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and the
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Abstract. The paper deals with a quaternionic Beltrami-type equation, which is a very natural
generalization of the complex Beltrami equation to higher dimensions. Special attention is
paid to the systematic use of the embedding of the set of quaternions H into C2 and the
corresponding application of matrix singular integral operators. The proof of the existence of
local homeomorphic solutions is based on a necessary and sufficient criterion, which relates
the Jacobian determinant of a mapping from R4 into R4 to the quaternionic derivative of a
monogenic function.
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1. Introduction

Let G be a domain in C and q = q(z) with |q(z)| ≤ q0 < 1 (z ∈ C) a given complex-
valued function which links both formal complex partial derivatives
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of an unknown complex-valued function w = w(z) by means of the equation
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∂z̄
= q(z)

∂w

∂z.
(1)

This equation is usually called the (complex) Beltrami equation and represents the
complex form of a first order uniformly elliptic Beltrami system for two unknown real
functions u = Re w and v = Imw.

The number of applications of the Beltrami system is very high. Besides its impor-
tance for the general theory of linear and quasilinear elliptic systems, it is related to
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problems of conformal and almost complex structures on general Riemannian surfaces
and plays the central role in geometric function theory, particularly for quasi-conformal
mappings, uniformisation and the theory of Teichmüller spaces. The last is essential for
recently developed conformally invariant string theories in theoretical physics. Nowa-
days, the Beltrami equation appears in complex dynamics, too, and this list of subjects
is far from being exhaustive (c.f. [2]).

There exist many methods for generalizing the theory of the complex Beltrami
equation to higher dimensions, mainly by using function-theoretic methods in Cn (see,
e.g., [4, 10 - 12, 14, 18, 19, 27, 29]). However, up to now there were only few attempts to
invoke methods from quaternionic or, more generally, from Clifford analysis (e.g., [5, 15,
21, 22], and more recently [13]). This latter area of research (named after the title of the
book [3] by Brackx, Delanghe and Sommen, which was published in 1982) started as a
generalization of complex analysis by using Clifford algebras, but is meanwhile turning
into an independent discipline.

There are a lot of papers in Mathematics and Mathematical Physics dealing with the
development of Clifford-analysis methods for the treatment of special higher-dimensional
differential equations (for an overview we refer the reader to [8 - 10]). However, until
now there has been no attempt to develop in a systematic way a general theory of
differential equations in the framework of quaternion-valued functions of a quaternionic
variable and, of course, in general, in the framework of Clifford analysis. In fact, there
may have been several reasons for such a situation. It would be enough to refer to the
peculiarities of the non-commutative algebra as the algebraic basis for such a theory
– the general opinion (particularly in engineering) relies more on other methods like
matrix, vector or tensor analysis. But the treatment of problems in higher dimensions
by several complex-variable methods is in many cases restricted to even dimensions. On
the contrary, methods of function theories in algebras more general than the algebra of
complex numbers, namely in Clifford algebras and the particular case of quaternions H
are free from such restraint.

Of course, not all properties of holomorphic functions and other facts of classical
complex function theory are valid or have an easy and obvious counterpart in Clifford
analysis. But even some years after the publication of [3] the idea of an appropriate
derivative of the corresponding class of regular functions (defined as the kernel of a
certain generalized Cauchy-Riemann operator D, which the authors of [3] also called
the set of “monogenic” functions) was still not clear. Surely, this has to be the first step
towards a general theory of differential equations similar to that in C.

Today, there are several arguments to accept that the derivative of a monogenic
function f is given by Df , where D is the conjugate differential operator to D mentioned
above (see [7, 25]). Taking into account that the classical Beltrami equation in the form
of (1) is nothing else than a linear combination of the complex partial derivatives ∂f

∂z

and ∂f
∂z̄ , this suggested the idea (cf. [22]) to consider a corresponding linear combination

of Df and Df as a natural generalization of (1) to a Beltrami-type equation in higher
dimensions. That is why an equation of the same form

Df = Q(Z)Df,

but now with a quaternion-valued unknown function f = f(Z) of the quaternionic
variable Z and a quaternion-valued coefficient Q(Z), is taken as our object of study. The
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restriction to the quaternionic case is related to the problem of proving the existence of
locally homeomorphic solutions of this Beltrami-type equation. At least in the classical
case such type of solutions are of special interest for all applications. But, therefore,
the numbers of components of the independent and of the dependent variables have to
be the same. In the special Clifford algebra of quaternions this is ensured, but a more
general treatment would need some restrictions of algebraic nature to guarantee the
same relation.

The paper is organised as follows. Section 2 prepares the algebraic background,
including the embedding of the set of quaternions H into C2 and the corresponding
representation of the involved differential operators in form of matrix operators. Then,
in Section 3, a theorem will be proved which is of own interest in the theory of monogenic
functions in quaternionic analysis. It relates the Jacobian determinant of a mapping
from R4 into R4 to the quaternionic derivative of a monogenic function. Section 4 studies
the general aspects concerning the solvability of the Beltrami-type equation in matrix
form. Singular integral operators are introduced and applied to solve the Beltrami-
type equation by fixed-point methods. Finally, by using the theorem of Section 3 as a
criterion for the property of being a local homeomorphic mapping we show the existence
of homeomorphic solutions of the considered Beltrami-type equation in Section 5.

2. Preliminaries

In what follows, we will work in the skew field of quaternions H which results from the
algebraization of the vector space R3. Thereby, we write an arbitrary element Z ∈ H in
the form

Z = x0 + x1e1 + x2e2 + x3e3,

where x0, . . . , x3 are real and 1, e1, e2, e3 stand for the elements of the basis of H, subject
to the multiplication rules

e2
1 = e2

2 = e2
3 = −1

e1e2 = −e2e1 = e3

e2e3 = −e3e2 = e1

e3e1 = −e1e3 = e2.
In this way the quaternionic algebra arises as natural extension of the complex field C.
We denote by Sc Z = x0 the scalar part of Z and by VecZ = x1e1 + x2e2 + x3e3 its
vector part. Like in the complex case, the conjugate element Z of Z is given by

Z = Sc Z −Vec Z = x0 − x1e1 − x2e2 − x3e3

with the properties
ZZ = ZZ = |Z|2 = x2

0 + x2
1 + x2

2 + x2
3.

In such a way |Z| coincides with the Euclidean norm of Z regarded as an element of the
vectorial space R4. Also, each non-zero quaternion Z has a unique inverse Z−1 = Z

|Z|2 .

Then it is evident that an H-valued function W = W (Z) can be written as

W (Z) = w0(Z) + w1(Z)e1 + w2(Z)e2 + w3(Z)e3
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where w0, . . . , w3 are real-valued functions. Properties such as continuity, differentia-
bility, integrability, and so on, which are ascribed to the H-valued function W have to
be fulfilled by all real-valued components wk. Like usual, Ck,α, Lp and Wk

p denote the
corresponding Hölder, Lebesgue and Sobolev spaces of those functions, respectively.

In the case of p = 2 we introduce in L2(Ω) the H-valued inner product

(U, V ) =
∫

Ω

U(Z)V (Z) dΩZ .

The differential operator given by

D =
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
(2)

plays a central role in the sequel. It is easy to see that it is the quaternionic generalization
of the complex Cauchy-Riemann operator ∂

∂z = 1
2 ( ∂

∂x + i ∂
∂y ). Note that

DD = DD = ∆

where ∆ is the Laplacian and

D =
∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2
− e3

∂

∂x3

is the conjugate generalized Cauchy-Riemann operator. If Ω ⊂ R4 ∼= H is a domain,
then a function W : Ω 7→ H is said to be left-monogenic in Ω if it satisfies the equation
(DW )(Z) = 0 for each Z ∈ Ω. The fundamental solution with respect to D is given by

e(Z) =
1
ω

Z

|Z|4

where ω is the surface area of the unit ball in R4. This function is left-monogenic
(and right-monogenic) for Z 6= 0 and is used in the next section for constructing the
generalized Cauchy kernel of the right inverse integral operator T of D. We remark
that the set of monogenic functions in H does not form an algebra which is a fact
different from the complex case. For more information about these topics and general
quaternionic analysis we refer to [8 - 10].

As it is well-known there exist several equivalent possibilities for the treatment of
quaternions (cf. [9]). One of them is by using the one-to-one correspondence between
quaternions and vectors of complex numbers. In order to show the specific technical
tools, we will now present the treatment of the generalized Beltrami equation

DW (Z) = Q(Z)DW (Z) (3)

by means of this approach.
Identifying the complex imaginary unit i with e2 we can write each quaternion Z

in the form Z = z1 + e1z2, with z1 = x0 + e2x2 and z2 = x1 + e2x3 being elements of
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C ∼= C(e2). More explicitly, this means that we can use the correspondence H = C(e2)⊕
e1C(e2). Then we can write our generalized quaternionic Cauchy-Riemann operator in
the form

D = 2
(
∂z1 + e1∂z2

)
(4)

where

∂z1 =
1
2

(
∂

∂x0
+ e2

∂

∂x2

)
and ∂z2 =

1
2

(
∂

∂x1
+ e2

∂

∂x3

)

are the corresponding C(e2)-Cauchy-Riemann operators with respect to z1 and z2. Anal-
ogously, the conjugate quaternionic Cauchy-Riemann operator can be written as

D = 2
(
∂z1 − e1∂z2

)
.

With the help of W1 := w0 + e2w2 and W2 := w1 + e2w3 we also get the representation
of W in the corresponding form

W (Z) = w0(Z) + w1(Z)e1 + w2(Z)e2 + w3(Z)e3 = W1(Z) + e1W2(Z).

After having passed to the representation of a quaternion by two C(e2)-components
we will also use the relation to the corresponding 2× 2 matrix calculus as an auxiliary
tool. For that purpose we consider the function W = W1(z) + e1W2(z) as a vector
W = (W1,W2)T of two C(e2)-valued functions W1 and W2 depending from the C(e2)-
variables z1 and z2.

Notice that for simplicity we are using in both cases the same symbols. In general
it will follow from the context which form, the complex vector or the quaternionic one,
has to be used.

Continuing towards our aim we obtain the generalized Cauchy-Riemann operator
D in the form of a matrix operator from C2

(e2)
into C2

(e2)
, acting from the left on W in

the form

DW = 2
(

∂z1 −∂z2

∂z2 ∂z1

)(
W1

W2

)
.

It is easy to check that the formally adjoint matrix of D is exactly the conjugate gen-
eralized Cauchy-Riemann operator D in matrix form, i.e.

D = 2
(

∂z1 ∂z2

−∂z2 ∂z1

)
.

Altogether, this allows us to rewrite the quaternionic Beltrami equation (3) in the
corresponding C(e2)-matrix form

DW = QDW (5)

where W = (W1,W2)T and Q =
(

Q1
Q2

−Q2

Q1

)
is the coefficient matrix with entries related

to Q(Z) = q0(Z) + q1(Z)e1 + q2(Z)e2 + q3(Z)e3, qk(Z) ∈ R (k = 0, . . . 3), by Qk =
qk−1 + e2qk+1 (k = 1, 2).
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3. The derivative of a monogenic function and geometrical
properties of the mapping realized by a monogenic function

We will now characterize the quasiconformality of a monogenic function in terms of its
derivative. It is shown in [7] that for all dimensions of the underlying real Euclidean
space Rn+1 the hypercomplex derivative of a monogenic function W is the term − 1

2DW .
For the case of quaternionic monogenic functions this was shown in [25] already in
1979 and later in [17]. We will see that the relations between derivative, Jacobian
determinant, and quasiconformality are not so direct as in the complex case (c.f [1]).
But, nevertheless, it is possible to characterize the Jacobian determinant at least in
terms of the derivative.

First, we consider the problem of the existence of a homeomorphism. Assume that
W ∈ kerD. Furthermore, let J =

(
∂wi

∂xj

)3

i,j=0
be the Jacobian. The function W realizes

a local homeomorphism at the point Z = 0 if detJ |Z=0 6= 0. As a first step we can
prove the following result.

Lemma 3.1. detJ |Z=0 6= 0 implies DW (0) 6= 0.

This is due to the fact that otherwise from D + D = 2∂x0 and DW = 0 it follows
∂x0f(0) = 0. Therefore, detJ |Z=0 = 0 because ∂x0W (0) represents the first row in
the Jacobian J . However, this condition is not sufficient, take for example W (Z) =
x1 − x0e1.

Remark 3.1. For each function W ∈ kerD ∩ kerD it follows that W is not a
homeomorphism at Z = 0. This may look strange at first sight because this subspace
of monogenic functions has an infinite dimension. But, remembering what a derivative
is in the hypercomplex setting, the result seems to be natural. The set kerD ∩ kerD
defines the “constants” with respect to the introduced derivative and in this sense the
result corresponds to the complex result.

Now, let P ∈ H, |P | = 1 a constant quaternion. We consider the terms DW (PZ)
and DW (PZ). For the first term we have

DW (PZ) = PDW (Z).

This implies W (PZ) ∈ kerD if W ∈ kerD. Furthermore, for the second term we have

DW (PZ) =
∑

j

∑
i
ei∂jW

∂(PZ)j

∂xi

=
(
p0∂0W + p1∂1W + p2∂2W + ∂3W

)

+ e1

(
p1∂0W − p0∂1W − p3∂2W + p2∂3W

)

+ e2

(
p2∂0W + p3∂1W − p0∂2W − p1∂3W

)

+ e3

(
p3∂0W − p2∂1W + p1∂2W − p0∂3W

)

=
(
p0 + e1p1 + e2p2 + e3p3

)
∂0W

+
(
p1 − e1p0 + e2p3 − e3p2

)
∂1W

+
(
p2 − e1p3 − e2p0 + e3p1

)
∂2W

+
(
p3 + e1p2 − e2p1 − e3p0

)
∂3W

= D(PW ).
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Thus, the property DW = 0 is not preserved under rotations. Moreover, W ∈ kerD can
be expanded by Taylor’s formula with respect to the variables θi = xi−eix0 (i = 1, 2, 3)
which denote the so-called totally regular variables (see, e.g., [3, 7]), yielding

W (Z) = W (0) + θ1a + θ2b + θ3c + O(|Z|2).

Hereby, detJ |Z=0 depends only on the linear part of this expansion. On the other hand,
we also have the classical Taylor formula in R4 with respect to the real variables xi:

W (Z) = W (0) + x0∂0W (0) + x1∂1W (0) + x2∂2W (0) + x3∂3W (0) + O(|Z|2).

If detJ |Z=0 = 0, then ∂0W, . . . , ∂3W are real linearly dependent, i.e. there exist real
numbers α0, . . . , α3 with

∑3
i=0 α2

i = 1 and

α0∂0W (0) + α1∂1W (0) + α2∂2W (0) + α3∂3W (0) = 0.

Now, let p = (α0, . . . , α3)T ∼= P ∈ H and Y = PZ. We consider DZW (PZ)|Z=0. Using
again D + D = 2∂x0 this results in

∂W (PZ)
∂x0

=
∑

j

∂W

∂yj

∂yj

∂x0

=
∑

j

∂W

∂yj

∂(PZ)j

∂x0

=
∂W

∂y0
α0 +

∂W

∂y1
α1 +

∂W

∂y2
α2 +

∂W

∂y3
α3

= 0

or, with other words,

det Jf |Z=0 = 0 =⇒ ∃P : |P | = 1 ∧DZW (PZ)|Z=0 = 0.

Obviously, the reverse statement is also true.

We are now ready to describe the linkage between the derivative and the corre-
sponding Jacobian determinant:

Theorem 3.1. Let W be monogenic. Then

det JW |Z=0 = 0 ⇐⇒ ∃P : |P | = 1 ∧DZW (PZ)|Z=0 = 0.

This theorem also implies the criterion

detJW |Z=0 6= 0 ⇐⇒ min
P∈H,|P |=1

∣∣DZW (PZ)|Z=0

∣∣ > 0.

We are interested now to describe an analogous property not only for monogenic
functions but also for solutions of our Beltrami system (3).
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Theorem 3.2. Let W ∈ C1,α(Ω) be a solution of DW (Z) = Q(Z)DW (Z) in Ω
with Q(0) = 0. Then

det JW |Z=0 = 0 ⇐⇒ ∃P : |P | = 1 ∧DZW (PZ)|Z=0 = 0.

For the proof we need the equality 2 ∂
∂x0

W (Z) = (Q(Z) + 1)DW (Z) which comes
directly from (3) by rearrangement. As above now detJW |Z=0 6= 0 implies DW (0) 6= 0,
otherwise we get ∂

∂x0
W (0) = 0 and detJW |Z=0 = 0.

Assume that detJW |Z=0 = 0. Then analogously to the preparation of Theorem
3.1 there exists a P ∈ H such that |P | = 1 and ∂W (PZ)

∂x0
|Z=0 = 0. From Q(0) = 0

we have DW (0) = 0 and, consequently, ∂W (PZ)
∂x0

|Z=0 = 0 implies DZW (PZ)|Z=0 =
−DZW (PZ)|Z=0. Together with DZW (PZ) = PDW (Z) we obtain DZW (PZ)|Z=0 =
0.

Now, we will deal with the property of quasiconformality of the mapping W :
R4 −→ R4. We discuss this property only locally for a neighbourhood of the point
Z = 0. Suppose that W is monogenic and realizes a homeomorphism. Without loss of
generality (removing higher order terms from the Taylor expansion), we can consider

W (Z) = θ1e1 + θ2B + θ3C

with B, C ∈ H. We have to estimate the terms

max
|Z|=r

|W (Z)−W (0)| and min
|Z|=r

|W (Z)−W (0)|

with
W (Z)−W (0) =

∑

i

xi∂iW (0) + O(|Z|2).

Due to the linear independence it is enough to consider only |∑xi∂iW (0)| for the
maximum and minimum on the surface of the ball |Z| = r. In the case of the chosen
function W (Z) we have for the Jacobian written in the short form of columns

J =
(

1
2DW, e1, B,C

)

and, therefore,

JT J =




| 12DW |2 1
2DW · e1

1
2DW ·B 1

2DW · C
1
2DW · e1 1 B · e1 C · e1
1
2DW ·B B · e1 |B|2 B · C
1
2DW · C C · e1 B · C |C|2




where B · C denotes the scalar product of B and C in R4. From this for the trace

trJT J = | 12DW |2 + 1 + |B|2 + |C|2

follows and we obtain | 12DW |2 ≤ trJT J ≤ 4σmax as an estimate for the greatest

eigenvalue σmax. Using the Rayleigh-quotient, we get σmin = min|Z|6=0
(JT JZ,Z)

(Z,Z) ≤
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(JT JY,Y )
(Y,Y ) (Y ∈ R4) for the lowest eigenvalue σmin. Chosing Y = (1, 0, 0, 0)T this results

in σmin ≤ | 12DW |2. Alltogether, we obtain

σmin ≤ | 12DW |2 ≤ 4σmax.

From the inequalities for |detJ | we get

σmin

σmax
| 12DW |2 ≤

√
|detJ | ≤ σmax

σmin
| 12DW |2

as well as
σmin

σmax

√
|detJ | ≤ |1

2
DW |2 ≤ σmax

σmin

√
|detJ |.

These inequalities show the equivalence of the Jacobian determinant and the derivative
of monogenic functions.

Remark 3.2. It should be mentioned explicitly that all the aforementioned con-
siderations only require DW (0) = 0 and not that W (Z) is a monogenic function in a
neighbourhood of the origin. It is enough to assume that it is a function of the class C2

to ensure the existence of the Taylor expansion with second order remainder term. In
the next section we will apply these ideas to the problem of the existence of locally qua-
siconformal solutions of the Beltrami equation. The Beltrami system is usually studied
in the scale of Hölder spaces. If we have solutions of (3) belonging to C2,α(Ω) (where
Ω = R4 is allowed), then the above used real Taylor expansion is ensured. The addi-
tional condition Q(0) = 0 implies DW (0) = 0 and therefore the linear part of the Taylor
expansion can be written using the hypercomplex variables θi which was necessary for
the estimation of the Jacobian determinant.

4. Solvability of the Beltrami-type equation

The correspondence between the quaternionic Beltrami equation (3) and the matrix
equation (5) in Section 2 allows us to study the solvability of (3) by employing integral
operators with entries similar to the complex operators. Indeed, taking the classical
integral operator methods developed for the plane case (c.f. [28]) into account we obtain
the form of the corresponding integral operator T as the right inverse operator of D in
a straightforward manner. The crucial point is to substitute the complex Cauchy kernel
1
2π (ξ − z) by the generalized Cauchy kernel

e(ξ − Z) =
1
ω

ξ − Z

|ξ − Z|4

mentioned in Section 2. In detail, with H = (H1, H2)T and ξ = ξ1 + e1ξ2
∼= (ξ1, ξ2) ∈

C2
(e2)

we get

TH = − 1
2π2




∫
Ω

ξ1−z1
|ξ−Z|4 H1(ξ) + ξ2−z2

|ξ−Z|4 H2(ξ)dΩξ

∫
Ω
−(ξ2−z2)
|ξ−Z|4 H1(ξ) + ξ1−z1

|ξ−Z|4 H2(ξ)dΩξ


 .
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If Ω is a bounded domain, then T is a continuous operator from the space Wk
p (Ω) into

the space Wk+1
p (Ω) (1 < p < ∞, k ∈ N0). In the case of an unbounded domain Ω

the operator T has the continuity property for kp ≥ 4 (see [23]). Thus, in both cases
DTH = H. It should be noticed that T also acts from Cl,α(Ω) into Cl+1,α(Ω) (0 < α ≤
1).

Following now the general scheme of the solution of the Beltrami equation by integral
operator methods in the plane we have to transform the matrix Beltrami equation
DW = QDW into an equivalent singular integral equation. For that purpose we notice
that every given solution W ∈ Wk

p (Ω) (1 < p < ∞, k ∈ N) can be represented in the
form

W (z1, z2) = Φ(z1, z2) + TH(z1, z2) (6)

with H ∈ Wk−1
p (Ω) taken as H = DW and Φ = W −TH ∈ Wk

p (Ω). The same relations
are true in the case of W ∈ Cl,α(Ω) with H ∈ Cl−1,α(Ω). Because DΦ = DW −DTH =
DW − H = 0, it is evident that Φ is a monogenic vector in the sense of the matrix
differential operator D (i.e. the corresponding quaternionic function Φ = Φ(Z) ∈ H is
monogenic or, in other words, it is a solution of the homogeneous generalized Cauchy-
Riemann equation DW = 0.)

Knowing now that every Wk
p -solution of the Beltrami equation has a representation

in the form (6), we use (6) as an ansatz for an unknown solution W to obtain the
aforementioned singular integral equation equivalent to (5). Indeed, let Φ be some
specially chosen monogenic vector. Applying to both sides of (6) the operators D and
D and combining the obtained expressions according to the equation DW = QDW we
get that H = DW has to satisfy the equation

H = QDΦ + QΠH (7)

where

ΠH = DTH

= 1
2π2

( ∫
Ω
[E11(ξ, Z)H1(ξ) + E12(ξ, Z)H2(ξ)] dΩξ∫

Ω
[E21(ξ, Z)H1(ξ) + E22(ξ, Z)H2(ξ)] dΩξ

)
− 1

2

(
H1(Z)
H2(Z)

)

and the kernels Eij (i, j = 1, 2) are given by

E11(ξ, Z) =
2(ξ1 − z1)2 − 2(ξ2 − z2)(ξ2 − z2)− |ξ − Z|2

|ξ − Z|6

E12(ξ, Z) =
2(ξ1 − z1)(ξ2 − z2) + 2(ξ1 − z1)(ξ2 − z2)

|ξ − Z|6

E21(ξ, Z) =
−2(ξ1 − z1)(ξ2 − z2)− 2(ξ1 − z1)(ξ2 − z2)

|ξ − Z|6

E22(ξ, Z) =
−2(ξ2 − z2)(ξ2 − z2)− |ξ − Z|2 + 2(ξ1 − z1)2

|ξ − Z|6 .

This strongly singular integral operator is an H-analogue (in the C(e2)-vector represen-
tation of quaternions) to the complex Π-operator (see [28]). Going back to the usual
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representation of quaternions and using the operator D in the form corresponding to
(4) it is an easy task to verify that the obtained integral operator coincides with the
quaternionic Π-operator investigated in detail in [5, 13].

To be able to follow the general scheme of the method we should now verify that
this new matrix integral operator satisfies all necessary mapping properties between
the relevant function spaces. Moreover, we also have to define relations between the
corresponding norm of the Π-operator and the coefficient Q in (7) to guarantee the
applicability of fixed-point methods which serve for the unique determination of H as
solution to (7). Formula (6) shows that in view of the chosen monogenic vector Φ we
obtain that way a unique solution for the Beltrami equation itself. It is evident that
the choice of Φ is a degree of freedom in the determination of a solution to (5). Indeed,
we will see that the specific choice of Φ allows us to obtain a homeomorphic solution of
(5) in the following section.

Following the general theory of singular integral operators (cf. [16]) and the results
of [5] this strongly singular integral operator acts from Cl,α(Ω) to Cl,α(Ω) (0 < α < 1)
and it is also a bounded operator from Wk

p (Ω) into Wk
p (Ω) (1 < p < ∞, k ∈ N0).

The determination of a concrete norm estimate in Wk
2 (Ω) has been shown in [13]

by using methods of [16], particularly the relation of the norm of the quaternionic
Π-operator to the absolute value of its symbol.

Remark 4.1. As a consequence of the aforementioned properties of the Π-operator
we obtain that for ||Q|| ≤ qc < 1

||Π|| in the norm of Cl,α(Ω) (0 < α < 1) orWk
p (Ω) (kp >

4) the singular integral equation (7) can be solved using Banach’s fixed-point theorem.
We notice that in the case of kp > 4 the spaceWk

p (Ω) forms a Banach algebra. Moreover,
according to the well-known Sobolev embedding theorem [24] for kp ≥ 4 + lp + pα (l ∈
N0, 0 < α < 1) our solution H also belongs to the space Cl,α(Ω). Based on this fact,
in all what follows we consider the solvability of equation (7) over spaces Wk

p (Ω) with
kp > 4.

As we can see the choice of a minimal value of p to guarantee the needed smoothness
of the solution of (7) essentially depends from the real dimension of the space. Compar-
ing this situation with the complex case we should notice that we cannot profit from the
consequences of the theorem of M. Riesz [20] about ‖Π‖p

Lp
being a logarithmic convex

function of p in C and the fact that for p = 2 the L2-norm is one. In the quaternionic
case we are forced to a value of p greater than 2 and to be able to obtain a condition
for the contraction property of ||QΠ|| we would have to impose stronger conditions on
the module of the multiplier Q.

5. The existence of local homeomorphic solutions

As we mentioned in the previous section in the case of Q ∈ Wk
p (R4) (kp > 4) with

||Q||Wk
p
≤ qc < 1

‖Π‖Wk
p

our singular integral equation (7) has a solution H uniquely

determined by choosing a monogenic vector Φ. For the following we set

Φ(Z) = 1
2

(
z1

z2

)
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and obtain a solution

W = 1
2

(
z1

z2

)
+ TH

whereby H satisfies the singular integral equation (7) with DΦ = (1, 0)T (in quaternionic
terms DΦ = 1). The special choice of Φ is motivated by the simplest form of a partial
solution to the homogeneous Cauchy-Riemann equation DW = 0 which guaranted
QDW = (Q1, Q2)T and with a Jacobian matrix closed to the identity. In the quaternions
this solution has the form

W = 1
2 (z1 + z2e1)− 1

2π2

∫

R4

ξ − Z

|ξ − Z|4
(
H1(ξ) + e1H2(ξ)

)
dR4

ξ .

Starting from this special solution we will now investigate the problem of the existence
of locally quasiconformal solutions of the Beltrami equation (3).

Let us first consider the case Q ∈ W2
p (R4) (p > 4). Furthermore, suppose ||Q||W2

p
≤

qc < 1
‖Π‖W2

p

(c.f. Remark 4.1). Then for each neighbourhood Uδ(0) = {Z : |Z| < δ} we

can consider the function
Qδ(Z) = Q(Z)ϕ(Z)

with

ϕ(Z) =



1 if |Z| < 1
2δ

−192( |Z|δ )5 + 720( |Z|δ )4 − 1040( |Z|δ )3 + 720( |Z|δ )2 − 240( |Z|δ ) + 32 if 1
2δ ≤ |Z| ≤ δ

0 if |Z| > δ.

Hereby, we have ||Qδ||W2
p
≤ ||Q||W2

p
||ϕ||W2

p
≤ 58π2δ4||Q||W2

p
.

Let us denote by W̊2
p (Uδ(0)) the space of allW2

p (R4)-functions with support in Uδ(0).
Then we have for the operator Πδ defined by ΠδH = QδΠH the mapping property

Πδ : W̊2
p (Uδ(0)) 7→ W̊2

p (Uδ(0)) (1 < p < ∞).

Moreover, from

||Q||W2
p
≤ qc <

1
‖Π‖W2

p

(p > 4) and ||Qδ||W2
p
≤ 58π2δ4||Q||W2

p

it follows that for all δ ≤ 1√√
58π

the operator Πδ is a contraction over W2
p (Uδ(0)) (p >

4). Based on this, we have that

W = 1
2

(
z1

z2

)
+ THδ,

where Hδ satisfies the equation

Hδ =
(

Qδ
1

Qδ
2

)
+

(
Qδ

1 −Q2
δ

Qδ
2 Q1

δ

)
ΠHδ,
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is a solution of the Beltrami equation DW = QδDW over R4 and it is also a solution
of the Beltrami equation DW = QDW over U δ

2
(0). Note that due to our construction

of Qδ the function Hδ vanishes outside the neighbourhood Uδ and belongs to the space
C1,α(R4) (α = 1 − 4

p for p > 4). Furthermore, from the application of Banach’s
fixed-point theorem to our singular integral equation

‖Hδ‖W2
p
≤

‖Qδ‖W2
p

1− ‖Qδ‖W2
p
‖Π‖W2

p

<
58π2‖Q‖W2

p
δ4

1− 58π2‖Q‖W2
p
δ4‖Π‖W2

p

follows. For δ < 1√√
116π

we get ‖Hδ‖W2
p

< 116π2‖Q‖W2
p
δ4 < 116π2

‖Π‖W2
p

δ4. This leads to

the fact that for all ε > 0 there exists a δ such that

‖Hδ‖Lp(R4) <
ε

‖Π‖W2
p

. (8)

These properties allow us to solve the problem of the existence of a local homeo-
morphism based on Theorem 3.1. Hereby, we would like to observe that the theorem
is also true if we replace the condition of monogeneity of the function W by the con-
ditions that W is a C2-function and DW (Z) = Q(Z)DW (Z) with Q(0) 6= −1. This
latter condition corresponds to the imposing of a direct connection of the terms DW
and DW given by a Beltrami-type equation. In the case Q(0) = −1, W will never be a
local homeomorphism at the point 0. (Indeed, DW + DW = 0 means that ∂x0W = 0.)
Therefore, let us assume in the following Q(0) 6= −1.

From Theorem 3.1 we have the condition

detJW |Z=0 = 0 ⇐⇒ ∃P : |P | = 1 ∧DZW (PZ)|Z=0 = 0.

Evaluating the terms

DZW (PZ)

= 2
(
∂z1 − e1∂z2

)

×
((

(p1z1 − p2z2) + e1(p2z1 + p1z2)
)

+ THδ
(
p1z1 − p2z2, p2z1 + p1z2

))

and DZW (PZ) at the point zero this condition is transformed into the following prob-
lem:

Does there exist P = p1 + e1p2 such that the system




2 + C11 C12 C13 C14

C21 2 + C22 C23 C24

C13 C14 2 + C11 C12

C23 C24 C21 2 + C22







p1

p2

p1

p2


 =




0
0
0
0


 (9)
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has non-trivial solutions? Hereby, we have for the coefficients

C11 = 1
2π2

∫

R4

2ξ
2

1

|ξ|6 Hδ
1 (ξ)dR4

ξ + 1
2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
2 (ξ)dR4

ξ

C12 = 1
2π2

∫

R4

2ξ1ξ1 − |ξ|2
|ξ|6 Hδ

1 (ξ)dR4
ξ + 1

2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
2 (ξ)dR4

ξ

C13 = 1
2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
1 (ξ)dR4

ξ − 1
2π2

∫

R4

2ξ1ξ1 − |ξ|2
|ξ|6 Hδ

2 (ξ)dR4
ξ

C14 = − 1
π2

∫

R4

2ξ2ξ2 − |ξ|2
|ξ|6 Hδ

1 (ξ)dR4
ξ + 1

2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
2 (ξ)dR4

ξ

C21 = − 1
2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
1 (ξ)dR4

ξ − 1
2π2

∫

R4

2ξ2ξ2 − |ξ|2
|ξ|6 Hδ

2 (ξ)dR4
ξ

C22 = 1
2π2

∫

R4

2ξ1ξ1 − |ξ|2
|ξ|6 Hδ

1 (ξ)dR4
ξ + 1

2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
2 (ξ)dR4

ξ

C23 = − 1
2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
1 (ξ)dR4

ξ + 1
2π2

∫

R4

2ξ1ξ1 − |ξ|2
|ξ|6 Hδ

2 (ξ)dR4
ξ

C24 = − 1
2π2

∫

R4

2ξ2ξ2

|ξ|6 Hδ
1 (ξ)dR4

ξ + 1
2π2

∫

R4

2ξ1ξ2

|ξ|6 Hδ
2 (ξ)dR4

ξ

Based on the structure of these coefficients as complex singular integral operators of
Calderon-Zygmund type evaluated at the point zero, which we can also find in the
representation of the Π-operator,

|Cij | ≤ ‖Π‖Lp‖Hδ‖Lp

for all indices i, j. Moreover, from (8) we obtain |Cij | < ε.
Based on [26] a diagonal dominant matrix (Kij) is regular if

|Kii| >
4∑

j=1,j 6=i

|Kij |

for all i. This criterion allows to us to obtain the regularity of the linear system (9) by
choosing ε = 1

3 . Therefore, we get

di = |2 + Cii| −
4∑

j=1
j 6=i

|Cij | ≥ 2− |Cii| −
4∑

j=1
j 6=i

|Cij | ≥ 2− 1
3
− 3

3
=

2
3

for i = 1, 2 as well as

di = |2 + Ci−2,i−2| −
4∑

j=1
j 6=i−2

|Ci−2,j | ≥ 2− |Ci−2,i−2| −
4∑

j=1
j 6=i−2

|Ci−2,j | ≥ 2− 1
3
− 3

3
=

2
3

for i = 3, 4 and, hence, the linear system (9) is regular.
From the application of the affine transformation ξ = Z−Z0 we obtain the following

theorem.
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Theorem 5.1. Suppose that Q ∈ W2
p (R4) for a certain p > 4 and ||Q||W2

p
≤ qc <

1
||Π||W2

p

. Suppose also Q(Z) 6= −1 in any point Z ∈ R4. Then the generalized Beltrami

equation
DW (Z) = Q(Z)DW (Z)

has a solution, which realizes a local homeomorphism at each point Z0.

Now, let us again assume that Q ∈ W2
p (R4) and ‖Q‖W2

p
≤ qc < 1

4‖Π‖W2
p

for some

p > 4. Note that, from the application of Banach’s fixed-point theorem to our singular
integral equation,

||H||W2
p

<
qc

1− qc||Π||W2
p

<
1

3||Π||W2
p

and the solution

W = 1
2

(
z1

z2

)
+ TH

belongs to the space C2(R4) due to the fact that TH ∈ W3
p (R4) (cf. [24]). Moreover,

we again have for the coefficients Cij of system (9) |Cij | ≤ ||Π||Lp ||H||Lp for all indices
i, j which implies |Cij | ≤ 1

3 . Therefore, we obtain once more the regularity of our linear
system (9) by the above mentioned criterion.

Using the affine transformation ξ = Z−Z0 and Remark 3.2 we are able to establish
the following result.

Theorem 5.2. If Q ∈ W2
p (R4), ‖Q‖W2

p
≤ qc < 1

4||Π||W2
p

for some p > 4 and Q(Z) 6=
−1 (Z ∈ R4), then the function

W =
1
2

(
z1

z2

)
+ TH,

whereby H satisfies the corresponding singular integral equation (7), is a solution of the
Beltrami equation

DW (Z) = Q(Z)DW (Z) (10)

which realizes a local homeomorphism in each point Z0. Furthermore, if Q(0) = 0, then
the Beltrami equation (10) has a locally quasiconformal solution at each point Z0.

Let us finally remark that in the complex case the treatment of Q(0) 6= 0 is done
by reduction to the previous case by means of an affine transformation. Unfortunately,
we shall prove that, in general, this method is not applicable to our case. In fact, let us
consider the existence of such an affine transformation, given by

ξ1 = a0 + a1z1 + a2z1 + a3z2 + a4z2

ξ2 = b1 + b1z1 + b2z1 + b3z2 + a4z2

which changes equation (3) into the new Beltrami equation

DξW = Q̃(ξ)DξW (11)
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possessing the desired property of Q̃(0) = 0. The existence of this affine transformation
leads to the correspondence




∂z1

∂z1

∂z2

∂z2


 =




a1 a2 b1 b2

a2 a1 b2 b1

a3 a4 b3 b4

a4 a3 b4 b3







∂ξ1

∂ξ1

∂ξ2

∂ξ2




between the derivatives. Replacing the derivatives in the first equation of (3),

∂z1W1 − ∂z2W2 = Q1(∂z1W1 + ∂z2W2)−Q2(∂z1W2 − ∂z2W1)

and rewriting the equation we get

(a2 −Q1a1 −Q2a4)∂ξ1W1 + (a1 −Q1a2 −Q2a3)∂ξ1W1

+(b2 −Q1b1 −Q2b4)∂ξ2W1 + (b1 −Q1b2 −Q2b3)∂ξ2W1

+(−a3 −Q1a3 + Q2a2)∂ξ1W2 + (−a4 −Q1a4 + Q2a1)∂ξ1W2

+(−b3 −Q1b3 + Q2b2)∂ξ2W2 + (−b4 −Q1b4 + Q2b1)∂ξ2W2 = 0

which we can compare with the first equation of (11). This originates the system

a1 −Q1a2 −Q2a3 = 1

b2 −Q1b1 −Q2b4 = 0

−a3 −Q1a3 + Q2a2 = 0

−b4 −Q1b4 + Q2b1 = 0

a2 −Q1a1 −Q2a4 = −Q̃1

b1 −Q1b2 −Q2b3 = −Q̃2

−a4 −Q1a4 + Q2a1 = Q̃2

−b3 −Q1b3 + Q2b2 = −(1 + Q̃1)

(11)

valid for all Z ∈ Ω. We should notice that in the above system the equations which
determine the new Q̃ function are independent of the coefficients a3 and b4, while in
the control equations one notices the absence of the coefficients a4 and b3.

Consider the case in which Q2(Z0) = 0 for some Z0 ∈ Ω. On this particular point
we obtain from (11)3−4 that either Q1(Z0) = −1 and, therefore, ||Q(Z0)|| = 1, or
a3 = b4 = 0. Now, from (11)3−4, this implies that either a2 = b1 = 0 or Q2 ≡ 0 in
Ω. Again, this hypothesis is not possible since that would imply from (11)3−4 that the
function Q1 would be constant.

It is easily seen from (11)1−2 that a1 = 1 and b2 = 0, respectively. The remaining
equations are now

Q̃1 = Q1 + Q2a4

Q̃2 = Q2b3

Q̃2 = Q2 − (1 + Q1)a4

(1 + Q̃1) = (1 + Q1)b3.
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Again, on the point Z0, we get Q̃1(Z0) = Q1(Z0) so b3 = 1, which implies Q̃2 ≡ Q2 and
a4 = 0. Therefore, the only affine transformation satisfying this conditions is ξ = Z−Z0.
Note that the above arguments are independent of the condition Q̃(0) = 0.

For the case in which Q2(Z) 6= 0 for all Z ∈ Ω, the existence of an affine transfor-
mation which reduces the original Beltrami equation to the case (11)1 would imply that
the inverse transformation (again affine) would invert the effect, generating from Q̃ the
original Q. But the previous argument shows that Q(Z0) = 0 for at least one Z0 ∈ Ω.
Hence, no such transformation exists for Q2(Z) 6= 0 for all Z ∈ Ω.
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