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Coerciveness Property
for a Class of Non-Smooth Functionals

D. Motreanu and V. V; Motreanu

Abstract. The paper establishes a general coerciveness property for a class of non-smooth func-
tionals satisfying an appropriate Palais-Smale condition. This result is obtained by applying
an abstract principle supplying qualitative information concerning the asymptotic behaviour
of a non-smooth functional. Comparison with other results in this field is provided.
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1. Introduction

An extensive work has been devoted in the sctting of differentiable functionals to show
the basic property that the Palais-Smale condition implies the coerciveness (see, e.g.,
(1, 2, 7] and the references therein). The aim of this paper is to establish that this
assertion is essentially true for a large class of non-differentiable functionals, too.

The non-smooth functions for which we study this problem are those that can be
written as a sum @ + U of a locally Lipschitz functional & and a proper, convex, lower
semicontinuous functional ¥ (see relation (3.1) below). For a detailed study of this
class of non-smooth functionals from the point of view of critical pomt theory we refer
to Motreanu and Panagiotopoulos [8: Chapter 3.

Towards our purpose we use a suitable Palais-Smale condition for this class of non-
smooth functionals that reduces to the usual concepts in the differentiable situations as
well as in all the important non-smooth cases (see Chang [3] and Szulkin [9]). This new
formulation for the Palais-Smale condition in our non-smooth setting (see Definition
2.3) can be seen as a unification of the Palais-Smale conditions due to Chang [3] and
Szulkin [9] (see Definitions 2.1 and 2.2). The essential tools in our approach are the
calculus with generalized gradients developed by Clarke (4] and Ekeland’s variational
principle [5, 6].

Our coerciveness results stated in Corollaries 3.1 - 3.3 extend the corresponding
properties from the differentiable case (see (1, 2, 7]) to the non-smooth framework
of functionals of type (3.1) (for a detailed discussion see Remark 3.2). These results
are deduced from a general principle, namely Theorem 3.1, involving the asymptotic
behaviour of the respective non-smooth functionals. This result extends Proposition 1

Both authors: "Al. 1. Cuza” University, Dept. Math., RO-6600 lasi, Romania

ISSN 0232-2064 / $ 2.50 (© Heldermann Verlag Berlin



1088 . D. Motreanu and V. V. Motreanu

-in Brézis and Nirenberg (1] to the general class of functionals of form (3.1). Specifically,
our non-smooth coerciveness results are obtained by applying the general principle in
Theorem 3.1 in conjunction with the non-smooth version of Palais-Smale condition
formulated for the class of non-smooth functionals satisfying the structure hypothesis
(8.1). :

The rest of the paper is organized as follows. Section 2 deals with three types
of Palais-Smale conditions for non-smooth functionals and their relationship. Section 3
contains the statements of the main results and the proofs of our coerciveness properties.
Section 4 presents the proof of our main abstract result.

2. Palais-Smale conditions

Throughout the paper X denotes a real Banach space endowed with the norm || - ||.
The notation X* stands for the dual space of X.  For the sake of clarity we recall
the definition of the generalized directional derivative ®°(u;v) of a locally Lipschitz
functional ® : X — R at the point u € X in the direction v € X:

®°(u;v) = lir‘?ftxp %(@(w + tv) — ®(w)) (2.1)

t10

(see Clarke [4]). We recall three basic definitions of Palais-Smale conditions for non-
smooth functionals.

Definition 2.1 (Chang [3]). The locally Lipschitz functional ® : X — R satisfies
the Palais-Smale condition (in the sense of Chang) if every sequence (u,) C X with
®(u,) bounded and for which there exists a sequence

2, =0 in X%, 2z, € 9%(u,) ‘ (2.2)

has a (strongly) convergent subsequence in X.

The notation 8% in (2.2) means the gencralized gradient of the locally Lipschitz
functional @ (in the sensec of Clarke [4]), that is

B(u) = {:r € X* : (z0,v) < ®°(u;v) for all v € x} (weX)  (2.3)

where ®° is defined in (2.1).

Definition 2.2 (Szulkin [9]). Let ® : X — R be a differentiable functional of
class C' and let ¥ : X — R U {400} be a proper (i.c. # +o0) convex and lower
semicontinuous function. The functional I = & + ¥ : X — R U {400} satisfies the
Palais-Smale condition (in the sense of Szulkin) if every sequence (un,) C X with I(u,)
bounded and for which there exists a scquence (¢,) C R* with €, | 0 such that

O (un)(v — un) + ¥(v) — U(un) = —€n|lv — uan| (v e X) (2.4)

contains a (strongly) convergent subsequence in X.
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Definition 2.3 (Motreanu and Panagiotopoulos (8]). Let & : X — R be a locally
Lipschitz functional and let ¥ : X — RU{+o00} be a proper, convex and lower semicon-
tinuous function. The functional I = &+ ¥ : X — RU {400} satisfies the Palais-Smale
condition (in the sense of Motreanu and Panagiotopoulos) if every sequence (un) C X
with I(u,) bounded and for which there exists a sequence (¢,) C Rt with €, | 0 such
that

B°(un;v —un) + V() — Ulup) 2 —cnllv — ual| (v e X) (2.5)
contains a (strongly) convergent subsequence in X.

In order to establish a relationship between the foregoing definitions, we need the
following result.

Lemma 2.1 (Szulkin [9]). Let X be a real Banach space and let x : X — RU{+o0}
be a lower semicontinuous convez function with x(0) = 0. If x(z) > —||z|| for allz € X,
then there ezists some z € X* such that ||z]|x- <1 end x(z) > (2,z) for allz € X.

The result below points out a relationship between Definitions 2.1 - 2.3.

Proposition 2.1.
(1) If ¥ = 0, Definttion 2.3 reduces to Definttion 2.1.
(ii) If ® € C'(X,R), Definition 2.3 coincides with Definition 2.2.

Proof. (i) Let ¥ = 0 in Definition 2.3. It is sufficient to show the equivalence
between relations (2.2) and (2.5). Suppose that property (2.2) holds. By relation (2.3)
it follows that

°(un;v) 2 (20,v) 2 —llzall 0l (v € X).

Therefore incquality (2.5) (with ¥ = 0) is verified for €, = ||za]|. :

Conversely, we admit that (2.5) is satisfied. We apply Lemma2.1to x = i‘iﬂ(un; .
Since x is continuous, convex and (2.5) is satisfied (with ¥ = 0), the assumptions of
Lemma 2.1 are verified. Lemma 2.1 yields an element w, € X* with |Jwa]jx- <1 and
$<I>°(un;z) > (wn,z) for all £ € X. Choosing z, = e,wp we arrive at (2.2).

(11) This assertion follows from the fact that ®° is equal to the Fréchet differential
@' if the functional ® : X — R is of class C!. Therefore, in this case inequalitics (2.4)
and (2.5) coincide. The proof of Proposition 2.1 is complete il

3. Main results

Our main result is stated below.
Theorem 3.1. Let & : X — R be a locally Lipschitz functional and let ¥ : X —
R U {+o0} be a proper, convez, lower semicontinuous function. For the function

[=9+V (3.1)

‘we suppose that . . _ o
- a:= liminf I(v) € R. (3.2)

llvll—o0
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Then for every sequence (€,) C RY with €, | 0 there exzists a sequence (un) C X
satisfying :

[lunll = oo as n — oo (3.3)
I{up) = a asn— oo (3.4)
and (2.5).
The proof of Theorem 3.1 is given in Section 4.

Corollary 3.1. Assume that the functionel I : X — RU {+oo} satisfies the struc-
ture hypothesis (3.1), with ® and ¥ as in the statement of Theorem 3.1, together with

a > —oo (35)
where o 1s defined in (3.2), and
I verifies the Palais-Smale condition of Definition 2.3. - (3.6)
Then I 13 coercive on X, 1.e.
I(u) = 400 as ||u]| — oo. (3.7)

Proof. Arguing by contradiction we admit that the functional I in (3.1) is not
coercive. Since (3.7) does not hold there exists a sequence (v, ) C X satisfying [|v,|| — co
and

a < liminf I{v,) < +o0. (3.8)

From (3.5) and (3.8) onc obtains that a = liminfj, |~ /(v) € R. Consequently, we
may apply Theorem 3.1 to the functional I : X — R U {+oo} for a fixed sequence
(en) C R with €, | 0. In this way a sequence (u,) C X is found fulfilling properties
(3.3), (3.4) and (2.5). According to assumption (3.6) it results that (u,) possesses a
convergent subsequence denoted again by (un), say v, — u as n — oo, for some u € X.
This contradicts assertion (3.3), which accomplishes the proof i

Corollary 3.2. Let ® : X — R be a locally Lipschitz functional which satisfies
the Palais-Smale condition of Definition 2.1 and liminf)yj—co ®(v) > —c0. Then & is
coercive on X, i.e. ®(u) - +00 as ||u|| — oo.

Proof. Let us apply Corollary 3.1 with ¥ = 0. Then condition (3.5) with ¥ = 0 is
satisfied (for a introduced in (3.2)). By part (i) in Proposition 2.1 requirement (3.6) is
satisfied for I = ®. Then Corollary 3.1 leads to the desired result B

Corollary 3.3. Let ® : X — R be a function of class C' and let ¥ : X —» RU
{+oo} be a proper, convez, lower semicontinuous function. Assume that the functional
I =&+%: X — RU/{+oo} satisfies the Palais-Smale condition in the sense of
Definition 2.2 end fulfils also (3.5) where a is introduced in (3.2). Then I is coercive
on X.

Proof. Let us apply Corollary 3.1 for I = @ + ¥ : X — RU {40}, with & and
T as in Corollary 3.3. Since we supposed that property (3.5) holds, it remains to check
(3.6). This follows from Proposition 2.1/(ii). The proof is thus complete B
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Remark 3.1. If ® € C'(X,R) and ¥ = 0 in (3.1), Theorem 3.1 reduces to Propo-
sition 1 of Brézis and Nirenberg [1].

Remark 3.2. The case in (3.1) where ® is Gateaux differentiable and lower semi-
continuous has been studied in Caklovic, Li and Willem (2] (with ¥ = 0) and in Goeleven
[7]. Our Corollary 3.1 provides, in particular, non-differentiable versions of these re-
sults. Precisely, Corollary 3.1 covers the non-differentiable situation where, in (3.1),
® : X — Ris locally Lipschitz and ¥ : X — R U {+oo} is proper, convex and lower
semicontinuous. Therefore Corollary 3.1 deals with different situations with respect to
[2] and [7]. Corollary 3.2 treats the purely locally Lipschitz case, i.e. ¥ = 0 in (3.1).
It extends Corollary 1 in [1] and allows to extend the main result in {2] to locally Lip-
schitz functionals. It overlaps with the main result in [2] if ® € CY(X,R) and ® is
bounded from below. Corollary 3.3 represents the version of Corollary 3.1 in the case
where ® € C'(X,R). Under the assumption that ® € C'(X,R) is bounded from below,
Corollary 3.3 has been obtained in |7].

Remark 3.3. Corollaries 3.1 - 3.3 correspond to the three concepts of Palais-Smale
conditions in Definitions 2.3, 2.1 and 2.2, respectively.

4. Proof of Theorem 3.1

The proof of Theorem 3.1 relies on the following version of Ekeland’s Variational Prin-
ciple.

Theorem 4.1 (Ekeland [5,6]). Let M be a complete metric space endowed with
distance d and let f : M — R U {+o0} be a proper, lower semicontinuous and bounded
from below function. Then for every number € > 0 and every point xog € M there ezists
vo € M such that

f(vo) < f(zo) — €d(vo, z0) (4.1)
f(z) > f(vo) — ed(vo,z) (z € M\ {vo}). (4.2)

Proof of Theorem 3.1. Suggested by the argument in the proof of Proposition 1
in {1], for each r > 0, we denote

m(r) = ! unlg I(u). (4.3)

Assumption (3.2) in conjunction with (4.3) leads to
a= rl.l_ngo m(r) € R. (4.4)
Assersion (4.4) ensures that for each € > 0 there exists r, > 0 satisfying
a—-e2<m(r) Vr>r,. (4.5)
For any fixed € > 0 let us choose a number 7, with

Te > inax{}‘e, 2%}. ' (4.6)



1092 D. Motreanu and V. V. Motreanu

Using assumption (3.2), we can fix some uo = uo(e) € X such that
[luoll > 27 and I(up) < a + €% (4.7)
The set M = M(e) C X given by
M={zeX: |zl > 7} (4.8)

is a closed subset of X, so M is a complete metric space with respect to the metric
induced on M by the norm || - ||. The function I : X — RU {+00} expressed in (3.1) is
lower semicontinuous on X, thus on M. By (4.3), (4.5) and (4.6) we derive that

I(w) > m(|lu]]) > a - € Vue X with jul| > 7. (4.9)

This estimate ensures that the function I is bounded from below on M. From (4.8) and
the first inequality in (4.7) it is seen that ug € M. Hence by the second relation in (4.7)
we know that the function I is proper on M. Since all the assumptions of Theorem
4.1 are fulfilled for the functional f = IlM : M — RU {+00}, it is allowed to apply
Theorem 4.1, where the fixed number € > 0 and the point ¢y = ug are the data entering
relations (4.5) - (4.7). Consequently, we find some v, € M such that

I(ve) < I(uo) — €l|ve — uol| (4.10)
I{z) > I(ve) — €llve — || ¥ = # v, with ||z|| > 7. . (4.11)

(see (4.1) and (4.2)). .
Since v, € M, using relations (4.5), (4.6), (4.8), (4.3), (4.10) and the second in-
equality in (4.7), we have
o= et < m(re) € I(ve) < Iuo) — ellve — uoll < @+ & = ellv, — uoll.
This implies that
lve — uol < 2e. (4.12)
Combining (4.12), the first inequality in (4.7) and (4.6) we deduce that

l2ell 2 lluwoll = llve = woll > 27 — 2¢ > 7. . (4.13)

From here it is clear that v, is an interior point of M defined in (4.8). This guaranties
that for an arbitrary v € X with v # v, it is true that ¢ = v, + t(v — v, ) belongs to the
interior of M in (4.8) whenever t > 0 is sufficiently small. It is thus permitted to use
such a point z above in (4.11). By means of (3.1) and (4.11) we can write

D(ve + t(v — ve)) + V(ve + (v — ve)) > S(ve) + Y(ve) — etflv — ve| (4.14)

for all v € X \ {v.} and all t > 0 sufficiently small. On the other hand, we observe from
inequality (4.10) and the second relation in (4.7) that ¥(v,) < +00. On the basis of the
convexity of ¥ : X — RU {400}, inequality (4.14) yields

D(ve +t(v —ve)) — t¥(ve) + t¥(v) > B(ve) — et]lv — ve|
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for all v € X \ {v.} and all ¢ > 0 small enough. Passing to the limit one obtains that
. 1
lim sup ;((b(vt + (v —ve)) — () + F(v) — P(ve) = —¢flv — v
t]o

for all v € X \ {v.}. Taking into account formula (2.1) we deduce that
O°(ve;v —ve) + U(v) — ¥(ve) > —€llv — ve| (4.15)

for allv € X \ {v.}. Consider now a sequence (e,) C R* with ¢, | 0. Corresponding to
it we may choose a sequence of positive numbers r,, — +00 as n — co satisfying (4.5)
with € = €,. We denote u, = v,,, where we recall that Ve, € M = M(en) is the point
satisfying (4.15) with € = €,, i.e., property (2.5) holds true. Since |jun|| > 7, > re, (cf.
(4.8) and (4.6)), we obtain that property (3.3) is satisfied. In order to check relation
(3.4) we notice that (4.10) and the second inequality in (4.7) imply

I(un) S I(U()) - En“un - uo” S I(UO) <a+ Ei.
This combined with (3.3) and (3.2) expresses that
o < liminf I{u,) < limsup I(u,) < a

which establishes (3.4). The proof of Theorem 3.1 is complete
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