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A Topological Fixed-Point Index Theory
for Evolution Inclusions

R. Bader

Abstract. In the paper we construct a topological fixed-point theory for a class of set-valued
maps which appears in natural way in boundary value problems for differential inclusions. Our
construction is based upon the notion of (U, V )-approximation in the sense of Ben-El-Mechaiekh
and Deguire. As applications we consider initial-value problems for nonlinear evolution inclu-
sions of the type

x′(t) ∈ −A(t, x(t)) + F (t, x(t))

x(0) = x0

)

where the operator A satisfies various monotonicity assumptions and F is an upper semi-
continuous set-valued perturbation.
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1. Introduction

It is well-known that various types of boundary value problems for differential inclusions
may be equivalently reformulated as set-valued fixed-point problems

x ∈ F(x) := S ◦NF (x) (1)

in appropriately choosen functional spaces (see [9] and references given there). In (1)
NF denotes the set-valued Nemytskii operator associated with the right-hand side F
of the differential inclusion (see Section 4 for relevant definitions) and S is a (single-
valued) operator given by the problem under consideration (S might be, e.g., an integral
operator, the Green operator, mild solution operator etc.). In the present paper we
would like to construct a topological fixed-point index theory for maps as considered in
problem (1).

We have to encounter two different types of problems:
1. In applications of the fixed-point index theory which we have in mind the mapping

S is nonlinear; hence we are not able to assume that the map F has convex values, even
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if (as we do assume) F and therefore also NF has convex values. Thus we treat F as
composition of the convex-valued map NF and S (compare the approach in [10]).

2. Under our assumptions the set-valued Nemytskii operator is upper semi-continu-
ous from the strong to the weak topology. This has to be counterbalanced by a stronger
continuity assumption on the map S (it will be supposed that S is sequentially continu-
ous from the weak to the strong topology). Fortunately, S has this property in various
types of problems.

The fixed-point index theory will be constructed via the method of single-valued
approximation. Homological techniques widely used in the fixed-point index theory
of set-valued maps are not necessary. Since we have to consider the (non-metrizable)
weak topology on Banach spaces, we will use the concept of (U, V )-approximability from
Ben-El-Mechaiekh and Deguire [4]. This notion extends in a natural way the notion
of ε-approximability used in metric spaces to topological vector spaces. Preliminary
results on (U, V )-approximability will be given in Section 2. In Section 3 we define the
fixed-point index theory and derive some fixed-point principles from its main properties.
In the spirit of Couchouron and Kamenskii [8] we then apply our results in Section 4
in a unifying approach to various types of evolution inclusions. Examples are given in
Section 5.

In the forthcoming paper [3] the fixed-point index theory presented here will be ap-
plied to vector differential inclusions involving the p-Laplacian and nonlinear boundary
conditions formulated in terms of maximal monotone maps.

Acknowledgment. The author would like to thank Professor N. S. Papageorgiou
for helpful discussions during the preparation of this paper.

2. Preliminaries

Let X and Y be topological spaces. A set-valued transformation ϕ of X into Y will
be denoted by ϕ : X−−−◦Y . We say that ϕ is upper semi-continuous provided for each
open set V ⊂ Y the set {x ∈ X : ϕ(x) ⊂ V } is open in X. Given a set-valued map
ψ : Y−−−◦Z, the composition of ϕ and ψ, denoted by ψ ◦ϕ, is the set-valued map from
X into Z given by (ψ ◦ ϕ)(x) =

⋃
y∈ϕ(x) ψ(y). In the case X ⊂ Y , a point x ∈ X such

that x ∈ ϕ(x) is called a fixed-point of ϕ; the set of all fixed-points of ϕ is denoted by
Fix (ϕ).

Let E and F be topological vector spaces. By UE(0) and UF (0) we denote the filter
of neighborhoods of the origin in E and F , respectively. Now let ϕ : X−−−◦Y be a
set-valued map where X ⊂ E and Y ⊂ F , and let U ∈ UE(0) and V ∈ UF (0) be given.
Following [4], we say that a continuous map f : X → Y is an (U, V )-approximation of
ϕ provided

f(x) ∈ (
ϕ[(x + U) ∩X] + V

) ∩ Y for each x ∈ X. (2)

We say that ϕ is approximable, if for each U ∈ UE(0) and V ∈ UF (0) there exists an
(U, V )-approximation of ϕ.

For given neighborhoods U ′ ∈ UE(0) and V ′ ∈ UF (0) such that U ′ ⊂ U and V ′ ⊂ V
any (U ′, V ′)-approximation is also an (U, V )-approximation of ϕ. In the case where
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E and F are normed spaces we can consider the ε-balls BE(0, ε) and BF (0, ε) 1) as
neighborhoods of the origin; then any

(
BE(0, ε), BF (0, ε)

)
-approximation of ϕ is the

usual ε-approximation on the graph of ϕ (see [7]).

The following Lemma generalizes [4: Proposition 3.3].

Lemma 1. Let X, Y and Z be subsets of topological vector spaces E, F and G,
respectively. Let ϕ : X−−−◦Y and ψ : Y−−−◦Z be upper semi-continuous set-valued
maps with compact values and assume that X is compact. Then for each U ∈ UE(0)
and W ∈ UG(0) there exist U0 ∈ UE(0), V0 ∈ UF (0) and W0 ∈ UG(0) such that g ◦ f
is an (U,W )-approximation of ψ ◦ϕ, provided that f is an (U0, V0)-approximation of ϕ
and g is an (V0, W0)-approximation of ψ. In particular, ψ ◦ϕ is approximable, provided
that ϕ and ψ are approximable.

Proof. Let U ∈ UE(0) and W ∈ UG(0) be fixed. Take U ′ ∈ UE(0) closed such that
U ′ + U ′ ⊂ U and define an open and balanced U0 ∈ UE(0) such that U0 + U0 ⊂ U ′.
Also, let W0 ∈ UG(0) be such that W0 + W0 ⊂ W . Since X is compact, there are
x1, . . . , xm ∈ X such that {xi + U0}m

i=1 is an open cover of X. Since ϕ[(xi + U ′)∩X] is
compact and ψ is upper semi-continuous, it is easy to see that there exists Vi ∈ UF (0)
such that

ψ
[(

ϕ[(xi + U ′) ∩X] + Vi

) ∩ Y
] ⊂ ψ

(
ϕ[(xi + U ′) ∩X]

)
+ W0 (3)

for every i ∈ {1, . . . ,m}. Now let V :=
⋂m

i=1 Vi and define V0 ∈ UF (0) such that
V0 +V0 ⊂ V . Let f be an (U0, V0)-approximation of ϕ and g an (V0,W0)-approximation
of ψ. We claim that g ◦ f is an (U,W )-approximation of ψ ◦ ϕ. Let x ∈ X. From (2) it
follows that

f(x) ∈ (
ϕ[(x + U0) ∩X] + V0

) ∩ Y

g(f(x)) ∈ (
ψ[(f(x) + V0) ∩ Y ] + W0

) ∩ Z.

Take i ∈ {1, . . . , m} such that x ∈ xi + U0. Then x + U0 ⊂ xi + U ′ and thus f(x) ∈
ϕ[(xi + U ′) ∩X] + V0. It follows that

(f(x) + V0) ∩ Y ⊂ (
ϕ[(xi + U ′) ∩X] + Vi

) ∩ Y.

Hence,

g(f(x)) ∈
(
ψ

[(
ϕ[(xi + U ′) ∩X] + Vi

) ∩ Y
]
+ W0

)
∩ Z

(3)⊂ (
ψ(ϕ[(xi + U ′) ∩X]) + W

) ∩ Z

⊂ (
ψ ◦ ϕ[(x + U) ∩X] + W

) ∩ Z

and the lemma is proved

As an example of (U, V )-approximability we have the following

1) For a normed space E, a point x ∈ E and ε > 0 we denote by BE(x, ε) = {y ∈ E :
‖x − y‖ < ε} the open ball and by DE(x, ε) = {y ∈ E : ‖x − y‖ ≤ ε} the closed ball with
center x and radius ε.
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Proposition 2 (see [4, 11]). Let X be a compact, convex subset of a Banach space
E and Y a closed, convex subset of a topological vector space F . Let ϕ : X−−−◦Y be an
upper semi-continuous mapping with compact, convex values. Then:

(i) ϕ is approximable.
(ii) For any ε > 0 and any V ∈ UF (0) there exist ε∗ > 0 and V ∗ ∈ UF (0) such

that for given (BE(0, ε∗), V ∗)-approximations f, g : X → Y of ϕ there is a homotopy h :
X × [0, 1] → Y such that h(·, 0) = f, h(·, 1) = g and h(·, t) : X → Y is a (BE(0, ε), V )-
approximation of ϕ for each t ∈ [0, 1].

Let F be a real Banach space. If F is endowed with the weak topology, we will
denote it by (F, w). Also, given a subset Y of F , then (Y,w) will denote the weak
relative topology on Y . The convergence in (F, w) (or in (Y,w)) will be denoted by
yn

w−→ y.
In the next section we will need the following

Lemma 3 (compare [1]). Let Z be a topological space, Y a weakly compact subset
of a Banach space F and let T : (Y, w) → Z be a map. Then T is continuous from
(Y, w) to Z if and only if T is sequentially continuous.

Proof. Clearly, it suffices to prove the “if ” part only. Let A ⊂ Z be closed. We
have to show that the set T−1(A) := {y ∈ Y : T (y) ∈ A} is weakly closed. But since Y
is weakly compact, T−1(A) is weakly relatively compact. Thus in view of the Eberlein-
Shmulian theorem, it suffices to prove that T−1(A) is weakly sequentially closed. So
let (yn) be a sequence in T−1(A) such that yn

w−→ y. Then by our assumption we see
that T (yn) → T (y). Since A is closed and T (yn) ∈ A we therefore get T (y) ∈ A, i.e.
y ∈ T−1(A) finishing the proof

3. A fixed-point index theory for a specific class
of set-valued maps

In the section we develop the fixed-point index theory suitable for application to bound-
ary value problems for differential inclusions. The construction, being similar to tech-
niques given in [2, 12], will be carried out in two steps.

Step 1. Let X be a compact, convex subset of a Banach space E and let Φ :
X−−−◦X be a set-valued map with the following property: There is a closed, convex
subset Y of a topological vector space F , an upper semi-continuous map ϕ : X−−−◦Y
with compact, convex values and a continuous map T : Y → X such that Φ = T ◦ ϕ.
In this case we say that Φ has a decomposition which we denote by

D(Φ) : X
ϕ−−−◦ Y

T−→ X. (4)

Let W be a (relatively) open subset of X and assume that Fix (Φ)∩∂W = ∅. For the
map Φ (more precisely, for the decomposition D(Φ) of Φ) we may define a fixed-point
index.

First, it is easy to see that there is η > 0 such that Fix (f) ∩ ∂W = ∅ for each
f : X → X being a

(
(BE(0, η), (BE(0, η)

)
-approximation of Φ. Using Lemma 1, we
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find γ > 0 and V ∈ UF (0) such that if f : X → Y is a (BE(0, γ), V )-approximation
of ϕ, then T ◦ f is a

(
(BE(0, η), (BE(0, η)

)
-approximation of Φ. Finally, we apply

Proposition 2/(ii) and obtain ε∗ > 0 and V ∗ ∈ UF (0) such that for given (BE(0, ε∗), V ∗)-
approximations f, g : X → Y of ϕ there is a homotopy h : X × [0, 1] → Y such that
h(·, 0) = f, h(·, 1) = g and h(·, t) : X → Y is a (BE(0, γ), V )-approximation of ϕ for
each t ∈ [0, 1].

Define the fixed-point index for D(Φ) on W by

IndX(D(Φ),W ) = indX(T ◦ f, W ) (5)

where f : X → Y is an arbitrary (BE(0, ε), V )-approximation of ϕ for ε, 0 < ε ≤ ε∗,
and V ⊂ V ∗. Here ind stands for the classical fixed-point index for single-valued maps
on compact absolute neighborhood retracts (see [6]).

The existence of the approximation f of ϕ in (5) follows from Theorem 2/(i). Also,
it is clear from the construction of the fixed-point index for D(Φ) in connection with
application of the homotopy property of ind that the above definition is independent
from the chosen (ε, V )-approximation. Finally, we see that this index is integer-valued.

In the following proposition we collect some properties of this fixed-point index.
Proofs follow easily from corresponding properties of the classical fixed-point index.

Proposition 4. Let Φ : X−−−◦X be a given set-valued map with decomposition
D(Φ) (see (4)) and W an open subset of X such that Fix (Φ) ∩ ∂W = ∅.

(i) (Additivity). Let Fix (Φ) ∩W ⊂ W1 ∪W2 where W1 and W2 are open disjoint
subsets of W . Then

IndX(D(Φ),W ) = IndX(D(Φ),W1) + IndX(D(Φ),W2).

Particularly, IndX(D(Φ),W ) 6= 0 implies Fix (Φ) ∩W 6= ∅.
(ii) (Homotopy). Let Ψ : X → X be given with a decomposition D(Ψ) : X

ψ−−−◦
Y

S−→ X such that D(Φ) and D(Ψ) are homotopic, i.e. there exists an upper semi-
continuous map η : X × [0, 1]−−−◦Y with compact, convex values such that η(·, 0) = ϕ
and η(·, 1) = ψ, and a continuous map h : Y × [0, 1] → X such that h(·, 0) = T and
h(·, 1) = S. Assume also that x /∈ χ(x, t) for every x ∈ ∂W and t ∈ [0, 1], where
χ : X × [0, 1]−−−◦X is the set-valued homotopy between Φ and Ψ given by χ(x, t) =
h(η(x, t), t) (observe χ(·, 0) = Φ and χ(·, 1) = Ψ). Then

IndX(D(Φ), W ) = IndX(D(Ψ),W ).

(iii) (Weak normalization). Assume that T in D(Φ) is a constant map, i.e. T (x) =
a /∈ ∂W for each x ∈ Y . Then

IndX(D(Φ), W ) =
{

1 if a ∈ W
0 if a /∈ W .

(iv) (Contraction). Let X ′ be a compact, convex subset of E such that X
j⊂ X ′ and

let W ′ be an open subset of X ′. Let ϕ′ : X ′−−−◦Y be an upper semi-continuous map
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with compact, convex values and assume that the map Φ′ given by the decomposition

D : X ′ ϕ′−−−◦ Y
T−→ X has Fix (Φ′) ∩ ∂W ′ = ∅. Then

IndX′(j ◦D,W ′) = IndX(D|X ,W ′ ∩X)

where D|X : X
ϕ′|X−−−◦ Y

T−→ X.

(v) (Decomposition). Let Φ : X−−−◦X has two decompositions D(Φ) (see (4)) and

D′(Φ) : X
ϕ′−−−◦ Y ′ T ′−→ X such that there exists a continuous map p : Y → Y ′ with

ϕ′ = p ◦ ϕ and T ′ ◦ p = T . Then

IndX(D(Φ), W ) = IndX(D′(Φ),W ).

For subsequent applications we are interested in the following class of set-valued
maps.

Step 2: Let X be a closed convex subset of a Banach space E and let Φ : X−−−◦X
have a decomposition D(Φ) of the form

D(Φ) : X
ϕ−−−◦ (Y, w) T−→ X. (6)

Here we assume that Y is a closed convex subset of a Banach space F , ϕ is an upper
semi-continuous map (since Y is endowed with the weak topology this means that ϕ is
upper semi-continuous from the strong topology on X to the weak topology on Y ) with
weakly compact, convex values and T is a (in general nonlinear) sequentially continuous
map (i.e. given a sequence (yn) in Y such that yn

w−→ y, then T (yn) → T (y) in X; thus
T is weakly-strongly sequentially continuous). Let W be a bounded and (relatively)
open subset of X such that Fix (Φ) ∩ ∂W = ∅ and assume also that Φ is a compact
map, i.e. Φ maps bounded sets onto relatively compact ones (this is the case if, e.g., ϕ
maps norm bounded sets onto norm bounded sets and F is reflexive; observe also that
in the present setting this assumption on Φ implies that Φ is upper semi-continuous).

We define a fixed-point index for the decomposition D(Φ) (see (6)) as follows.
Choose a compact convex set C ⊂ X such that Φ(W ) ⊂ C (such set exists: take
C := conv Φ(W )) and let r : X → C be a retraction. Next, take a convex, weakly com-
pact set D ⊂ Y such that ϕ(C) ⊂ D (such set exists: take D = conv ϕ(C); recall that
by upper semi-continuity ϕ(C) is weakly compact and therefore D is weakly compact
in view of the Krein-Shmulian theorem). Thus we arrive at a decomposition

D(Φ, C, r,D) : C
ϕ−−−◦ (D,w) r◦T−→ C.

We define a fixed-point index for the decomposition D(Φ) of the map Φ by

IndX(D(Φ),W ) = IndC

(
D(Φ, C, r,D),W ∩ C

) ∈ Z (7)

where the right-hand side is given by formula (5).
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Proposition 5. Definition (7) is correct.

Proof. The decomposition D(Φ, C, r,D) is admissible for the fixed-point index de-
fined in (5). This follows from Lemma 3 since r ◦ T : (D,w) → C is continuous by the
weak compactness of D. To show that the definition is unique, let for a moment C and
r be fixed and consider a decomposition

D(Φ, C, r,D′) : C
ϕ−−−◦ (D′, w) r◦T−→ C

where D′ is weakly compact, ϕ(C) ⊂ D′ ⊂ Y . Without loss of generality we may
assume D ⊂ D′ (if not, consider D′′ = conv D∪D′). But then the inclusion i : D ↪→ D′

satisfies the requirements of the decomposition property in Proposition 4/(v) and thus
we get

IndC

(
D(Φ, C, r,D), W ∩ C

)
= IndC

(
D(Φ, C, r,D′), W ∩ C

)
.

Now let C ′ be a compact convex set such that X ⊃ C ′ ⊃ Φ(W ) and let r′ : X → C ′

be a retraction. Again we may assume that C
j⊂ C ′ and thus we get

D(Φ, C ′, r′, D) : C ′
ϕ−−−◦ (D,w) r′◦T−→ C ′.

Consider a homotopy

h : (D, w)× [0, 1] → C ′, h(x, t) = r′
(
(1− t)T (x) + tr (T (x))

)
.

Then h(·, 0) = r′ ◦T and h(·, 1) = j ◦r◦T . Hence the homotopy property in Proposition
4/(ii) shows that

IndC′
(
D(Φ, C ′, r′, D),W ∩ C ′

)
= IndC′(D, W ∩ C ′)

where
D : C ′

ϕ−−−◦ (D, w)
j◦r◦T−→ C ′.

Finally, an application of the contraction property in Proposition 4/(iv) finishes the
proof

The index from definition (7) has the following properties, whose proofs follow from
Proposition 4.

Proposition 6. Let Φ : X−−−◦X be a compact map with decomposition D(Φ) (see
(6)) and let W be a bounded open subset of X such that Fix (Φ) ∩ ∂W = ∅.

(i) (Additivity). Let Fix (Φ) ∩W ⊂ W1 ∪W2 where W1 and W2 are open disjoint
subsets of W . Then

IndX(D(Φ),W ) = IndX(D(Φ),W1) + IndX(D(Φ),W2).

Particularly, IndX(D(Φ),W ) 6= 0 implies Fix (Φ) ∩W 6= ∅.
(ii) (Homotopy). Let Ψ : X−−−◦X be given with a decomposition D(Ψ) : X

ψ−−−◦
(Y, w) S−→ X such that D(Φ) and D(Ψ) are homotopic, i.e. there exist an upper semi-
continuous map η : X × [0, 1]−−−◦ (Y, w) with weakly compact, convex values such that
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η(·, 0) = ϕ and η(·, 1) = ψ, and a sequentially continuous map h : (Y,w) × [0, 1] → X
such that h(·, 0) = T and h(·, 1) = S. Assume also that x /∈ χ(x, t) for every x ∈ ∂W
and t ∈ [0, 1] where χ : X × [0, 1]−−−◦X is the set-valued homotopy between Φ and Ψ
and χ is a compact map. Then

IndX(D(Φ), W ) = IndX(D(Ψ),W ).
(iii) (Weak normalization). Assume that T in D(Φ) is a constant map, i.e. T (x) =

a /∈ ∂W for each x ∈ Y . Then

IndX(D(Φ), W ) =
{

1 if a ∈ W
0 if a /∈ W .

(iv) (Decomposition). Given another decomposition D′(Φ) : X
ϕ′−−−◦ (Y ′, w) T ′−→

X where Y ′ is a closed convex subset of a Banach space F ′ such that there exists a
sequentially continuous map p : (Y, w) → (Y ′, w) with ϕ′ = p ◦ ϕ and T ′ ◦ p = T . Then

IndX(D(Φ), W ) = IndX(D′(Φ),W ).

From the above proposition one can derive several fixed-point principles for the maps
under consideration. As an example we prove the Nonlinear Alternative and Leray-
Schauder-type fixed-point theorem which will be applied in the subsequent section.

Theorem 7. Let R > 0 and Φ : DE(0, R)−−−◦E be a compact map with decompo-
sition

D(Φ) : DE(0, R)
ϕ−−−◦ (Y,w) T−→ E

satisfying the assumptions of decomposition (6). Then either
there exists x0, ‖x0‖ = R and λ, 0 < λ < 1 such that x0 ∈ λΦ(x0) (8)

or Φ has a fixed-point.

Proof. Let r : E → DE(0, R) be a retraction and obtain a decomposition

D(Φ ◦ r) : E
ϕ◦r−−−◦ (Y, w) T−→ E.

Assume that Φ has no fixed-point on ∂DE(0, R) (otherwise we are done). Then
IndE

(
D(Φ ◦ r), BE(0, R)

)

is defined. Now let
h : (Y, w)× [0, 1] → E, h(y, t) := tT (y).

Using h we see that the decompositions D(Φ ◦ r) and D(0) : E
ϕ◦r−−−◦ (Y,w) 0−→ E are

homotopic and, moreover, the conditions of the homotopy property of Proposition 6/(ii)
are fulfilled provided that assumption (8) is not valid. So in this case we get

IndE

(
D(Φ ◦ r), BE(0, R)

)
= IndE

(
D(0), BE(0, R)

)
= 1

by the weak normalization of Proposition 6/(iii). By the additivity property of Propo-
sition 6/(i) we therefore find a fixed-point x ∈ BE(0, R) of Φ ◦ r being a fixed-point of
Φ since r(x) = x for such x

Similarly one shows

Theorem 8. Let Φ : X−−−◦X be a given set-valued map with decomposition D(Φ)
(see (6)). Assume that Φ is compact and 0 ∈ X. Then either the set S = {x ∈ X : x ∈
βΦ(x) for some β ∈ (0, 1)} is unbounded or Φ has a fixed-point.
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4. Application to evolution inclusions

In this section we study an abstract fixed-point problem which can be applied to the
Cauchy problem for differential inclusions in Banach spaces. Our approach being rather
synthetic than analytic is similar to that of Couchouron and Kamenskii [8]. However, in
[8] the compactness conditions are formulated in terms of measures of non-compactness.

In order to state this fixed-point problem we need some definitions and notations.
A set-valued mapping F : [0, b] × E−−−◦E is called an upper p-Carathéodory map

(1 ≤ p < ∞) provided that:

(F1) For every t ∈ T = [0, b] and x ∈ E assume that F (t, x) is a convex, weakly
compact subset of E.

(F2) For every x ∈ E the map F (·, x) : T−−−◦E has a strongly measurable selection.
(F3) For a.e. t ∈ T the map F (t, ·) : E−−−◦ (E,w) is upper semi-contiunuous.
(F4) For every non-empty bounded set Ω ⊂ E there exists ν = ν(Ω) ∈ Lp(T,R) such

that ‖F (t, x)‖ := sup{‖z‖ : z ∈ F (t, x)} ≤ ν(t) for a.e. t ∈ T and every x ∈ Ω.

With F given as above we associate the Nemytskii operator (or superposition operator)

Np
F : C(T, E)−−−◦Lp(T,E)

given by
Np

F (x) =
{

f ∈ Lp(T, E) : f(t) ∈ F (t, x(t)) a.e. on T
}

for each x ∈ C(T, E).
The following Lemma is well-known (see, e.g., [16: p. 88]).

Lemma 9. Let F : T × E−−−◦E be an upper p-Carathéodory mapping. Then
the Nemytskii operator Np

F : C(T, E)−−−◦ (Lp(T,E), w) is upper semi-continuous, and
Np

F (x) is a non-empty, convex, weakly compact subset of Lp(T, E) for each x ∈ C(T,E).

Let us now introduce a map

Sp : Lp(T, E) → C(T, E)

satisfying the following assumptions:

(a1) There is a constant M > 0 such that ‖Sp(f)(t) − Sp(g)(t)‖ ≤ M
∫ t

0
‖f(s) −

g(s)‖ ds (t ∈ T ) for every f, g ∈ Lp(T, E).
(a2) If Γ ⊂ Lp(T,E) and there exists a function µ ∈ Lp(T,R) such that f(t) ≤ µ(t)

for a.e. t ∈ T and every f ∈ Γ, then {Sp(f) : f ∈ Γ} is relatively compact in
C(T, E).

(a3) If yn = Sp(fn) and fn
w−→ f as well as yn → y, then y = Sp(f).

We will be interested in solving the fixed-point problem 3)

x ∈ F(x) := Sp ◦Np
F (x). (9)

3) In [8] problem (9) was studied under an additional assumption which implies the con-
tractability of the values F(x). In view of the fixed-point theory developed we may dispense
with this assumption. Thus our approach shows that this particular assumption is also not
neccessary in [8] and we may slightly improve the results given there.
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The problems we have in mind and which can be solved by (9) are the Cauchy problems

x′(t) ∈ −A(t, x(t)) + F (t, x(t))

x(0) = x0

}
. (10)

Recall that a solution of problem (10) is a solution to problem (9) where Sp(f) ∈ C(T, E)
is the (mild) solution operator to a quasi-autonomous problem of the form

x′(t) ∈ −A(t, x(t)) + f(t)

x(0) = x0

}
(11)

with f ∈ Lp(T, E). As it will become clear by subsequent examples (see Section 5) the
(mild) solution operator Sp fulfills conditions (a1)− (a3) under various assumptions on
the operator A.

Remark 10. Consider the condition

(∗) If fn
w−→ f in Lp(T,E), then Sp(fn) → Sp(f) in C(T, E).

Clearly, (∗) implies (a3). Let us show that (∗) also implies (a2) in the case that E is
reflexive. Let Γ be given as in (a2) and let xn = Sp(fn) for some fn ∈ Γ (n ≥ 1). From
the Dunford-Pettis theorem we know that Γ is weakly relatively compact. Thus there are
f ∈ Lp(T, E) and a subsequence fnk

w−→ f . By condition (∗), xnk
= Sp(fnk

) → Sp(f)
and we obtain relative compactness of {S(f) : f ∈ Γ}.

We now turn to solve the above problem (9). We start with the following

Lemma 11. Let F be an upper p-Carathéodory map and for R > 0 let

Yp(R) := conv Np
F

(
DC(T,E)(0, R)

)
.

If Sp satisfies condition (a2), then Sp(Yp(R)) is a relatively compact subset of C(T,E).

Proof. Let f ∈ conv Np
F (DC(T,E)(0, R)). Then f =

∑n
i=1 λifi where n ≥ 1, λi ≥ 0

with
∑n

i=1 λi = 1 and fi ∈ Np
F (xi) for some xi ∈ DC(T,E)(0, R). Let ν = ν(DE(0, R)) ∈

Lp(T,R) following assumption (F4). Then

‖f(t)‖ ≤
n∑

i=1

λi‖fi(t)‖ ≤ ν(t)

for a.e. t ∈ T . Also, if f ∈ Yp(R), then there exist fn ∈ conv Np
F

(
DC(T,E)(0, R)

)
(n ≥ 1)

such that fn → f and hence some subsequence such that fnk
(t) → f(t) a.e. on T . Thus

f(t) ≤ ν(t) a.e. on T also for such f . Hence Sp(Yp(R)) is relatively compact by
assumption (a2)

From assumption (a3) we immediately have the following
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Corollary 12. The map Sp : (Yp(R), w) → C(T, E) is sequentially continuous for
each R > 0.

Theorem 13. Let F : T × E−−−◦E be an upper p-Carathéodory map and assume
that

(F4)′ |F (t, x)‖ ≤ c(t)(1 + ‖x‖) a.e. on T and for every x ∈ E

holds where c ∈ Lp(T,R). Let Sp satisfy assumptions (a1)− (a3). Then the fixed-point
problem (9) has a solution.

Proof. Using assumptions (a1) and (F4)′ together with the usual application of
Gronwall’s inequality we get an a priori bound for the solutions of problem (9). Indeed,
let x ∈ Sp ◦ Np

F (x). Then there is f ∈ Np
F (x) such that x = Sp(f). Define v = Sp(0).

Then for every t ∈ T

‖x(t)− v(t)‖ ≤ M

∫ t

0

‖f(s)‖ ds ≤ M

∫ t

0

c(s)(1 + ‖x(s)‖) ds ≤ M‖c‖1 + M

∫ t

0

‖x(s)‖ ds

and therefore

‖x(t)‖ ≤ ‖v‖∞ + M‖c‖1 + M

∫ t

0

‖x(s)‖ ds.

It follows that for each t ∈ T

‖x(t)‖ ≤ (‖v‖∞ + M‖c‖1)etM ≤ R := (‖v‖∞ + M‖c‖1)ebM .

Now consider the diagram

DC(T,E)(0, R + 1)
Np

F−−−◦ (Yp(R + 1), w)
Sp−→ C(T, E) (12)

of the map F = Sp ◦Np
F restricted to DC(T,E)(0, R + 1). From Lemma 9 and Corollary

12 we see that (12) is a decomposition in the sense of (6) (clearly, assumption (F4)′

implies (F4)). Also, by the same argument as above using Gronwall’s inequality, it
is clear that given x0 ∈ C(T,E) with ‖x0‖∞ = R + 1 and λ with 0 < λ < 1, then
x0 /∈ λF(x0). Thus by the Nonlinear Alternative (Theorem 7) it follows that problem
(9) has a solution

5. Examples

We now would like to list some of the cases where the above considered fixed-point
problem applies.

Example 1 (M-accretive operators). Let A : D(A) ⊂ E−−−◦E be an m-accretive
operator such that −A generates a compact nonlinear semigroup of contractions. Let
x0 ∈ D(A) and assume that S1 assigns to each f ∈ L1(T,E) the mild solution of
problem (11) where A(t, x(t)) = A(x(t)).

Condition (a1) appears as a weak form of the Benilan integral inequalities; condi-
tions (a2) and (a3) are proven in Vrabie [16: pp. 44] provided that the topological dual
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E∗ is uniformly convex. Hence, an application of Theorem 13 shows the existence of a
solution to the initial-value problem (10) in the case when F is a 1-Carathéodory map.

Let us note that Bothe [5] gave a finite-dimensional example showing that without
the assumption on the geometry of E∗ the result is wrong.

Example 2 (Linear operators). Let −A be a densely defined linear (non-continu-
ous) operator generating a compact C0-semigroup {U(t)}t≥0. Here S1 is given by the
variation of constants formula

S1(f) = U(t)x0 +
∫ t

0

U(t− s)f(s) ds.

Clearly, conditions (a1) − (a3) are fulfilled. We infer the existence of a solution for a
1-Carathéodory map F .

Example 3 (Time-dependant subdifferentials). Let E = H be a Hilbert space and
ϕ : T ×H → R∪{∞} a function such that, for each t ∈ T , ϕ(t, ·) is proper, convex and
lower semi-continuous. Assume also that ϕ satisfies the Yotsutani conditions (see [17])
and that ϕ(t, ·) is of compact type for every t ∈ T . Let x0 ∈ domϕ(0, ·). Then it was
shown in [17] that for each f ∈ L2(T, H) problem (11) with A(t, x(t)) = ∂ϕ(t, x(t)) has
a strong solution S2(f).

Clearly, S2 satisfies condition (a1) and it was shown in Papageorgiou and Papalini
[14] that S2 also fulfils condition (∗) from Remark 10 and hence conditions (a2) and
(a3). Thus Theorem 13 applies and we obtain a strong solution to problem (10) for a
2-Caratheodory map F : T ×H−−−◦H.

Example 4 (Nonlinear evolution inclusions). Let (E, H, E∗) be an evolution triple
of spaces where we assume that E embeds compactly into H (hence so does H into E∗).
Let A : T ×E → E∗ be an operator, measurable in t and monotone and hemicontinuous
in x, satisfying the assumptions given in Zeidler [18: p. 771]. Let x0 ∈ H. Then for each
f ∈ Lq(T, H) (1 < q < ∞) there exists a unique solution Sq(f) ∈ W 1

p (T ; E, H) ( 1
p + 1

q =
1) of the quasi-autonomous problem (11) (see [18]). Since W 1

p (T ; E, H) ⊂ C(T,H)
we obtain a mapping Sq : Lq(T,H) → C(T, H). Now condition (a1) follows from
the integration by parts formula for elements in W 1

p (T ;E, H), and Papageorgiou and
Shahzad [15] show that Sq satisfies condition (∗) of Remark 10. Thus, given a q-
Carathéodory map F : T × H−−−◦H, we infer the existence of a solution to problem
(10).

Of course, all the above given existence results are well-known (see [5, 13 - 16]).
However, as authors use the fixed-point approach to prove these theorems, they usually
show that the map F (given in (9)) has contractible values and apply fixed-point argu-
ments for set-valued maps of this type. In our opinion the presented approach is more
direct and simplifies this argument.
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