∇i1∇i(ρN (·, t) ∗ φN )(x)

)
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−m∇i

(
∆ρN (x, t)(−∆)m−1∇i(ρN (·, t) ∗ φN )(x)

)

+ 4
(

m
2

)
∇i

(
∇i1∇i2ρN (x, t)(−∆)m−2∇i1∇i2∇i(ρN (·, t) ∗ φN )(x)

)

+∇i

(
(−∆)mρN (x, t)∇i(ρN (·, t) ∗ φN )(x)

)

− 2m∇i

(
(−∆)m−1∇i1ρN (x, t)∇i1∇i(ρN (·, t) ∗ φN )(x)

)

+ (−1)m
d∑

i1,...,im=1

∑
αi1

,...,αim
=0,1,2

3≤αi1
+...+αim

≤2m−2

m∏
r=1

( 2
αir

)

∇i

(
∇αi1

i1
· · · ∇αim

im
ρN (x, t)∇2−αi1

i1
· · · ∇2−αim

im
∇i(ρN (·, t) ∗ φN )(x)

)
.

(3.1)

In (3.1) we have specified separately those contributions, which contain partial deriva-
tives of ρN with highest order. Of course, for m ≤ 2 some terms in (3.1) have to be
omitted.

An immediate consequence of (3.1) is

d

dt
‖(−∆)mρN (·, t)‖22

= 2
〈
(−∆)mρN (·, t), ∂t(−∆)mρN (·, t)

〉

= −
〈
(−∆)mρN (·, t), (−∆)m+1ρN (·, t)

〉

+ 2
〈
(−∆)mρN (·, t),∇i

(
ρN (·, t)(−∆)m∇i(ρN (·, t) ∗ φN )

)〉

− 4m
〈
(−∆)mρN (·, t),∇i

(
∇i1ρN (·, t)(−∆)m−1∇i1∇i(ρN (·, t) ∗ φN )

)〉

− 2m
〈
(−∆)mρN (·, t),∇i

(
∆ρN (·, t)(−∆)m−1∇i(ρN (·, t) ∗ φN )

)〉

+ 8
(m

2

)〈
(−∆)mρN (·, t),

∇i

(
∇i1∇i2ρN (·, t)(−∆)m−2∇i1∇i2∇i(ρN (·, t) ∗ φN )

)〉

+ 2
〈
(−∆)mρN (·, t),∇i

(
(−∆)mρN (·, t)∇i(ρN (·, t) ∗ φN )

)〉

− 4m
〈
(−∆)mρN (·, t),∇i

(
(−∆)m−1∇i1ρN (·, t)∇i1∇i(ρN (·, t) ∗ φN )

)〉

+ 2(−1)m
d∑

i1,...,im=1

∑
αi1

,...,αim
=0,1,2

3≤αi1
+...+αim

≤2m−2

m∏
r=1

( 2
αir

)〈
(−∆)mρN (·, t),

∇i

(
∇αi1

i1
· · ·∇αim

im
ρN (·, t)∇2−αi1

i1
· · ·∇2−αim

im
∇i(ρN (·, t) ∗ φN )

)〉
.

(3.2)

Quite similarly, (2.5), (2.6) and (3.1) yield

d

dt

∥∥(−∆)m(ρN (·, t) ∗ φr
N )

∥∥2

2
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= 2
〈
(−∆)m(ρN (·, t) ∗ φN ), ∂t(−∆)mρN (·, t)

〉

= −
〈
(−∆)m(ρN (·, t) ∗ φN ), (−∆)m+1ρN (·, t)

〉

+ 2
〈
(−∆)m(ρN (·, t) ∗ φN ),∇i

(
ρN (·, t)(−∆)m∇i(ρN (·, t) ∗ φN )

)〉

− 4m
〈
(−∆)m(ρN (·, t) ∗ φN ),∇i

(∇i1ρN (·, t)(−∆)m−1∇i1∇i(ρN (·, t) ∗ φN )
)〉

− 2m
〈
(−∆)m(ρN (·, t) ∗ φN ),∇i

(
∆ρN (·, t)(−∆)m−1∇i(ρN (·, t) ∗ φN )

)〉

+ 8
(m

2

)〈
(−∆)m(ρN (·, t) ∗ φN ), (3.3)

∇i

(
∇i1∇i2ρN (·, t)(−∆)m−2∇i1∇i2∇i(ρN (·, t) ∗ φN )

)〉

+ 2
〈
(−∆)m(ρN (·, t) ∗ φN ),∇i

(
(−∆)mρN (·, t)∇i(ρN (·, t) ∗ φN )

)〉

− 4m
〈
(−∆)m(ρN (·, t) ∗ φN ),∇i

(
(−∆)m−1∇i1ρN (·, t)∇i1∇i(ρN (·, t) ∗ φN )

)〉

+ 2(−1)m
d∑

i1,...,im=1

∑
αi1

,...,αim
=0,1,2

3≤αi1
+...+αim

≤2m−2

m∏
r=1

( 2
αir

)〈
(−∆)m(ρN (·, t) ∗ φN ),

∇i

(
∇αi1

i1
· · · ∇αim

im
ρN (·, t)∇2−αi1

i1
· · ·∇2−αim

im
∇i(ρN (·, t) ∗ φN )

)〉
.

For the various contributions to the right sides of (3.2) and (3.3) we now have to deter-
mine suitable upper bounds. In the corresponding calculations (cf. (3.4) - (3.16)) we
assume m ≥ 3. Otherwise, some of these estimates could be omitted.

For the first and the second term on the right side of (3.2) we obtain

− 〈
(−∆)mρN (·, t), (−∆)m+1ρN (·, t)〉

=
〈
(−∆)mρN (·, t), ∆(−∆)mρN (·, t)〉

= −
∥∥∇(−∆)mρN (·, t)

∥∥2

2

(3.4)

and
∣∣∣
〈
(−∆)mρN (·, t),∇i

(
ρN (·, t)(−∆)m∇i(ρN (·, t) ∗ φN )

)〉∣∣∣

=
∣∣∣
〈
∇i(−∆)mρN (·, t), ρN (·, t)(−∆)m∇i(ρN (·, t) ∗ φN )

〉∣∣∣
≤

∥∥∇(−∆)mρN (·, t)
∥∥

2

∥∥ρN (·, t)∇(−∆)m(ρN (·, t) ∗ φN )
∥∥

2
(3.5)

≤ C2

∥∥∇(−∆)mρN (·, t)∥∥2

2

+ 1
C2

〈
∇(−∆)m(ρN (·, t) ∗ φN ), ρN (·, t)∇(−∆)m(ρN (·, t) ∗ φN )

〉
‖ρN (·, t)‖∞.

In (3.5) we also utilize the positivity of ρN (cf. (2.11)). Moreover, here and in subsequent
estimates we employ some positive constant C2, which can be chosen arbitrarily. A
precise value will be fixed later in (3.18).
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By using in particular Sobolev’s inequality (1.12) we get for the next terms on the
right side of (3.2) in a similar way as in (3.5) the estimates

∣∣∣
〈
(−∆)mρN (·, t),∇i

(
∇i1ρN (·, t)(−∆)m−1∇i1∇i(ρN (·, t) ∗ φN )

)〉∣∣∣

≤ C2

∥∥∇(−∆)mρN (·, t)
∥∥2

2
+ C

C2

∥∥∇⊗2(−∆)m−1(ρN (·, t) ∗ φN )
∥∥2

2
‖∇ρN (·, t)‖2∞

≤ C2

∥∥∇(−∆)mρN (·, t)
∥∥2

2
+ C

C2

∥∥∇⊗(2m)(ρN (·, t) ∗ φN )
∥∥2

2
‖ρN (·, t)‖2(2+d/2)

(3.6)

∣∣∣
〈
(−∆)mρN (·, t),∇i

(
∆ρN (·, t)(−∆)m−1∇i(ρN (·, t) ∗ φN )

)〉∣∣∣

≤ C2

∥∥∇(−∆)mρN (·, t)
∥∥2

2
+ C

C2

∥∥∇⊗(2m−1)(ρN (·, t) ∗ φN )
∥∥2

2
‖ρN (·, t)‖2(3+d/2)

(3.7)

∣∣∣
〈
(−∆)mρN (·, t),∇i

(
∇i1∇i2ρN (·, t)(−∆)m−2∇i1∇i2∇i(ρN (·, t) ∗ φN )

)〉∣∣∣

≤ C2

∥∥∇(−∆)mρN (·, t)∥∥2

2
+ C

C2

∥∥∇⊗(2m−1)(ρN (·, t) ∗ φN )‖22‖ρN (·, t)‖2(3+d/2)

(3.8)

∣∣∣
〈
(−∆)mρN (·, t),∇i

(
(−∆)mρN (·, t)∇i(ρN (·, t) ∗ φN )

)〉∣∣∣

≤ C2

∥∥∇(−∆)mρN (·, t)∥∥2

2
+ C

C2

∥∥∇⊗(2m)ρN (·, t)∥∥2

2
‖ρN (·, t) ∗ φN‖2(2+d/2)

(3.9)

∣∣∣
〈
(−∆)mρN (·, t),∇i

(
(−∆)m−1∇i1ρN (·, t)∇i1∇i(ρN (·, t) ∗ φN )

)〉∣∣∣

≤ C2

∥∥∇(−∆)mρN (·, t)
∥∥2

2
+ C

C2

∥∥∇⊗(2m−1)ρN (·, t)
∥∥2

2

∥∥ρN (·, t) ∗ φN

∥∥2

(3+d/2)
.

(3.10)

To determine an estimate for the last term on the right side of (3.2) we have to find for
any summand an upper bound for a product of a derivative of ρN (·, t) and a derivative
of ρN (·, t) ∗φN . As in (3.5) - (3.10) we choose the L2- and L∞-norm, respectively, such
that after application of Sobolev’s inequality (1.12) to the L∞-expression the orders of
the derivatives in the resulting term are as small as possible. Hence, we deduce

d∑

i1,...,im=1

∑
αi1

,...,αim
=0,1,2

3≤αi1
+...+αim

≤2m−2

m∏
r=1

( 2
αir

)
(3.11)

∣∣∣
〈
(−∆)mρN (·, t),∇i

(
∇αi1

i1
. . .∇αim

im
ρN (·, t)∇2−αi1

i1
. . .∇2−αim

im
∇i(ρN (·, t) ∗ φN )

)〉∣∣∣

≤ C2

∥∥∇(−∆)mρN (·, t)
∥∥2

2
+ C

C2

m∑
q=3

∥∥∇⊗(2m+1−q)(ρN (·, t) ∗ φN )
∥∥2

2
‖ρN (·, t)‖2(q+1+d/2)

+ C
C2

m∑
q=3

∥∥ρN (·, t) ∗ φN

∥∥2

(q+1+d/2)

∥∥∇⊗(2m+1−q)ρN (·, t)∥∥2

2
.

Estimates (3.4) - (3.11) obtained so far for the terms on the right side of (3.2) may be
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collected in a single relation, namely

d

dt

∥∥(−∆)mρN (·, t)∥∥2

2

≤ (C2C3(m)− 1)
∥∥∇(−∆)mρN (·, t)

∥∥2

2

+ 2
C2

〈
∇(−∆)m(ρN (·, t) ∗ φN ), ρN (·, t)∇(−∆)m(ρN (·, t) ∗ φN )

〉

× ‖ρN (·, t)‖∞

+ C4(m)
C2

m∑
q=1

(
‖ρN (·, t) ∗ φN‖2(2m+1−q)‖ρN (·, t)‖2(q+1+d/2)

+ ‖ρN (·, t) ∗ φN‖2(q+1+d/2)‖ρN (·, t)‖2(2m+1−q)

)
,

(3.12)

where C3(m) and C4(m) in particular depend on m, e.g.,

C3(m) = 6 + 10m + 8
(m

2

)
. (3.13)

The precise value of C4(m) is not important.
Now, we turn to the estimation of the summands on the right side of (3.3). By (2.5)

and (2.6) we deduce for the first and the second term

−
〈
(−∆)m(ρN (·, t) ∗ φN ), (−∆)m+1ρN (·, t)

〉

= −∥∥∇(−∆)m(ρN (·, t) ∗ φr
N )

∥∥2

2

(3.14)

and
〈
(−∆)m(ρN (·, t) ∗ φN ),∇i

(
ρN (·, t)(−∆)m∇i(ρN (·, t) ∗ φN )

)〉

= −
〈
∇i(−∆)m(ρN (·, t) ∗ φN ), ρN (·, t)∇i(−∆)m(ρN (·, t) ∗ φN )

〉
.

(3.15)

Obviously, the structure of the right side of (3.3) is closely related to that of (3.2).
More precisely, any term 〈(−∆)mρN (·, t),∇i(. . .)〉 in (3.2) corresponds to some term
〈(−∆)m(ρN (·, t)∗φN ),∇i(. . .)〉 in (3.3), where in both expressions “. . .” coincide. Hence,
we only have to modify (3.6) - (3.11) slightly to deduce upper bounds for the remaining
contributions to the right side of (3.3). With (3.14) and (3.15) we obtain as summary
an analogue of (3.12), namely

d

dt

∥∥(−∆)m(ρN (·, t) ∗ φr
N )

∥∥2

2

≤ (C2C3(m)− 1)
∥∥∇(−∆)m(ρN (·, t) ∗ φr

N )
∥∥2

2

− 2
〈
∇(−∆)m(ρN (·, t) ∗ φN ), ρN (·, t)∇(−∆)m(ρN (·, t) ∗ φN )

〉

+ C4(m)
C2

m∑
q=1

(
‖ρN (·, t) ∗ φN‖2(2m+1−q)‖ρN (·, t)‖2(q+1+d/2)

+ ‖ρN (·, t) ∗ φN‖2(q+1+d/2)‖ρN (·, t)‖2(2m+1−q)

)
.

(3.16)
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Next, we shall determine an upper bound for a suitable linear combination of
‖(−∆)mρN (·, t)‖22 and ‖(−∆)m(ρN (·, t) ∗ φr

N )‖22. For that purpose we have to adjust
some parameters appearing on the right sides of (3.12) and (3.16).

First, we have got sums of products of squared Sobolev norms. As a consequence
of applications of Sobolev’s inequality (1.12) in these contributions derivatives of order
q + 1 + 1

2d (q = 1, . . . , m) appeared. These orders should be ≤ 2m, which is the order
of the derivatives on the left sides of (3.12) and (3.16). Hence, we should choose some
m ≥ 1 + 1

2d, and so we temporarily suppose

m = m0 = 1 + d/2. (3.17)

We also have to care for terms on the right sides of (3.12) and (3.16), which explicitly
contain partial derivatives of order 2m0 + 1. The terms with ‖∇(−∆)m0ρN (·, t)‖22 or
‖∇(−∆)m0(ρN (·, t) ∗ φr

N )‖22 are negative if we assume

C2 = C2(m0) ≤ 1
2C3(m0)

(3.18)

where C3(m0) is defined by (3.13). Next, to handle expressions containing
〈
∇(−∆)m0(ρN (·, t) ∗ φN ), ρN (·, t)∇(−∆)m0(ρN (·, t) ∗ φN )

〉

we temporarily restrict the time interval for our considerations to a subinterval of [0, T ].
For that purpose we choose some constant C5 satisfying

C1(2m0)C5 > 2 sup
t≤T

‖ρ(·, t)‖(2m0)

sup
t≤T

‖ρ(·, t)‖2(2m0)

(
1 +

C(d, m0, 1 + d/2)C1(2m0)C5

C2(m0)

)
≤ 1

2C2
5 ,

(3.19)

where ρ is the solution of the limit dynamics (1.5), and C(d,m0, 1 + d/2) and C1(2m0)
are introduced in (1.12) and (1.14), respectively. We note that by (2.23) both relations
in (3.19) hold for C5 sufficiently large. Now, we define

TN = inf
{

t ∈ [0, T ] : ‖ρN (·, t)‖(2m0) > C1(2m0)C5

}
∧ T (N ∈ N) (3.20)

and then consider the function

[0, TN ) 3 t →
∥∥(−∆)m0ρN (·, t)

∥∥2

2
+ C6

∥∥(−∆)m0(ρN (·, t) ∗ φr
N )

∥∥2

2

with

C6 =
C(d,m0, 1 + d/2)C1(2m0)C5

C2(m0)
. (3.21)

Since ρN (·, 0) = ρ(·, 0) = ρ0 (N ∈ N), and by continuity (cf. (2.10)), the first relation
in (3.19) yields TN > 0 (N ∈ N). Moreover, (1.12), (3.17) and (3.20) imply

‖ρN (·, t)‖∞ ≤ C(d,m0, 1 + d/2)C1(2m0)C5 (0 ≤ t ≤ TN , N ∈ N). (3.22)
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By (2.5) and (2.6), which imply ‖f ∗ φN‖2 ≤ ‖f ∗ φr
N‖2 for f ∈ L2(Rd), and by (3.12),

(3.16) - (3.18), (3.21) and (3.22) we get

d

dt

(
‖(−∆)m0ρN (·, t)‖22 + C6‖(−∆)m0(ρN (·, t) ∗ φr

N )‖22
)

≤ − 1
2

(
‖∇(−∆)m0ρN (·, t)‖22 + C6‖∇(−∆)m0(ρN (·, t) ∗ φr

N )‖22
)

+ C

m0∑
q=1

(
‖ρN (·, t) ∗ φN‖2(2m0+1−q)‖ρN (·, t)‖2(q+1+d/2)

+ ‖ρN (·, t) ∗ φN‖2(q+1+d/2)‖ρN (·, t)‖2(2m0+1−q)

)

≤ C‖ρN (·, t)‖2(2m0)
‖ρN (·, t) ∗ φN‖2(2m0)

≤ C
(
‖ρN (·, t)‖2(2m0)

+ C6‖ρN (·, t) ∗ φr
N‖2(2m0)

)2

(3.23)

for t ≤ TN and N ∈ N. According to (1.4), to obtain an estimate for

‖ρN (·, t)‖2(2m0)
+ C6‖ρN (·, t) ∗ φr

N‖2(2m0)

we need in addition to (3.23) an upper bound for

d

dt

(
‖ρN (·, t)‖22 + C6‖ρN (·, t) ∗ φr

N‖22
)
.

Therefore, we have to repeat the calculations in (3.1) - (3.16) for m = 0. In this
particular case on the right sides of (3.1) - (3.3) only the first and the second term have
to be retained, and consequently, for the desired upper bound we only have to consider
estimates (3.4), (3.5), (3.14) and (3.15) with m = 0. With analogues of (3.12) and
(3.16) containing also only the first and the second term on their right sides we finally
deduce

d

dt

(
‖ρN (·, t)‖22 + C6‖ρN (·, t) ∗ φr

N‖22
)
≤ 0 (t ≤ TN , N ∈ N). (3.24)

Now, combined with (1.10) and (1.14) estimates (3.23) and (3.24) lead to

‖ρN (·, t)‖2(2m0)
+ C6‖ρN (·, t) ∗ φr

N‖2(2m0)

≤ C1(2m0)2
(
‖ρN (·, t)‖22 + ‖(−∆)m0ρN (·, t)‖22

+ C6

(
‖ρN (·, t) ∗ φr

N‖22 + ‖(−∆)m0(ρN (·, t) ∗ φr
N )‖22

))

≤ C1(2m0)2
(
‖ρN (·, 0)‖2(2m0)

+ C6‖ρN (·, 0) ∗ φr
N‖2(2m0)

)

+ C7

∫ t

0

ds
(
‖ρN (·, s)‖2(2m0)

+ C6‖ρN (·, s) ∗ φr
N‖2(2m0)

)2

(3.25)

for t ≤ TN and N ∈ N. We emphasize that the constant C7 here, which depends on the
previously introduced constants C1, . . .,C6, is independent of N . Moreover, (1.1), (1.5),
(2.5), (3.19) and (3.21) yield

‖ρN (·, 0)‖2(2m0)
+ C6‖ρN (·, 0) ∗ φr

N‖2(2m0)
≤ ‖ρN (·, 0)‖2(2m0)

(1 + C6) ≤ 1
2C2

5 (3.26)
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for N ∈ N. Hence, with (3.25) we deduce the existence of some T 0
∗ ∈ (0, T ] such that

sup
t≤T 0∗∧TN ,N∈N

(
‖ρN (·, t)‖2(2m0)

+ C6‖ρN (·, t) ∗ φr
N‖2(2m0)

)
≤ 3

4C1(2m0)2C2
5 .

Consequently, (3.20) and the continuity of the functions

t →
∥∥ρN (·, t)

∥∥2

(2m0)
+ C6

∥∥ρN (·, t) ∗ φr
N

∥∥2

(2m0)
(N ∈ N)

yield
T 0
∗ ≤ TN (N ∈ N) (3.27)

and we get

sup
t≤T 0∗ ,N∈N

(
‖ρN (·, t)‖2(2m0)

+ C6‖ρN (·, t) ∗ φr
N‖2(2m0)

)
≤ 3

4C1(2m0)2C2
5 . (3.28)

Next, we have to extend (3.28) to Sobolev norms of order > 2m0. For that purpose
we need as supplement to (3.12) and (3.16) upper bounds for

d

dt

∥∥∇(−∆)mρN (·, t)
∥∥2

2
and

d

dt

∥∥∇(−∆)m(ρN (·, t) ∗ φr
N )

∥∥2

2

for m ∈ N0. After modifying relations (3.1) - (3.11), (3.14) and (3.15) slightly in some
rather obvious way we can deduce

d

dt

∥∥∇(−∆)mρN (·, t)
∥∥2

2

≤ (
C8C9(m)− 1

)∥∥(−∆)m+1ρN (·, t)
∥∥2

2

+ 2
C8

〈
(−∆)m+1(ρN (·, t) ∗ φN ), ρN (·, t)(−∆)m+1(ρN (·, t) ∗ φN )

〉

× ‖ρN (·, t)‖∞

+ C10(m)
C8

m+1∑
q=1

(
‖ρN (·, t) ∗ φN‖2(2m+2−q)‖ρN (·, t)‖2(q+1+d/2)

+ ‖ρN (·, t) ∗ φN‖2(q+1+d/2)‖ρN (·, t)‖2(2m+2−q)

)

(3.29)

and

d

dt

∥∥∇(−∆)m(ρN (·, t) ∗ φr
N )

∥∥2

2

≤ (
C8C9(m)− 1

)∥∥(−∆)m+1(ρN (·, t) ∗ φr
N )

∥∥2

2

− 2
〈
(−∆)m+1(ρN (·, t) ∗ φN ), ρN (·, t)(−∆)m+1(ρN (·, t) ∗ φN )

〉

+ C10(m)
C8

m+1∑
q=1

(
‖ρN (·, t) ∗ φN‖2(2m+2−q)‖ρN (·, t)‖2(q+1+d/2)

+ ‖ρN (·, t) ∗ φN‖2(q+1+d/2)‖ρN (·, t)‖2(2m+2−q)

)

(3.30)
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as analogues of (3.12) and (3.16), where C8, C9 and C10 are suitable constants corre-
sponding to C2, C3 and C4, respectively.

For estimation of the remaining Sobolev norms ‖ρN (·, t)‖(k) and ‖ρN (·, t) ∗ φr
N‖(k)

(k > 2m0) we remark that for m > m0 the sums on the right sides of the basic
inequalities (3.12) and (3.16) are linear in ‖ρN (·, t)‖2(2m) and ‖ρN (·, t)∗φN‖2(2m), and that
for m ≥ m0 the sums on the right sides of (3.29) and (3.30) are linear in ‖ρN (·, t)‖2(2m+1)

and ‖ρN (·, t)∗φN‖2(2m+1). Furthermore, Sobolev norms with higher order do not appear
in the respective sums. Consequently, similar to (3.25) we now obtain

‖ρN (·, t)‖2(k) + C11(k)‖ρN (·, t) ∗ φr
N‖2(k)

≤ C12(k)
(‖ρ0‖2(k) + C11(k)‖ρ0 ∗ φr

N‖2(k)

)

+ C

∫ t

0

ds ‖ρN (·, s)‖2(k−1)

(
‖ρN (·, s)‖2(k) + C11(k)‖ρN (·, s)∗φr

N‖2(k)

)

(
t ≤ T 0

∗ , k = 2m0 + 1, 2m0 + 2, . . . ; N ∈ N)

(3.31)

where C11(k) and C12(k) are suitable constants depending on k. Obviously, (2.8), (3.28)
and (3.31) can be used in an iteration scheme to show

sup
t≤T 0∗ ,N∈N

(
‖ρN (·, t)‖2(k) + C11(k)‖ρN (·, t) ∗ φr

N‖2(k)

)
< ∞ (k > 2m0).

By (2.5) this relation is equivalent to

sup
t≤T 0∗ ,N∈N

‖ρN (·, t)‖(k) < ∞ (k ∈ N0). (3.32)

As a consequence of (1.1), which gives a relation between partial derivatives with
respect to time and spatial derivatives, Sobolev’s inequality (1.12), (2.5) and (2.6) we
additionally obtain

sup
x∈Rd,t≤T 0∗ ,N∈N

|∇⊗m∂k
t ρN (x, t)| < ∞ (m, k ∈ N0). (3.33)

Next, we turn to the derivation of upper bounds for

‖ρN (·, t)‖(m,1) (m ∈ N0, t ≤ T 0
∗ , N ∈ N).

Therefore, we write the dynamics (1.1) of ρN as integral equation, namely

ρN (x, t) =
∫

Rd

dz σ(x− z; t)ρ0(z)

+
∫ t

0

ds

∫

Rd

dz σ(x− z; t− s)∇ · (ρN (z, s)∇(ρN (·, s)∗φN )(z)
)

(
x ∈ Rd, t ≥ 0, N ∈ N)

(3.34)
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where

σ(z; u) = 1
(2πu)d/2 exp

(
− z2

2u

)
(z ∈ Rd, u > 0) (3.35)

is the fundamental solution of 1
2∆−∂t. Relations (2.5), (2.6), (2.11), (3.33) - (3.35) and

integration by parts yield

ρN (x, t) ≤
∫

Rd

dz σ(x− z; t)ρ0(z)

+ C

∫ t

0

ds

∫

Rd

dz
1

(t− s)(d+1)/2
exp

(
− (x− z)2

4(t− s)

)
ρN (z, s)

(
x ∈ Rd, 0 ≤ t ≤ T 0

∗ , N ∈ N)

and consequently

ρN (x, t)2 ≤ 2
∫

Rd

dz σ(x− z; t)ρ0(z)2

+ C
√

t

∫ t

0

ds
1√

t− s

∫

Rd

dz σ(x− z; 2(t− s))ρN (z, s)2

(
x ∈ Rd, 0 ≤ t ≤ T 0

? , N ∈ N)
.

(3.36)

Both sides of this relation may be multiplied by (1 + |x|) and integrated with respect
to x. By (2.8), (3.32), (3.35) and (3.36) we then get

∫

Rd

dx (1 + |x|)ρN (x, t)2

≤ C + C
√

t

∫ t

0

ds
1√

t− s

∫

Rd

dz (1 + |z|)ρN (z, s)2

≤ C + C13t sup
0≤s≤t

∫

Rd

dx (1 + |x|)ρN (x, s)2

(
0 ≤ t ≤ T 0

∗ , N ∈ N)
.

Hence,

sup
0≤s≤T0∗∧(1/(2C13))

N∈N

∫

Rd

dx (1 + |x|)ρN (x, s)2 < ∞. (3.37)

The constants appearing in computations between (3.34) and (3.37) may be chosen in
such a way that they depend on ρN and its partial derivatives only on terms of upper
bounds in the time interval [0, T 0

∗ ]. Consequently, by (3.32) and (3.33) the arguments
between (3.34) and (3.37) may be repeated word for word in [T 0

∗ ∧ (1/(2C13)), T 0
∗ ∧

(1/C13)]. As initial estimate we only have to use (3.37) instead of (2.8). By iterating
this procedure in further intervals with length 1/(2C13) we finally deduce

sup
0≤s≤T 0∗ ,N∈N

‖ρN (·, s)‖(0,1) < ∞. (3.38)
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To continue with the proof of (2.12) for T = T 0
∗ we now consider

∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρN (x, t)

=
∫

Rd

dz σ(x− z; t)
∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρ0(z)

+
∫ t

0

ds

∫

Rd

dz σ(x− z; t− s)

∇ ·
(

∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρN (z, s)∇(ρN (·, s) ∗ φN )(z)

+
∑

0≤r1≤p1,...,0≤rd≤pd
r1+...+rd<p1+...+pd

C(r1, . . . , rd)
∂r1+...+rd

∂r1
1 · · · ∂rd

d

ρN (z, s)

∇ ∂p1−r1+...+pd−rd

∂p1−r1
1 · · · ∂pd−rd

d

(ρN (·, s) ∗ φN )(z)

)

(
x ∈ Rd, t ≥ 0, p1, . . . , pd ∈ N0, N ∈ N)

(3.39)

which is obtained from (3.34) by differentiating both sides with respect to ∂p1+...+pd

∂
p1
1 ···∂pd

d

.

Integral equation (3.39) is the basic ingredient to derive

sup
0≤s≤T 0∗ ,N∈N

‖ρN (·, s)‖(p,1) < ∞ (p ∈ N0) (3.40)

by induction on p. Obviously, the case p = 0 is treated in (3.38). Suppose now that
(3.40) has been verified for p = 0, 1, . . . , q − 1. After squaring both sides of (3.39) we
then obtain in analogy to (3.36) the relation

∣∣∣ ∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρN (x, t)
∣∣∣
2

≤ 2
∫

Rd

dz σ(x− z; t)
∣∣∣ ∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρ0(z)
∣∣∣
2

+ C
√

t

∫ t

0

ds
1√

t− s

∫

Rd

dz σ
(
x− z; 2(t− s)

)

×
(∣∣∣ ∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρN (z, s)
∣∣∣
2

+
q−1∑
p=0

|∇⊗pρN (z, s)|2
)

(
x ∈ Rd, 0 ≤ t ≤ T 0

∗ , 0 ≤ q1, . . . , qd ≤ q, q1 + . . . + qd = q, N ∈ N
)
.

(3.41)

In the derivation of (3.41) we have applied in particular integration by parts with respect
to the operator “∇·”. Additionally, (2.5), (2.6) and (3.33) have been used to obtain
upper bounds for derivatives of ρN (·, s) ∗ φN .
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Next, both sides of (3.41) are multiplied by (1 + |x|) and integrated with respect to
x. By (2.8), (3.32), (3.41) and the induction hypothesis we conclude

∫

Rd

dx (1 + |x|)
∣∣∣ ∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρN (x, t)
∣∣∣
2

≤ C + C
√

t

∫ t

0

ds
1√

t− s

×
( ∫

Rd

dz (1+|z|)
∣∣∣ ∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρN (z, s)
∣∣∣
2

+
q−1∑
p=0

‖ρN (·, s)‖2(p,1)

)

≤ C + C14t sup
0≤s≤t

∫

Rd

dx (1 + |x|)
∣∣∣ ∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρN (x, s)
∣∣∣
2

(
0 ≤ t ≤ T 0

∗ , 0 ≤ q1, . . . , qd ≤ q, q1 + . . . + qd = q, N ∈ N
)
.

As in (3.37) we therefore get

sup
0≤s≤T0∗∧(1/(2C14))

N∈N

∫

Rd

dx (1 + |x|)
∣∣∣ ∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρN (x, s)
∣∣∣
2

< ∞

(
0 ≤ q1, . . . , qd ≤ q, q1 + . . . + qd = q

)
.

(3.42)

The arguments leading to (3.42) may be repeated in
[
T 0
∗ ∧ (1/(2C14)), T 0

∗ ∧ (1/C14)
]

[
T 0
∗ ∧ (1/C14), T 0

∗ ∧ (3/(2C14))
]

...

such that finally (3.40) for p = q follows. Hence, by induction on p relation (3.40) holds
for any p ∈ N0. By (3.33) and (3.40) the restriction of Theorem 1 to Rd × [0, T 0

∗ ] is
proved now.

If T > T 0
∗ , we have to extend the proof of Theorem 1. For that purpose we first

may verify Theorem 2 in Rd × [0, T 0
∗ ], and then we can repeat our considerations done

so far in the time interval [T 0
∗ , T ]. We observe

∥∥(−∆)mρN (·, t)− (−∆)mρ(·, t)∥∥2

2

=
〈
(−∆)2mρN (·, t)− (−∆)2mρ(·, t), ρN (·, t)− ρ(·, t)

〉

≤
∥∥(−∆)2mρN (·, t)− (−∆)2mρ(·, t)

∥∥
∞

〈
ρN (·, t) + ρ(·, t), 1〉

(
m ∈ N0, t ∈ [0, T 0

∗ ], N ∈ N)
,

i.e., as consequence of (1.14), (2.11), the restriction of (2.19) to Rd × [0, T 0
∗ ] and (2.21)

we obtain
lim

N→∞

∥∥ρN (·, T 0
∗ )− ρ(·, T 0

∗ )
∥∥

(m)
= 0 (m ∈ N0).
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Therefore, the existence of some N1 ∈ N follows such that C5 chosen in (3.19) also
satisfies

C1(2m0)C5 > 3
2‖ρN (·, T 0

∗ )‖(2m0)

‖ρN (·, T 0
∗ )‖2(2m0)

(
1 +

C(d,m0, 1 + d/2)C1(2m0)C5

C2(m0)

)
≤ 3

5C2
5

(N ≥ N1) (3.43)

where m0, C(d,m0, 1 + d/2), C1(2m0) and C2(m0) are defined by (3.17), (1.12), (1.14)
and (3.18), respectively. Analogously to (3.20), we then can define

T 1
N = inf

{
t ∈ [T 0

∗ , T ] : ‖ρN (·, t)‖(2m0) > C1(2m0)C5

}
∧ T (N ≥ N1).

Now, we may repeat the considerations between (3.20) and (3.27) word for word, where
however the time interval [0, TN ] has to be replaced by [T 0

∗ , T 1
N ]. In particular, similarly

as in (3.25) we observe

‖ρN (·, t)‖2(2m0)
+ C6‖ρN (·, t) ∗ φr

N‖2(2m0)

≤ C1(2m0)2
(
‖ρN (·, T 0

∗ )‖2(2m0)
+ C6‖ρN (·, T 0

∗ ) ∗ φr
N‖2(2m0)

)

+ C7

∫ t

T 0∗

ds
(‖ρN (·, s)‖2(2m0)

+ C6‖ρN (·, s) ∗ φr
N‖2(2m0)

)2

≤ 3
5C1(2m0)2C2

5 + C7(t− T 0
∗ )(1 + C6)2C1(2m0)4C4

5(
t ∈ [T 0

∗ , T 1
N ], N ≥ N1

)

(3.44)

where in the last line we use (2.5), (3.21) and (3.43). Hence, for

T 1
∗ =

(
T 0
∗ + 3

20

(
C7(1 + C6)2C1(2m0)2C2

5

)−1
)
∧ T (3.45)

we deduce T 1
∗ ≤ T 1

N (N ≥ N1) since (3.44) yields

sup
T0∗≤t≤T1∗∧T1

N
N≥N1

(
‖ρN (·, t)‖2(2m0)

+ C6‖ρN (·, t) ∗ φr
N‖2(2m0)

)
≤ 3

4C1(2m0)2C2
5 . (3.46)

Consequently, when applied in [T 0
∗ , T 1

∗ ] the calculations between (3.29) and (3.42) may
be employed to complete the proof of the restriction of Theorem 1 to Rd × [0, T 1

∗ ].
If necessary, i.e., if T 1

∗ < T , the arguments after (3.42) until (3.46) may be utilized
in an iteration procedure to introduce successively

N2 ≥ N1, T 2
N > T 1

∗ , T 2
∗ > T 1

∗
N3 ≥ N2, T 3

N > T 2
∗ , T 3

∗ > T 2
∗

...

until finally T q
∗ ≥ T for some q ∈ N holds. Relation (3.45) and its respective modifica-

tions for T 2
∗ , T 3

∗ ,. . . show that

inf
{

T l+1
∗ − T l

∗ : l ∈ N0, T l+1
∗ < T

}
> 0.
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Hence, the iteration procedure indeed will terminate. We note that as consequence of
(2.10) and (2.11) we finally can get rid of restrictions like N ≥ N1 used in calculations
after (3.43). Consequently, the proof of the restriction of Theorem 1 to Rd × [0, T ],
where T has been chosen arbitrarily at the beginning of this subsection, is finished.

3.2 Proof of Theorem 2. As indicated at the end of the preceding subsection, the
proofs of Theorems 1 and 2 are not independent. However, for convenience we may
suppose in this subsection that Theorem 1 has been verified completely for any T > 0.

By positivity of ρ (cf. (2.21)) the partial differential equations described by (2.15)
- (2.18) are uniformly parabolic for any r ∈ N. Therefore, the unique existence of
ρ{r} (r ∈ N) and the smoothness (2.14) can be proved by induction on r and standard
techniques for linear parabolic equations, which can be found, e.g., in [5] or [8]. To start
the induction the regularity (2.20) of ρ = ρ{0} has to be employed.

To demonstrate (2.19) we shall derive for any fixed L ∈ N0 a suitable description of
the dynamics of ρN − ρ−∑L

r=1 θ−2r
N ρ{r}. In order that our calculations get as clear as

possible we shall omit the arguments x and t of the respective functions. Additionally,
we define ρ{0} = ρ. As consequence of (1.1), (1.5), (2.15) - (2.17) and Lemma 1 we then
obtain

∂t

(
ρN −

L∑

k=0

θ−2k
N ρ{k}

)

= 1
2∆

(
ρN −

L∑

k=0

θ−2k
N ρ{k}

)
+∇ · (ρN∇(ρN ∗ φN ))−∇ · (ρ{0}∇ρ{0})

−
L∑

k=1

θ−2k
N

(
∇ · (ρ{k}∇ρ{0} + ρ{0}∇ρ{k}

)
+ Gk

(
ρ{0}, . . . , ρ{k−1}

))

= 1
2∆

(
ρN −

L∑

k=0

θ−2k
N ρ{k}

)
+∇·

((
ρN −

L∑

k=0

θ−2k
N ρ{k}

)
∇(ρN ∗φN )

)

+∇·
(( L∑

k=0

θ−2k
N ρ{k}

)

∇
(
ρN ∗φN −

L∑

l=0

θ−2l
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, ..., ld;φ1)
∂2l

∂l1
1 · · · ∂ld

d

ρN

))

+∇·
(( L∑

k=0

θ−2k
N ρ{k}

)

∇
(

L∑

l=0

θ−2l
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, ...)
∂2l

∂l1
1 · · · ∂ld

d

(
ρN−

L−l∑
r=0

θ−2r
N ρ{r}

)))

−∇·
(( L∑

k=0

θ−2k
N ρ{k}

)

(3.47)
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∇
(

L∑

l=0

θ−2l
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, ...)
∂2l

∂l1
1 · · · ∂ld

d

( L∑

r=L−l+1

θ−2r
N ρ{r}

)))

+

(
L∑

k=0

θ−2k
N

k∑
p=0

k−p∑
q=0

∑
0≤l1,...,ld≤2(k−p−q)
l1+...+ld=2(k−p−q)

σ∗(...)∇·
(
ρ{p}∇

∂2(k−p−q)

∂l1
1 · · · ∂ld

d

ρ{q}

)

−∇·(ρ{0}∇ρ{0})

−
L∑

k=1

θ−2k
N

(
∇·(ρ{k}∇ρ{0} + ρ{0}∇ρ{k}

)
+ Gk

(
ρ{0}, ..., ρ{k−1}

))
)

+
∑

k,l,r=0,...,L
k+l+r>L

θ
−2(k+l+r)
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, ...; φ1)∇·
(
ρ{k}∇

∂2l

∂l1
1 · · · ∂ld

d

ρ{r}

)

for N ∈ N. To obtain a condensed version of (3.47) we define

fN,L =
L∑

k=0

θ−2k
N ρ{k} (3.48)

gN,L = ρN ∗ φN −
L∑

l=0

θ−2l
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, . . . , ld; φ1)
∂2l

∂l1
1 · · · ∂ld

d

ρN (3.49)

hN,L = −∇ ·
(

fN,L∇
(

L∑

l=0

θ−2l
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, ...)
∂2l

∂l1
1 · · · ∂ld

d

( L∑

r=L−l+1

θ−2r
N ρ{r}

)))
(3.50)

+
∑

k,l,r=0,...,L
k+l+r>L

θ
−2(k+l+r)
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, ...)∇·
(
ρ{k}∇

∂2l

∂l1
1 · · · ∂ld

d

ρ{r}

)

FN,L = θ2L+2
N

(∇ · (fN,L∇gN,L) + hN,L

)
. (3.51)

Next, we introduce with

LN,Lf = ∇ · (( 1
2 + fN,L)∇f

) (
f ∈ C2

b (Rd); N, L ∈ N0

)
(3.52)

a family of second order differential operators depending on time. We also note that by
(2.17) the sixth contribution to the right side of (3.47) vanishes. Now, with

ρδ
N,r = θ2r+2

N

(
ρN −

r∑

k=0

θ−2k
N ρ{k}

)
(r,N ∈ N0) (3.53)



80 K. Oelschläger

relation (3.47) may be written as

∂tρ
δ
N,L = LN,Lρδ

N,L +∇ · (ρδ
N,L∇(ρN ∗ φN )

)

+
L∑

l=1

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, ..., ld; φ1)∇·
(

fN,L∇ ∂2l

∂l1
1 · · · ∂ld

d

ρδ
N,L−l

)

+ FN,L

(3.54)

for all N,L ∈ N0. By differentiating both sides of (3.54) we immediately obtain

∂t
∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρδ
N,L

= LN,L

( ∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρδ
N,L

)

+
∑

0≤q1,...,qd≤1+p1+...+pd
q1+...+qd≤1+p1+...+pd

Gp1,...,pd

N,L,q1,...,qd

∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρδ
N,L

+
L∑

l=1

∑
0≤q1,...,qd≤2+2l+p1+...+pd
q1+...+qd≤2+2l+p1+...+pd

Hp1,...,pd

N,L,l,q1,...,qd

∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρδ
N,L−l

+
∂p1+...+pd

∂p1
1 · · · ∂pd

d

FN,L

(
N, L, p1, . . . , pd ∈ N0

)

(3.55)

where Gp1,...,pd

N,L,q1,...,qd
and Hp1,...,pd

N,L,l,q1,...,qd
linearily depend on ρ, ρ{1}, . . . , ρ{L}, ρN ∗ φN and

their partial derivatives of order ≤ 2 + p1 + . . . + pd, such that the coefficients are
proportional to θ−2k

N (k = 0, 1, . . . , L). By (1.1), (1.5) and (2.15) the functions ρδ
N,L

and their partial derivatives vanish at t = 0, i.e.,

∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρδ
N,L(·, 0) = 0 (N, L, p1, . . . , pd ∈ N0). (3.56)

For the further study of the solution of (3.55), (3.56) we need some estimates. First,
(1.2) - (1.4), (2.13), (2.14) and (2.20) yield

sup
x∈Rd,t∈[0,T ],N∈N

∣∣∇⊗mGp1,...,pd

N,L,q1,...,qd
(x, t)

∣∣ < ∞
(
L,m, p1, ..., pd, q1, ..., qd ∈ N0, q1 + ... + qd ≤ 1 + p1 + ... + pd; T > 0

) (3.57)

and
sup

x∈Rd,t∈[0,T ],N∈N

∣∣Hp1,...,pd

N,L,l,q1,...,qd
(x, t)

∣∣ < ∞
(
L, p1, . . . , pd, q1, . . . , qd ∈ N0, l = 1, . . . , L,

q1 + . . . + qd ≤ 2 + 2l + p1 + . . . + pd, T > 0
)

(3.58)
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Next, (2.13), (2.14), (2.20), (3.48) - (3.51) and Lemma 1 imply

sup
x∈Rd,t∈[0,T ],N∈N

∣∣∣ ∂p1+...+pd

∂p1
1 · · · ∂pd

d

FN,L(x, t)
∣∣∣ < ∞ (

L, p1, ..., pd ∈ N0, T > 0
)
. (3.59)

Both in (3.54) and (3.55) the principal part is determined by the time dependent partial
differential operator LN,L, which for any fixed L has a bounded, smooth coefficient
1
2 + fN,L and is uniformly positive definite uniformly for N sufficiently large. More
precisely, (1.4), (2.14), (2.20) and (3.48) yield

sup
x∈Rd,t∈[0,T ],N∈N

∣∣∇⊗m∂r
t fN,L(x, t)

∣∣ < ∞ (L,m, r ∈ N0, T > 0). (3.60)

Using additionally (2.21) we obtain for any L and T the existence of some N0(L, T ) ∈ N
such that

inf
{

1
2 + fN,L(x, t) : x ∈ Rd, t ∈ [0, T ], N > N0(L, T )

}
≥ 1

4 (L ∈ N0, T > 0). (3.61)

For our further calculations in the proof of Theorem 2 we now choose some fixed
but arbitrary T1 > 0, and then restrict our considerations to the time interval [0, T1].
By (2.13), (2.14), and (2.20) we then may suppose that N ≥ N0(L, T1) (L ∈ N0).

As consequence of (3.60) and (3.61) the operator LN,L − ∂t has a fundamental
solution

ΓN,L : R2d × {
(s, t) ∈ [0, T1]2 : 0 ≤ s < t ≤ T1

} → R

with a Gaussian upper bound, i.e.,

0 ≤ ΓN,L(x, y; s, t) ≤ C15

(t− s)d/2
exp

(
− C16

(x− y)2

t− s

)

(
x, y ∈ Rd, 0 ≤ s < t ≤ T1, L ∈ N0, N ≥ N0(L, T1)

) (3.62)

where the constants C15 = C15(L, T1) and C16 = C16(L, T1) may depend on L and T1,
however, are independent of N = N0(L, T1), N0(L, T1) + 1, . . . (cf. [4]). As supplement
of (3.62) also an estimate

∣∣∇xΓN,L(x, y; s, t)
∣∣ +

∣∣∇yΓN,L(...)
∣∣ ≤ C17

(t− s)(d+1)/2
exp

(
− C18

(x− y)2

t− s

)

(
x, y ∈ Rd, 0 ≤ s < t ≤ T1, L ∈ N0, N ≥ N0(L, T1)

) (3.63)

for the gradients of ΓN,L with respect to the spatial variables holds. In the literature
we only could find the derivation of (3.63) for fixed N ≥ N0(L, T1) (cf. [5: Chapter 1]).
Hence, a proof that it indeed holds uniformly in N ≥ N0(L, T1) is given in Appendix
B. As crucial prerequisite for that result the fact that (3.60) and (3.61) hold uniformly
in N ≥ N0(L, T1) is needed.
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Using the fundamental solution ΓN,L of LN,L − ∂t equations (3.55) may be written
as

∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρδ
N,L(x, t)

=
∫

Rd

dz ΓN,L(z, x; s, t)
∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρδ
N,L(z, s)

+
∫ t

s

du

∫

Rd

dz ΓN,L(z, x; u, t)

×
( ∑

0≤q1,...,qd≤1+p1+...+pd
q1+...+qd≤1+p1+...+pd

Gp1,...,pd

N,L,q1,...,qd
(z, u)

∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρδ
N,L(z, u)

+
L∑

l=1

∑
0≤q1,...,qd≤2+2l+p1+...+pd
q1+...+qd≤2+2l+p1+...+pd

Hp1,...,pd

N,L,l,q1,...,qd
(z, u)

∂q1+...+qd

∂q1
1 · · · ∂qd

d

ρδ
N,L−l(z, u)

+
∂p1+...+pd

∂p1
1 · · · ∂pd

d

FN,L(z, u)

)

(
x ∈ Rd, 0 ≤ s < t ≤ T1; L, p1, . . . , pd ∈ N0, N ≥ N0(L, T1)

)
.

(3.64)

To obtain upper bounds for ρδ
N,L and its partial derivatives we shall employ (3.64) as

basic relation of some induction procedure with respect to p = p1+ . . .+pd and L. First,
the order of the spatial derivatives of ρδ

N,L in the integrand on the right side of (3.64)
may be reduced by 1 by performing integration by parts. As consequence of estimates
(3.57) - (3.59), (3.62) and (3.63) we then get

‖∇⊗pρδ
N,L(·, t)‖∞
≤ C19(L, p)‖∇⊗pρδ

N,L(·, s)‖∞

+ C20(L, p)
∫ t

s

du
1√

t− u

∫

Rd

dζ
1

(t− u)d/2
exp

(
− C21(L)

ζ2

t− u

)

×
( p∑

q=0

‖∇⊗qρδ
N,L(·, u)‖∞ +

L∑

l=1

2+2l+p∑
q=0

‖∇⊗qρδ
N,L−l(·, u)‖∞ + 1

)

≤ C19(L, p)‖∇⊗pρδ
N,L(·, s)‖∞ + C22(L, p)

∫ t

s

du
1√

t− u

×
( p∑

q=0

‖∇⊗qρδ
N,L(·, u)‖∞ +

L∑

l=1

2+2l+p∑
q=0

‖∇⊗qρδ
N,L−l(·, u)‖∞ + 1

)

(
0 ≤ s < t ≤ T1, L, p ∈ N0, N ≥ N0(L, T1)

)
.

(3.65)

To start the induction we choose L = p = s = 0. Then, by (3.56) relation (3.65) turns
into

‖ρδ
N,0(·, t)‖∞ ≤ C + C22(0, 0)

∫ t

0

du
1√

t− u
‖ρδ

N,0(·, u)‖∞ (3.66)
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for 0 ≤ t ≤ T1 and N ≥ N0(0, T1), i.e., we may conclude

sup
u≤T1∧(4C22(0,0))−2

N≥N0(0,T1)

‖ρδ
N,0(·, u)‖∞ < ∞. (3.67)

Hence, (2.19) for L = m = k = 0 and T ≤ T1 ∧ (4C22(0, 0))−2 is proved. To deduce
(2.19) for L = m = k = 0 and any T ≤ T1 we then obviously have to repeat the
arguments leading to (3.66) and (3.67) successively in the intervals

[
T1 ∧ (4C22(0, 0))−2, T1 ∧ 2(4C22(0, 0))−2

]
[
T1 ∧ 2(4C22(0, 0))−2, T1 ∧ 3(4C22(0, 0))−2

]

...

Suppose now that (2.19) for L = k = 0, m = p and T = T1 is shown. Then, by a further
application of (3.65) an analogue of (3.66) for

∥∥∥ ∂p1+...+pd

∂p1
1 · · · ∂pd

d

ρδ
N,0(·, t)

∥∥∥
∞(

p1, . . . , pd = 0, . . . , p + 1; p1 + . . . + pd = p + 1, t ∈ [0, T1]
)

may be derived. By arguments like those in the preceding paragraph we next get (2.19)
for L = k = 0, m = p+1 and T = T1. Consequently, by induction on p we obtain (2.19)
for L = k = 0, T = T1 and any m ∈ N0.

Now, assume that (2.19) for L = L1, k = 0, T = T1 and any m ∈ N0 is verified.
Then, (3.65) may be applied once more to yield successively relations similar to (3.66) for
the L∞-norms of ρδ

N,L1+1 and its partial derivatives in certain time intervals exhausting
[0, T1]. These relations finally imply (2.19) for L = L1 + 1, k = 0, T = T1 and any
m ∈ N0, i.e., by another induction procedure any L ∈ N0 is handled.

We still have to study the cases k > 0. However, since by (3.54) and (3.55) time
derivatives of ρδ

N,L may be written in terms of spatial derivatives of ρδ
N,L−l (l =

0, . . . , L), ρN , ρ and ρ{r} (r = 1, . . . , L), our previous regularity results (2.13), (2.14),
(2.20) and (2.19) for k = 0 suffice to complete the proof of Theorem 2.

3.3 Proof of Theorem 3. The calculations in Subsections 3.1 and 3.2 are independent
of regularity properties of φr

1 or φ1. However, if (2.2)∗ holds instead of (2.2), we still
have to justify these calculations. In particular, we have to check, if for any T ′ > 0,
which from now on is fixed for the remainder of this subsection, some N(T ′) ∈ N
may be chosen, such that for N ≥ N(T ′) there exists a unique solution ρN of (1.1)
in [0, T ′] satisfying (2.25) and (2.26). To construct these solutions we shall apply an
approximation procedure, where a sequence of smooth kernels satisfying (2.2) converging
to an arbitrary φr

1, which only satisfies (2.2)∗, is involved.
Therefore, for any fixed pair (φr

1, φ1) of functions satisfying (2.1), (2.3) and (2.2)∗

we introduce some sequence (φr
1,k, φ1,k) (k ∈ N) whose elements satisfy (2.1) - (2.3)

and
lim

k→∞
〈φ1,k, f〉 = 〈φ1, f〉 (f ∈ Cb(Rd)). (3.68)
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This condition states weak convergence of φ1,k to φ1 as k →∞ in the space of probability
densities on Rd. By applying now for any fixed k ∈ N scalings (1.2) and (2.4) to φ1,k

and φr
1,k, respectively, we obtain the kernels

φr
N,k(x) = θd

Nφr
1,k(θNx)

φN,k(x) = θd
Nφ1,k(θNx)

}
(x ∈ Rd; k, N ∈ N). (3.69)

Next, a family ρN,k (k, N ∈ N) of solutions of (1.1) with interaction kernels φN,k, which
satisfy (2.10) and (2.11), i.e.,

ρN,k ∈ C∞b (Rd × [0, T ]) (T > 0; k, N ∈ N)

and
ρN,k(·, t) ≥ 0,

∫

Rd

dx ρN,k(x, t) = 1 (t ≥ 0; k, N ∈ N) (3.70)

can be introduced. By our considerations in Remark (ii) in Section 2 these functions
exist uniquely. Furthermore, the above-mentioned independence of our estimates in
Subsection 3.1 leads to

sup
t≤T 0∗ , k,N∈N

‖ρN,k(·, t)‖(m,1) < ∞ (m ∈ N0) (3.71)

sup
x∈Rd, t≤T 0∗ , k,N∈N

|∇⊗m∂r
t ρN,k(x, t)| < ∞ (m, r ∈ N0) (3.72)

where T 0
∗ is introduced between (3.26) and (3.27). These relations may be proved in

quite the same way as the restrictions of (2.12) and (2.13) to Rd × [0, T 0
∗ ] in Subsection

3.1.
For any fixed N ∈ N the uniform regularity (3.72) and the Ascoli-Arzelà Theorem

imply the existence of some subsequence k1 = k1(N) < k2 = k2(N) < . . . in N, such
that

lim
n→∞

sup
(x,t)∈K

∣∣∣∇⊗m∂r
t ρN,kn(x, t)−∇⊗m∂r

t ρN (x, t)
∣∣∣ = 0

(
m, r ∈ N0,K ⊆ Rd × [0, T 0

∗ ] compact , N ∈ N) (3.73)

for some ρN ∈ C∞b (Rd × [0, T 0
∗ ]).

By utilizing the boundedness of ρN,k with respect to the norms ‖ · ‖(m,1) (m ∈ N0)
uniformly in k, N ∈ N (cf. (3.71)) we can extend (3.73), which states convergence locally
in space, to a global convergence result. To prove this improvement we first note that
by (1.1) and (3.72) any partial derivative

∂m1+...+md

∂m1
1 · · · ∂md

d

∂r
t ρN,k

(
m1, . . . , md, r ∈ N0

)

may be written as sum of products of spatial derivatives of ρN,k and ρN,k ∗ φN,k. Con-
sequently, by (2.2)∗, (3.69), (3.71) and (3.72) we get

sup
t≤T 0∗ , k,N∈N

∫

Rd

dx (1 + |x|)∣∣∇⊗m∂r
t ρN,k(x, t)

∣∣2 < ∞ (m, r ∈ N0) (3.74)



A Sequence of Integro-Differential Equations 85

as extension of (3.71). In a next step, (1.12), (3.73) and (3.74) imply

lim
n,n′→∞

sup
x∈Rd,t≤T 0∗

∣∣∣∇⊗m∂r
t ρN,kn

(x, t)−∇⊗m∂r
t ρN,kn′ (x, t)

∣∣∣
2

≤ C(d,m, 1 + [d/2])2 lim
n,n′→∞

sup
t≤T 0∗

∥∥∥∂r
t ρN,kn

(·, t)− ∂r
t ρN,kn′ (·, t)

∥∥∥
2

(m+1+[d/2])

≤ Cγd lim
n,n′→∞

sup
|x|≤γ,t≤T 0∗

m+1+[d/2]∑
p=0

∣∣∣∇⊗p∂r
t ρN,kn

(x, t)−∇⊗p∂r
t ρN,kn′ (x, t)

∣∣∣
2

+
C

1 + γ
sup

t≤T 0∗ , k,M∈N

m+1+[d/2]∑
p=0

∫

Rd

dx (1 + |x|)∣∣∇⊗p∂r
t ρM,k(x, t)

∣∣2

≤ C

1 + γ

(
m, r ∈ N0; γ > 0, N ∈ N)

,

i.e., for m, r ∈ N0 and N ∈ N, ∇⊗m∂r
t ρN,kq (q ∈ N) is a Cauchy sequence in Cb(Rd ×

[0, T 0
∗ ]). Therefore, with (3.73) we obtain the desired global convergence, i.e.,

lim
n→∞

sup
(x,t)∈Rd×[0,T 0∗ ]

∣∣∣∇⊗m∂r
t ρN,kn(x, t)−∇⊗m∂r

t ρN (x, t)
∣∣∣ = 0 (3.75)

for m, r ∈ N0 and N ∈ N. By (3.68), (3.69), (3.72) and (3.75) we immediately observe
that in [0, T 0

∗ ] for any N ∈ N the function ρN solves (1.1) with interaction kernel φN

and satisfies (2.25) with N(T 0
∗ ) = 1. As far as (2.26) is concerned, ρN (·, t) ≥ 0 (t ∈

[0, T 0
∗ ], N ∈ N) follows from the corresponding positivity of ρN,k (cf. (3.70)) and (3.75).

Next, considering
Rd × [0, T 0

∗ ] 3 (x, t) → ∇(ρN (·, t) ∗ φN )(x)

as given drift vector field, (1.1) may be interpreted as a linear Fokker-Planck equation
with smooth coefficients. The probabilistic interpretation of such equations and the
uniqueness of their solutions (cf. [6]), and the validity of (2.7) for the initial state ρ0

of ρN imply that ρN (·, t) is the density of the law of the state YN (t) of some diffusion
process YN at time t. Consequently, ρN satisfies (2.26).

To verify for some fixed N ∈ N the uniqueness of ρN we suppose that another
function ρ∗N has the same properties. With (2.5) and (2.6) we then get, for t ∈ [0, T 0

∗ ],

d

dt

∥∥ρN (·, t)− ρ∗N (·, t)∥∥2

2

=
d

dt

(
‖ρN (·, t)‖22 − 2

〈
ρN (·, t), ρ∗N (·, t)〉 + ‖ρ∗N (·, t)‖22

)

=
〈
ρN (·, t), ∆ρN (·, t)〉− 〈

∆ρN (·, t), ρ∗N (·, t)〉− 〈
ρN (·, t),∆ρ∗N (·, t)〉

+
〈
ρ∗N (·, t),∆ρ∗N (·, t)〉− 2

〈∇ρN (·, t), ρN (·, t)∇(ρN (·, t) ∗ φN )
〉

+ 2
〈
ρN (·, t)∇(ρN (·, t) ∗ φN ),∇ρ∗N (·, t)〉

+ 2
〈∇ρN (·, t), ρ∗N (·, t)∇(ρ∗N (·, t) ∗ φN )

〉
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− 2
〈∇ρ∗N (·, t), ρ∗N (·, t)∇(ρ∗N (·, t) ∗ φN )

〉

= −∥∥∇(ρN (·, t)− ρ∗N (·, t))∥∥2

2

+ 2
〈
∇ρ∗N (·, t)−∇ρN (·, t), ρN (·, t)∇(ρN (·, t) ∗ φN )

〉

+ 2
〈
∇ρN (·, t)−∇ρ∗N (·, t), ρ∗N (·, t)∇(ρ∗N (·, t) ∗ φN )

〉

= −∥∥∇(ρN (·, t)− ρ∗N (·, t))∥∥2

2

+ 2
〈
∇ρ∗N (·, t)−∇ρN (·, t), ρN (·, t)

(
∇(ρN (·, t) ∗ φN )−∇(ρ∗N (·, t) ∗ φN )

)〉

+ 2
〈
∇ρ∗N (·, t)−∇ρN (·, t), (ρN (·, t)− ρ∗N (·, t))∇(ρ∗N (·, t) ∗ φN )

〉

≤ C
∥∥ρN (·, t)− ρ∗N (·, t)

∥∥2

2
+ C23

∥∥∇(ρN (·, t) ∗ φN )−∇(ρ∗N (·, t) ∗ φN )
∥∥2

2

≤ C
∥∥ρN (·, t)− ρ∗N (·, t)∥∥2

2
+ C23

∥∥∇(ρN (·, t) ∗ φr
N )−∇(ρ∗N (·, t) ∗ φr

N )
∥∥2

2
,

and

d

dt

∥∥ρN (·, t) ∗ φr
N − ρ∗N (·, t) ∗ φr

N

∥∥2

2

= −∥∥∇(ρN (·, t) ∗ φr
N )−∇(ρ∗N (·, t) ∗ φr

N )
∥∥2

2
− 2

〈
ρN (·, t), |∇(ρN (·, t) ∗ φN )|2〉

+ 2
〈
ρN (·, t)∇(ρN (·, t) ∗ φN ),∇(ρ∗N (·, t) ∗ φN )

〉

+ 2
〈
∇(ρN (·, t) ∗ φN ), ρ∗N (·, t)∇(ρ∗N (·, t) ∗ φN )

〉

− 2
〈
ρ∗N (·, t), |∇(ρ∗N (·, t) ∗ φN )|2〉

= −
∥∥∇(ρN (·, t) ∗ φr

N )−∇(ρ∗N (·, t) ∗ φr
N )

∥∥2

2

− 2
〈
ρN (·, t), |∇(ρN (·, t) ∗ φN )−∇(ρ∗N (·, t) ∗ φN )|2

〉

+ 2
〈
ρN (·, t)−ρ∗N (·, t),∇(ρ∗N (·, t) ∗ φN )

(
∇(ρ∗N (·, t)∗φN )−∇(ρN (·, t)∗φN )

)〉

≤ − 1
2

∥∥∇(ρN (·, t) ∗ φr
N )−∇(ρ∗N (·, t) ∗ φr

N )
∥∥2

2
+ C

∥∥ρN (·, t)− ρ∗N (·, t)∥∥2

2
.

Obviously, these relations yield

d

dt

(∥∥ρN (·, t)− ρ∗N (·, t)
∥∥2

2
+ 2C23

∥∥ρN (·, t) ∗ φr
N − ρ∗N (·, t) ∗ φr

N

∥∥2

2

)

≤ C
∥∥ρN (·, t)− ρ∗N (·, t)

∥∥2

2
(t ∈ [0, T 0

∗ ]),

and therefore Gronwall’s Lemma implies ‖ρN (·, t) − ρ∗N (·, t)‖2 = 0 (t ∈ [0, T 0
∗ ]) which

proves the desired uniqueness of ρN .
By (3.71), (3.72) and (3.75) relations (2.27), (2.28) hold for the sequence ρN (N ∈

N) if T ′ ≤ T 0
∗ . In particular, in that time interval the prerequisites for performing the

calculations of Subsection 3.2 are given now, i.e., we also may deduce (2.29) in the case
T ′ ≤ T 0

∗ . Note that in this situation we may choose N(T ′) = 1.
If T ′ > T 0

∗ , we have to utilize the arguments from the end of the proof of Theorem
1. More precisely, first some N1 ∈ N may be determined, such that (3.43) holds. Next,
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using the kernels φr
1,k, φ1,k (k ∈ N) introduced above we may continue to work with

solutions ρ1
N,k (k ∈ N, N ≥ N1) of (1.1) in [T 0

∗ ,∞) with initial conditions ρ1
N,k(·, T 0

∗ ) =
ρN (·, T 0

∗ ) (k ∈ N, N ≥ N1). Then, just as between (3.43) and (3.46) some T 1
∗ exists

with

sup
T0∗≤t≤T1∗

k∈N,N≥N1

(
‖ρ1

N,k(·, t)‖2(2m0)
+ C6(T ′)‖ρ1

N,k(·, t) ∗ φr
N,k‖2(2m0)

)
≤ 3

4C1(2m0)2C5(T ′)2

in analogy to (3.46). Note that we have emphasized here that the constants C5 and C6

may depend on T ′. Now, additional estimates for Sobolev norms with higher orders for
ρ1

N,k(·, t) (t ∈ [T 0
∗ , T 1

∗ ], k ∈ N, N ≥ N1) may be obtained as in (3.29) - (3.42). Then,
for any N ≥ N1 the limit k →∞ may be performed to obtain the extension to [T 0

∗ , T 1
∗ ]

of the solution ρN of (1.1) pertaining to (φr
1, φ1). In particular, we now get Theorem 3

for T ′ ≤ T 1
∗ .

Similarly as in the proof of Theorem 1 these arguments may be iterated as long as
necessary, i.e., if for some q we get T q

∗ ≥ T ′. The associated Nq is the desired N(T ′).

4. Appendix A: Formal derivation of expansion (1.6)

In this appendix we shall demonstrate how expansion (1.6) of ρN , where ρ solves (1.5)
and the functions ρ{k} (k ∈ N) satisfy (2.15) - (2.18), can be determined by some quite
straightforward formal calculations.

First, we insert (1.6) with ρ = ρ{0} as ansatz into (1.1), and then expand the
convolution with φN according to Lemma 1. In particular, if for some fixed L ∈ N0 we
omit any term of order o(θ−2L

N ) as N →∞, we obtain

∂tρN

(
≈

L∑

k=0

θ−2k
N ∂tρ{k}

)

= 1
2∆ρN +∇ · (ρN∇(ρN ∗ φN )

)

≈ 1
2

L∑

k=0

θ−2k
N ∆ρ{k} +∇ ·

(( L∑

k=0

θ−2k
N ρ{k}

)
∇

( L∑

k=0

θ−2k
N ρ{k} ∗ φN

))

≈ 1
2

L∑

k=0

θ−2k
N ∆ρ{k} +∇ ·

(( L∑

k=0

θ−2k
N ρ{k}

)

∇
(

L∑

k=0

θ−2k
N

( L∑

l=0

θ−2l
N

∑
0≤l1,...,ld≤2l

l1+...+ld=2l

σ∗(l1, . . . , ld; φ1)
∂2l

∂l1
1 · · · ∂ld

d

ρ{k}

)))

≈ 1
2

L∑

k=0

θ−2k
N ∆ρ{k}

+
L∑

k=0

θ−2k
N

k∑
p=0

k−p∑
q=0

∑
0≤l1,...,ld≤2(k−p−q)
l1+...+ld=2(k−p−q)

σ∗(l1, ..., ld; φ1)∇·
(
ρ{p}∇

∂2(k−p−q)

∂l1
1 · · · ∂ld

d

ρ{q}
)
.
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Now, by comparing the coefficients of different powers of θ−2
N we observe that ρ{0} = ρ

solves (1.5) and that ρ{k} (k ∈ N) satisfy (2.15) - (2.18).

5. Appendix B: Proof of (3.63)

Since LN,L is in divergence form (cf. (3.52)), we get

ΓN,L(x, y; s, t) = ΓN,L(y, x; s, t)(
x, y ∈ Rd, 0 ≤ s < t ≤ T1, L ∈ N0, N ≥ N0(L, T1)

)
.

Hence, it suffices to estimate
∣∣∇yΓN,L(x, y; s, t)

∣∣ (
y ∈ Rd, t ∈ (s, T1]

)

with x ∈ Rd, s ∈ [0, T1), L ∈ N0 and N ≥ N0(L, T1) being fixed in the remaining parts
of this appendix.

To obtain the desired estimate (3.63) we shall apply [3: Corollary 1.2.22] where
scaled modifications of ΓN,L have to be considered in order to cover all y ∈ Rd and
t ∈ (s, T1]. In particular, we define

γλ(η, τ) = ΓN,L(x, y + λη; s, t + λ2τ)
(
η ∈ Rd, τ ∈ (

s−t
λ2 , T1−t

λ2

])
(B.1)

where y ∈ Rd and t ∈ (s, T1] are also fixed from now on. Since ΓN,L is a fundamental
solution of LN,L − ∂t, we deduce

∂

∂τ
γλ(η, τ)

= λ2 ∂

∂u
ΓN,L(x, y + λη; s, u)

∣∣
u=t+λ2τ

= λ2∇z ·
((

1
2 + fN,L(z, t + λ2τ)

)∇zΓN,L(x, z; s, t + λ2τ)
)∣∣∣

z=y+λη

= ∇η ·
((

1
2 + fλ

N,L;y,t(η, τ)
)∇ηγλ(η, τ)

) (
η ∈ R, τ ∈ (

s−t
λ2 , T1−t

λ2

])

(B.2)

where
fλ

N,L;y,t(η, τ) = fN,L(y + λη, t + λ2τ). (B.3)

In our further calculations we shall use the scaling parameter λ =
√

(t− s)/8 = λ(s, t).
As consequence of (3.60) and (3.61) the associated functions f

λ(s,t)
N,L;y,t satisfy

sup





∣∣∇⊗m
η ∂r

τf
λ(s,t)
N,L;y,t(η, τ)

∣∣
∣∣∣∣∣∣

y, η ∈ Rd, N ≥ N0(L, T1)

0 ≤ s < t ≤ T1,
s−t

λ(s,t)2 < τ ≤ T1−t
λ(s,t)2



 < ∞ (B.4)

(L,m, r ∈ N0, T1 > 0)

inf





1
2 + f

λ(s,t)
N,L;y,t(η, τ)

∣∣∣∣∣∣
y, η ∈ Rd, N ≥ N0(L, T1)

0 ≤ s < t ≤ T1,
s−t

λ(s,t)2 < τ ≤ T1−t
λ(s,t)2



 ≥ 1

4
(B.5)

(L ∈ N0, T1 > 0).
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Applying now [3: Corollary 1.2.22] to the solution (η, τ) → γλ(s,t)(η, τ) of (B.2) we get

‖∇γλ(s,t)‖L∞(Q1/2) ≤ CCK‖γλ(s,t)‖L2(Q2) (B.6)

where
Qr =

{
η ∈ Rd : |η| < r

}× {
τ ∈ R : −r2 < τ ≤ 0

}
.

As consequence of (B.4) and (B.5) for any L ∈ N0 and T1 > 0 the constant CCK is
independent of x, y ∈ Rd, 0 ≤ s < t ≤ T1 and N ≥ N0(L, T1), which are fixed during
the present calculations.

To deduce (3.63) we now consider both sides of (B.6) in more detail. First, we
observe

‖∇γλ(s,t)‖L∞(Q1/2)

= sup
{
|∇ηΓN,L(x, y + λ(s, t)η; s, t + λ(s, t)2τ)

∣∣∣ |η| < 1
2 , τ ∈ (− 1

4 , 0
]}

≥ λ(s, t)
∣∣∇yΓN,L(x, y; s, t)

∣∣

=
√

t−s
8

∣∣∇yΓN,L(x, y; s, t)
∣∣.

(B.7)

Next, by (3.62) we obtain

‖γλ(s,t)‖2L2(Q2)

=
∫

{|η|<2}
dη

∫ 0

−4

dτ
∣∣∣ΓN,L

(
x, y + λ(s, t)η; s, t + λ(s, t)2τ

)∣∣∣
2

≤ C

∫

{η∈Rd:|η|<2}
dη

∫ 0

−4

dτ
exp

(
− C ′ |y+λ(s,t)η−x|2

|t+λ(s,t)2τ−s|
)

|t + λ(s, t)2τ − s|d

=
C

λ(s, t)d+2

∫

{η′∈Rd:|η′|<2λ(s,t)}
dη′

∫ 0

−4λ(s,t)2
dτ ′

exp
(
− C ′ |y+η′−x|2

|t+τ ′−s|
)

|t + τ ′ − s|d

=
C

(t− s)(d+2)/2

∫

{η′∈Rd:|η′|<
√

(t−s)/2}
dη′

∫ 0

−(t−s)/2

dτ ′
exp

(
− C ′ |y+η′−x|2

|t+τ ′−s|
)

|t + τ ′ − s|d

= I(x, y; s, t).

(B.8)

To estimate I(x, y; s, t) we consider two cases. First, if
√

t−s
2 < |x−y|

2 , then

I(x, y; s, t) ≤ C

|t− s|(d+2)/2

exp
(
− C ′ |x−y|2

|t−s|
)

|t− s|d |t− s|d/2|t− s|

≤ C
exp

(
− C ′ |x−y|2

|t−s|
)

|t− s|d .

(B.9)
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On the other hand, if
√

t−s
2 ≥ |x−y|

2 , then we observe also

I(x, y; s, t) ≤ C

|t− s|(d+2)/2

∫

Rd

dη′
∫ 0

−(t−s)/2

dτ ′
exp

(
− C ′ |y+η′−x|2

|t+τ ′−s|
)

|t + τ ′ − s|d

≤ C

|t− s|d

≤ C
exp

(
− C ′ |x−y|2

|t−s|
)

|t− s|d .

(B.10)

Relation (3.63) now follows from (B.6) - (B.10). In particular, we need the fact that all
constants herein are independent of x, y ∈ Rd, 0 ≤ s < t ≤ T1 and N ≥ N0(L, T1) for
any L ∈ N0 and T1 > 0.
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[6] Gärtner, J.: On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137
(1988), 197 – 248.

[7] Kipnis, C. and C. Landim: Scaling Limits of Interacting Particle Systems. Berlin: Sprin-
ger-Verlag 1999.
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[11] Oelschläger, K.: On the derivation of reaction-diffusion equations as limit dynamics of
systems of moderately interacting stochastic processes. Probab. Theory Rel. Fields 82
(1989), 565 – 586.
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