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Parabolic Equations with Functional Dependence

A. Bychowska and H. Leszczyński

Abstract. We consider the Cauchy problem for nonlinear parabolic equations with functional
dependence and prove theorems on the existence of solutions to parabolic differential-functional
equations.
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1. Introduction

Any relevant research of differential-functional equations starts with thorough studies of
differential equations. The classical theory of linear parabolic equations was developed
in [5, 6, 8]. The existence and behaviour of solutions to initial- or initial-boundary-value
problems for equations of the form

Pu =
∂u

∂t
−

n∑

j,l=1

ajl(t, x)
∂2u

∂xj∂xl
= g(t, x) (∗)

depend upon fundamental solutions. If the matrix [ajl(t, x)]j,l is bounded, positive
definite and Hölder continuous, then we can obtain useful estimates of the fundamental
solutions and their derivatives (see [4, 5, 12]). These estimates apply to examinations
of the inverse operator P−1:

u 7→ g = Pu =⇒ u = P−1g.

If g is continuous in t and locally Hölder continuous in x, then u = P−1g has continuous
derivatives ∂u

∂t , ∂u
∂x and ∂2u

∂xj∂xl
. In particular, there exists a classical solution of the

Cauchy problem for equation (∗). Integro-differential equations

Pu(t, x) = f̄

(
t, x, u(t, x),

∫
u(s, y) dµ(s, y)

)
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were considered in [14]. Initial-boundary-value problems generate the fixed point equa-
tions u −→ P−1F [u] where

F [u](t, x) = f̄

(
t, x, u(t, x),

∫
u(s, y) dµ(s, y)

)

is the Nemytskii operator. Typical assumptions on the right-hand side f̄ guarantee
that the mapping u → P−1F [u] is a contraction on a Banach space. Existence results
for parabolic equations with delays and other Volterra functionals in [1, 10, 11, 13, 18]
also undergo similar procedures. The Banach contraction principle can be viewed as a
particular case of the direct iterative method (Picard iterations)

Pu(ν+1) = F [u(ν)].

At each stage of this iterative method one solves the classical equation Pu = g with
g = F [u(ν)]. Convergence criteria for general iterative methods were formulated in [17],
and stated for parabolic differential-functional equations in [9]. It is demanded to impose
certain comparison conditions on the right-hand side. These comparison conditions are
weakened when monotone techniques are used (see [3, 7, 11]), but there is another
strong assumption that provides a given pair of lower/upper solutions. We point out
that Chaplygin’s iterations play an important role among monotone techniques because
Chaplygin’s methods provide fast convergent sequences of approximate solutions (see
[2]). One of Chaplygin’s sequences obeys the recurrence relation

Pu(ν+1) = F [u(ν)] + DF [u(ν)]
(
u(ν+1) − u(ν)

)
,

where DF is a partial differentiation with respect to the functional variable. The papers
[10, 13] are devouted to parabolic problems with a general functional dependence which
concerns also partial derivatives. Existence and uniqueness theorems are obtained by
means of the Banach contraction principle. Due to a generalization of Bielecki’s norms,
the results in [10] cover the case of unbounded solutions with unbounded gradients,
however, the leading term of the differential operator P contains only the diagonal (the
Laplacian case). The present paper is aimed at existence results with general operator
P whose coefficients are Hölder continuous. Since we do not assume any differentiability
of the right-hand side, in particular DF may not exist, then, in general, Chaplygin’s
methods are not applicable. We introduce suitable Bielecki’s norms. Original Bielecki’s
norms

‖v‖λ = sup
t
|v(t)|/ exp(λt) for v ∈ C([0, a]),

equivalent to the usual supremum norm, were used in order to establish the global
Picard-Lindelöf theorem for ordinary differential equations: if the constant λ is suf-
ficiently large, the integral operator becomes ‖ · ‖λ-contraction with no restriction
on the existence interval [0, a]. Based on the observation that the weight function
ψ : [0, a] −→ R+ (alike ψ(t) = exp(λt) in the above ordinary differential equation
case) have to fulfill a comparison integral inequality such as

θψ(t) ≥ 1 +
∫ t

0

Lψ(s) ds
(
θ ∈ (0, 1)

)
,
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we construct Bielecki’s norms in our partial differential equation case. Next we find
closed, convex subspaces of functions which are mapped to itself by the operator u →
P−1F [u] where

F [u](t, x) = f(t, x, u(t,x)).

In Section 2 we study the Lipschitz-type case, but the Lipschitz constants are replaced
by L1-functions. The kind of the Volterra functional dependence and allowed derivatives
are specified by the choice of suitable norms. We study there the following main cases:

(i) No dependene on ∂u in equation (1).
(ii) A pointwise dependence on ∂u in equation (1).
(iii) A full functional dependence on ∂u in equation (1).

In the case (ii), there are no additional assumptions on the initial function ϕ. The
choice of Bielecki’s norms is motivated by comparison integral equations (see Theorem
2.2). Section 3 is devouted to classical solutions. We give sufficient conditions that the
mapping

E 3 (t, x) 7−→ g(t, x) = f(t, x, u(t,x)) ∈ R
be locally Hölder continuous in x (cf. [15, 16]). The functional dependence makes
serious difficulties especially at t = 0. The usual Lipschitz condition for f is insufficient.
There are the following two ways of remedy:

10 Assuming some regularity of the initial function ϕ, for instance a local Hölder
condition.

20 Modifying the Lipschitz or Hölder condition of the function f according to
singularities of u at t = 0.

In the last section, Section 4, we give some existence results proved by means of the
Schauder fixed point theorem. We distinguish two cases: with ∂u and without ∂u in f .

1.1 Formulation of the problem. Let

E = (0, a]× Rn

E0 = [−τ0, 0]× Rn

Ẽ = E0 ∪ E

B = [−τ0, 0]× [−τ, τ ]

where a > 0, τ0, τ1, . . . , τn ∈ R+ = [0,+∞) and

τ = (τ1, . . . , τn), [−τ, τ ] = [−τ1, τ1]× . . .× [−τn, τn].

The Hale-type functional u(t,x) : B −→ R ((t, x) ∈ E) is defined by

u(t,x)(s, y) = u(t + s, x + y) ((s, y) ∈ B).

Let C(X) be the class of all continuous functions from a metric space X into R, and
let CB(X) and CB(X)n be the classes of all continuous and bounded functions from
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X into R and Rn, respectively. Denote by ∂0 and ∂1, . . . , ∂n the operators of partial
derivatives with respect to t and x1, . . . , xn, respectively. Let ∂ = (∂1, . . . , ∂n) and
∂jl = ∂j∂l (j, l = 1, 2, . . . , n). The operator P is defined by

Pu(t, x) = ∂0u(t, x)−
n∑

j,l=1

ajl(t, x)∂jlu(t, x).

Suppose that f : E × C(B) −→ R and ϕ : E0 −→ R are given functions. Consider the
Cauchy problem

Pu(t, x) = f(t, x, u(t,x)) (1)
u(t, x) = ϕ(t, x) on E0. (2)

It is transformed into the integral equation

u(t, x) =
∫

Rn

Γ(t, x, 0, y)ϕ(0, y) dy +
∫ t

0

∫

Rn

Γ(t, x, s, y)f(s, y, u(s,y)) dyds (3)

where Γ(t, x, σ, ξ) is the fundamental solution of the above parabolic problem.

Definition 1.1. Let u ∈ C(Ẽ).

(i) u is called a classical solution of problem (1)-(2) (in other words: a C1,2 solu-
tion) if ∂0u, ∂ju, ∂jlu ∈ C(E), u satisfies equation (1) on E and initial condition (2) on
E0.

(ii) u is called a C0 solution of problem (1)-(2) if u coincides with ϕ on E0 and it
satisfies integral equation (3) on E.

(iii) u is called a C0,1 solution of problem (1)-(2) if u is a C0 solution whose
derivatives ∂ju (j = 1, . . . , n) are continuous on E.

The notion of C0, C0,1, C1,2 weak solutions require only the existence of partial
derivatives, being not necessarily continuous.

We are looking for C0, C0,1, C1,2 weak and strong solutions to problem (1)-(2). The
functional dependence has Volterra type, which can be easily recognized by location of
the domain B ⊂ E0, i.e., to the left from t = 0. Because the present paper mainly
deals with bounded solutions, almost all results carry over to the limit case B = E0.
Nevertheless, an unbounded domain of the shift operator u(t,x) causes some problems
with continuity, compactness, etc. For this reason we analyze the Cauchy problem with
bounded domain B. In [16] some existence and comparison problems for some kinds of
the data with unbounded growth as ‖x‖ → ∞ are treated. These investigation show
the complexity of the whole problem even for parabolic equations without functional
dependence. Another topic concerning the limit behaviour of solutions, generated by
nonlinearities with respect to u, is studied in [15].

1.2 Fundamental solution of problem (1)-(2). The supremum norm will be de-
noted by ‖ · ‖0 while the symbol ‖ · ‖ stands for the Euclidean norm.
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Assumption 1.1. Suppose ajl ∈ CB(E) (j, l = 1, . . . , n), the operator P is
parabolic, i.e.,

n∑

i,j=1

aij(t, x)ξiξj ≥ c′‖ξ‖2 (
(t, x) ∈ E, ξ ∈ Rn

)

and the coefficients aij satisfy the Hölder condition
∣∣aij(t, x)− aij(t̃, x̃)

∣∣ ≤ c′′
(|t− t̃|α

2 + ‖x− x̃‖α
)

(i, j = 1, . . . , n)

where c′, c′′ > 0.

Lemma 1.1. If Assumption 1.1 holds, then there are constants k0 > 0 and c0, c1, c2

> 0 such that

|Γ(t, x, σ, ξ)| ≤ c0(t− σ)−
n
2 exp

(
−k0‖x− ξ‖2

4(t− σ)

)

|∂jΓ(t, x, σ, ξ)| ≤ c1(t− σ)−
n+1

2 exp
(
−k0‖x− ξ‖2

4(t− σ)

)

|∂0Γ(t, x, σ, ξ)|, |∂jlΓ(t, x, σ, ξ)| ≤ c2(t− σ)−
n+2

2 exp
(
−k0‖x− ξ‖2

4(t− σ)

)

for all 0 ≤ σ < t ≤ a and x, ξ ∈ Rn, j, l = 1, . . . , n.

Proof. A priori estimates for the fundamental solution and its partial derivatives
can be found in [5, 8, 12].

Remark 1.1. Under Assumption 1.1 we obtain for the fundamental solution Γ(t, x,
σ, ξ) of problem (1)-(2) the more general Hölder-type estimates with any Hölder expo-
nent δ ∈ (0, 1]

∣∣Γ(t, x, σ, ξ)− Γ(t̄, x̄, σ, ξ)
∣∣

≤ c0+δ(t− σ)−
n+δ

2 exp
(
−k0‖x− ξ‖2

4(t− σ)

)[|t− t̄| δ
2 + ‖x− x̄‖δ

]

∣∣∂jΓ(t, x, σ, ξ)− ∂jΓ(t̄, x̄, σ, ξ)
∣∣

≤ c1+δ(t− σ)−
n+1+δ

2 exp
(
−k0‖x− ξ‖2

4(t− σ)

)[|t− t̄| δ
2 + ‖x− x̄‖δ

]

for 0 ≤ σ < t ≤ t̄ ≤ a and x, x̄, ξ ∈ Rn, j, l = 1, . . . , n

Lemma 1.2. If ϕ ∈ CB(E0), then there exists a classical solution ϕ̃ ∈ CB(Ẽ) of
the problem

Pu = 0

u Â ϕ

}

where the symbol u Â ϕ means the same as u(t, x) = ϕ(t, x) for (t, x) ∈ E0.

Proof. This is a basic existence result for the Cauchy problem, see [5, 6, 8]
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We introduce also the following notation that will be used throughout the paper.
Let c̃0 = c0( 4π

k0
)

n
2 , c̃1 = c1( 4π

k0
)

n
2 and set

S0(t) =
1√
t

(t > 0)

fϕ(t, x) = f(t, x, ϕ̃(t,x)) ((t, x) ∈ E)

(g1 ∗ g2)(t) =
∫ t

0

g1(t− s) g2(s) ds (t > 0)

where g1, g2 ∈ L1
loc(R+). In particular, (1 ∗ g)(t) =

∫ t

0
g(s) ds for g ∈ L1

loc(R+) where
the symbol Lp

loc(R+) stands for the space of real locally integrable functions on R+ with
exponent p ≥ 1.

2. Existence and uniqueness

Let L1[0, a] denote the set of all real integrable functions on [0, a]. Define the operator
T as follows: if u Â ϕ, then T u Â ϕ is determined on E by the right-hand side of
integral equation (3).

Theorem 2.1. Let ϕ ∈ CB(E0), λ,mf , f(·, x, 0) ∈ L1[0, a] and f(t, ·, 0) ∈ C(Rn).
Assume that |f(t, x, 0)| ≤ mf (t) and

∣∣f(t, x, w)− f(t, x, w̄)
∣∣ ≤ λ(t) ‖w − w̄‖0 on E × C(B). (4)

Then there exists a unique bounded C0 solution to problem (1)− (2).

Proof. We show that the operator T defined by the right-hand side of (3) is a
contraction from CB(Ẽ) into itself. Take u, ū ∈ CB(Ẽ) and (t, x) ∈ E. From (4) and
Lemma 1.1 we have

∣∣T u(t, x)− T ū(t, x)
∣∣

≤
∫ t

0

∫

Rn

|Γ(t, x, s, y)| ∣∣f(s, y, u(s,y))− f(s, y, ū(s,y))
∣∣ dyds

≤
∫ t

0

∫

Rn

c0(t− s)−
n
2 exp

(
−k0‖x− y‖2

4(t− s)

)
λ(s)

∥∥∥u− ū

ψ

∥∥∥
0
ψ(s) dyds

where the non-decreasing function ψ ∈ C[0, a] satisfies the equation

ψ(t) = 1 + 1
θ

∫ t

0

c̃0 λ(s)ψ(s) ds

with some θ ∈ (0, 1). We change the variables η =
√

k0(x−y)

2
√

t−s
to obtain

∣∣T u(t, x)− T ū(t, x)
∣∣ ≤

∫ t

0

c̃0λ(s)
∥∥∥u− ū

ψ

∥∥∥
0
ψ(s) ds ≤ θ ψ(t)

∥∥∥u− ū

ψ

∥∥∥
0
.
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Therefore, we have the contraction with respect to a Bielecki’s type norm
∥∥∥T u− T ū

ψ

∥∥∥
0
≤ θ

∥∥∥u− ū

ψ

∥∥∥
0
.

The boundedness and continuity of T u at t = 0 follows from the estimate

∣∣T u(t, x)− ϕ̃(t, x)
∣∣ ≤

∫ t

0

c̃0 ψ(s) λ(s)
∥∥∥ u

ψ

∥∥∥
0
ds +

∫ t

0

c̃0 mf (s) ds.

Thus the operator T maps CB(Ẽ) into itself, and the proof is complete

Proposition 2.1. Let ϕ ∈ CB(E0), λ, mf,ϕ, f(·, x, 0) ∈ L1[0, a] and f(t, ·, 0) ∈
C(Rn) be such that

|fϕ(t, x)| ≤ mf,ϕ(t).

Assume that condition (4) holds true. Then the function u obtained in Theorem 2.1
satisfies the inequality

|(u− ϕ̃)(t, x)| ≤ γ0(t) :=
∫ t

0

c̃0 mf,ϕ(s) exp
(

c̃0
θ

∫ t

s

λ(σ) dσ

)
ds, (5)

where θ ∈ (0, 1). If S0 ∗mf,ϕ and S0 ∗(λ ·γ0) are continuous in (0, a], then the derivative
∂u exists on E, and the function u is a C0,1 weak solution. If additionally we assume

lim
ε↘0

ε

∫ t(1−ε2)

0

{
mf,ϕ(s) + λ(s)γ0(s)

}
(t− s)−1ds = 0 (t > 0), (6)

then u is a C0,1 solution.

Proof. Estimate (5) for a C0-solution u, whose existence follows from Theorem
2.1, is obtained similarly as in the proof of the previous theorem. Condition (6) implies
continuous differentiability of u in x. Thus the C0-solution u becomes a C0,1-solution
of problem (1)-(2)

Example 2.1. We explain the sense of condition (6) which seems to be technical.
Observe that this condition (as well as all assumptions of Proposition 2.1) is satisfied
when mf,ϕ(t) and λ(t) are constant, i.e., in the Lipschitz case. We generalize this
simple example. Let ϕ ∈ CB(E0) and |fϕ(t, x)| ≤ mf,ϕ(t) := Mt−κ′ where κ′ ∈ [0, 1)
and M > 0. Assume that the function f satisfies condition (4) where λ(t) = Lt−κ with
κ ∈ [0, 1) and L > 0. Thus the function γ0 from (5) is given by

γ0(t) = c0
M

1− κ′
t1−κ′ exp

(
c̃0L

θ(1− κ)
t1−κ

)
.

In this case the functions S0∗mf,ϕ and S0∗(λ·γ0) are continuous in (0, a], and condition
(6) holds if the integrals

I1 = εM

∫ t(1−ε2)

0

s−κ′(t− s)−1ds

I2 = εc̃0
κ

1− κ′
L

∫ t(1−ε2)

0

s1−κs−κ′(t− s)−1ds
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tend to 0 as ε → 0. Indeed, considering I1 and substituting η = s
t we get

I1 = εM t−κ′
{∫ r

0

1
ηκ′(1− η)

dη +
∫ 1−ε2

r

1
ηκ′(1− η)

dη

}

where r = κ′
κ′+1 . Denote by I1,1 and I1,2 the integrals in the brackets. The integral I1,1

is bounded. The integral I1,2 has an estimate proportional to | ln ε|. Thus I1 → 0 as
ε → 0. The convergence of the integral I2 can be proved in a similar way.

Let C0 denote the set of all continuous functions ψ : [0, a] → R such that ψ(0) = 0,
and let C+

0 denote the set of all non-decreasing functions ψ ∈ C0.

Theorem 2.2. Let ϕ ∈ CB(E0) and λ, λ1,mf,ϕ ∈ L1[0, a], fϕ(·, x) ∈ L1[0, a],
fϕ(t, ·) ∈ C(Rn). Assume that the functions S0 ∗λ1 and S0 ∗mf,ϕ are bounded, λ1(t) =
λ(t)

√
t, |fϕ(t, x)| ≤ mf,ϕ(t) and

∣∣f(t, x, w)− f(t, x, w̄)
∣∣ ≤ λ(t) ‖w − w̄‖0 + λ1(t) ‖∂(w − w̄)(0, 0)‖0 (7)

(t− s)
1
2

∫ t

s

c0

c1
λ1(s) (t− ζ)−

1
2 (ζ − s)−

1
2 dζ ≤ θ1 < 1 (t > s). (8)

Then there is a unique C0,1 weak solution to problem (1)− (2).

Proof. Let ψ, ψ1 ∈ C+
0 and ψ1(t) = ψ(t)

k1
√

t
where k1 = c̃0+c̃1

θ . Define

Xϕ,ψ,ψ1 =

{
u ∈ CB(Ẽ)

∣∣∣∣∣
u Â ϕ and |(u− ϕ̃)(t, x)| ≤ ψ(t)

|∂j(u− ϕ̃)(t, x)| ≤ ψ1(t) (j = 1, . . . , n)

}
. (9)

Suppose that the functions ψ, ψ1 are solutions of the system of inequalities

∫ t

0

c̃0

{
mf,ϕ(s) + λ(s)ψ(s) + λ1(s)ψ1(s)

}
ds ≤ θ ψ(t) (10)

∫ t

0

c̃1(t− s)−
1
2

{
mf,ϕ(s) + λ(s)ψ(s) + λ1(s)ψ1(s)

}
ds ≤ θ ψ1(t). (11)

Take u, ū ∈ Xϕ,ψ,ψ1 and (t, x) ∈ E. Applying (7), (8) and (10) we have

∣∣T u(t, x)− T ū(t, x)
∣∣

≤
∫ t

0

∫

Rn

|Γ(t, x, s, y)|
∣∣f(s, y, u(s,y))− f(s, y, ū(s,y))

∣∣ dyds

≤
∫ t

0

c̃0

{
λ(s)

∥∥∥u− ū

ψ

∥∥∥
0
ψ(s) + λ1(s)

∥∥∥∂(u− ū)
ψ1

∥∥∥
0
ψ1(s)

}
ds

≤ θ ψ(t) ‖u− ū‖∗



Parabolic Equations 123

where ‖u− ū‖∗ = max
{∥∥u−ū

ψ

∥∥
0
,
∥∥∂(u−ū)

ψ1

∥∥
0

}
. Similarly, using (7), (8) and (11) we have

∣∣∂j(T u− T ū)(t, x)
∣∣

≤
∫ t

0

∫

Rn

|∂Γ(t, x, s, y)| ∣∣f(s, y, u(s,y))− f(s, y, ū(s,y))
∣∣ dyds

≤
∫ t

0

c̃1(t− s)−
1
2

{
λ(s)

∥∥∥u− ū

ψ

∥∥∥
0
ψ(s) + λ1(s)

∥∥∥∂(u− ū)
ψ1

∥∥∥
0
ψ1(s)

}
ds

≤ θ ψ1(t) ‖u− ū‖∗.

If u ∈ Xϕ,ψ,ψ1 and conditions (10) - (11) are satisfied, then

∣∣T u(t, x)− ϕ̃(t, x)
∣∣ ≤

∫ t

0

∫

Rn

|Γ(t, x, s, y)| |f(s, y, u(s,y))| dyds

≤
∫ t

0

c̃0

{
mf,ϕ(s) + λ(s)ψ(s) + λ1(s)ψ1(s)

}
ds

≤ ψ(t)
∣∣∂j(T u− ϕ̃)(t, x)

∣∣ ≤
∫ t

0

∫

Rn

|∂jΓ(t, x, s, y)| |f(s, y, u(s,y)| dyds

≤
∫ t

0

c̃1
1√

t− s

{
mf,ϕ(s) + λ(s)ψ(s) + λ1(s)ψ1(s)

}
ds

≤ ψ1(t).

Therefore the operator T maps Xϕ,ψ,ψ1 into itself. By virtue of the Banach contraction
principle the operator T has exactly one fixed point u ∈ Xϕ,ψ,ψ1 . The proof of Theorem
2.2 is complete

Remark 2.1. Condition (8) plays a crucial role in the proof of Theorem 2.2. This
condition implies the solvability of system (10) - (11), which can be reduced to the single
equation ∫ t

0

c̃1(t− s)−
1
2

{
mf,ϕ(s) + λ1(s)ψ1(s)[1 + k1]

}
ds = ψ1(t). (12)

The Lipschitz case, that is λ(t) = const and λ1(t) = const, implies condition (8) for
sufficiently small values of t− s. The right-hand side of the Lipschitz-type condition (7)
indicates the functional dependence in equation (1) on the past and spatial values of
the unknown function u, whereas the derivative ∂u appears only at the point (t, x). In
particular, there is no need to assume differentiability of the initial function ϕ. However,
the derivative ∂u may have a singularity at t = 0.

Example 2.2. Let ϕ ∈ CB(E0) and |fϕ(t, x)| ≤ mf,ϕ(t) := Mt−κ where κ ∈ [0, 1)
and M > 0. Assume that the function f satisfies condition (7) where λ(t) = Lt−κ with
κ ∈ [0, 1) and L > 0. Equation (12) has the form

∫ t

0

c̃1(t− s)−
1
2

{
Ms−κ + Ls−κ− 1

2 ψ1(s)[1 + k1]
}

ds = ψ1(t).
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This equation is solvable locally for small values of t − s. Any solution ψ1 can be
extended to the whole interval. Global solvability of this equation may be obtained
directly via the von Neumann expansion.

Theorem 2.2 concerns equations with various types of Volterra functional depen-
dence at the unknown function. The derivatives have the classical form (without func-
tional dependence). Now we consider equation (1) with functionals at the derivatives.
Therefore, we need differentiability of the initial function ϕ with respect to x.

Theorem 2.3. Let ϕ ∈ CB(E0), ∂ϕ ∈ CB(E0)n, λ, λ1,mf,ϕ ∈ L1[0, a] and
fϕ(t, ·) ∈ C(Rn). Suppose that |fϕ(t, x)| ≤ mf,ϕ(t) and

∣∣f(t, x, w)− f(t, x, w̄)
∣∣ ≤ λ(t)‖w − w̄‖0 + λ1(t)‖∂(w − w̄)‖0.

Assume that the functions S0 ∗ λ1 and S0 ∗ mf,ϕ are bounded, and condition (8) of
Theorem 2.2 is satisfied. Then problem (1)− (2) has a unique C0,1 solution.

Proof. Let ψ and ψ1 satisfy inequalities (10) and (11), respectively. Consider the
set Xϕ,ψ,ψ1 given by (9). Similarly as in the proof of Theorem 2.2 we see that the
operator T is a contraction. The continuity and boundedness of ϕ imply ϕ̃ ∈ CB(Ẽ).
By virtue of the assumption ∂ϕ ∈ CB(E0)n we have also ∂ϕ̃ ∈ CB(Ẽ)n. Hence the
operator T maps Xϕ,ψ,ψ1 into itself. Now we show the continuity of ∂u in x. We have

∣∣∂ju(t, x)− ∂ju(t, x̄)
∣∣

≤
∣∣ϕ̃(t, x)− ϕ̃(t, x̄)

∣∣

+
∣∣∣∣
∫ t

0

∫

Rn

{
∂jΓ(t, x, s, y)− ∂jΓ(t, x̄, s, y)

}
f(s, y, u(s,y)) dyds

∣∣∣∣ .

The last integral is estimated by

∫ t

0

c̃1+δ‖x− x̄‖δ(t− s)−
1+δ
2

{
mf,ϕ(s) + λ(s)‖u− ϕ̃‖0 + λ1(s)‖∂(u− ϕ̃)‖0

}
ds

The continuity of ∂u in t and of u at 0 can be proved in a similar way

Remark 2.2. Suppose that S1+δ
0 ∗mf,ϕ

Sδ′
0

∈ L∞[0, a] for 0 ≤ δ′ < 1 is satisfied in

Theorem 2.2. In this case we obtain a C0,1 solution to problem (1)-(2), but the derivative
∂u is not necessarily continuous at t = 0.
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3. Classical solutions

In the present section, we give some sufficient conditions for the existence of classical
(C1,2) solutions to problem (1)-(2). We start with the simplest case when the right-hand
side is independent of the unknowns function u.

Theorem 3.1. Let ϕ ∈ CB(E0) and g ∈ CB(E). Suppose that g is locally Hölder
continuous in x with Hölder exponent δ ∈ (0, 1]. If u ∈ CB(Ẽ) is a C0 solution to the
Cauchy problem

Pu(t, x) = g(t, x)

u Â ϕ

}
, (13)

then u is a classical solution (C1,2).

We omit the proof of this theorem, for details we refer to [15, 16].

Remark 3.1. Instead of the boundedness of the functions g and ϕ it suffices to
assume in Theorem 3.1 the growth condition |g(t, x)|, |ϕ(t, x)| ≤ c exp (κ‖x‖2) where
κ ∈ [0, 1).

If we put g(t, x) = f(t, x, u(t,x)), then the differential-functional problem (1)-(2) co-
incides with problem (13). Hence the differentiability of weak solutions may be reduced
to a local Hölder continuity condition of g(t, ·). Unfortunately, the Hölder constant
strongly depend on the unknown function which makes this problem difficult. We give
sufficient conditions for the existence of classical solutions to problem (1)-(2).

Theorem 3.2. Suppose that ϕ ∈ CB(E0) is locally Hölder continuous in x with
exponent δ ∈ (0, 1]. Assume that the function f is locally δ-Hölder continuous in x and
locally Lipschitz continuous in w ∈ C(B). If u ∈ CB(Ẽ) is a C0 solution to problem
(1)− (2) such that

|f(t, x, u(t,x))| ≤ m(t)
(
m ∈ L1[0, a], Sδ

0 ∗m ∈ L∞[0, a]
)
, (14)

then u is a classical solution (C1,2) to problem (1)− (2).

Proof. Observe that, if ϕ is δ-Hölder continuous in x, then ϕ̃ is also δ-Hölder
continuous in x. Hence the function u is also δ-Hölder in x. Since Sδ

0 ∗m ∈ L∞[0, a],
we have∣∣u(t, x)− u(t, x̄)

∣∣

≤
∣∣ϕ̃(t, x)− ϕ̃(t, x̄)

∣∣

+ ‖x− x̄‖δ

∫ t

0

∫

Rn

c0+δ(t− s)−
n+δ

2 exp
(
−k0‖x− y‖2

4(t− s)

)
m(s) dyds

≤ L2(x, x̄; u) ‖x− x̄‖δ

where L2(x, x̄;u) is a Hölder coefficient. Now we explain why the function g is locally
Hölder continuous in x:∣∣g(t, x)− g(t, x̄)

∣∣
≤ ∣∣f(t, x, u(t,x))− f(t, x̄, u(t,x))

∣∣ +
∣∣f(t, x̄, u(t,x))− f(t, x̄, u(t,x̄))

∣∣
≤ L0(x, x̄; u)‖x− x̄‖δ + L1(x, x̄; u)‖u(t,x) − u(t,x̄)‖
≤ L0(x, x̄; u)‖x− x̄‖δ + L1(x, x̄; u)L2(x, x̄;u)‖x− x̄‖δ
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where L0(x, x̄; u) and L1(x, x̄; u) are some constants from the local Hölder and local
Lipschitz continuity of the function f . By virtue of Theorem 3.1, the function u is a
classical solution, which completes the proof

Remark 3.2. The local Lipschitz and Hölder constants in Theorem 3.2 are inde-
pendent of t. The result remains true if we multiply these constants by m(t) (cf. (14)).
Instead of the boundedness of ϕ and f one can assume their exponential growth like
exp(C‖x‖2) as ‖x‖ → ∞. If we skip the local Hölder condition for the initial function ϕ,
then the functions ϕ̃ and u become less regular at t = 0. Consequently, the functional
dependence for the function f have to be restricted to the set E. The local Hölder and
Lipschitz conditions will be modified as

∣∣f(t, x, w)− f(t, x̄, w̄)
∣∣

≤ m(t)
{‖x− x̄‖δ + ‖w − w̄‖<t;δ>

}
ω0

(‖x‖+ ‖x̄‖, ‖w‖0 + ‖w̄‖0
) (15)

where ω0 : R2
+ → R+ is a non-decreasing function, and

‖w‖<t;δ> = sup
σ∈(−t,0]

∥∥w(σ, ·)(t + σ)
δ
2
∥∥

0
.

The term ‖w− w̄‖<t;δ> in the local Hölder-Lipschitz condition (15) can be also replaced
by

θ‖w − w̄‖<t;δ> + (1 + θ)‖w − w̄‖δ
<t; 12 > (θ ∈ [0, 1]).

We prove the local Hölder condition for g(t, x) = f(t, x, u(t,x)):
∣∣g(t, x)− g(t, x̄)

∣∣
≤

∣∣f(t, x, u(t,x))− f(t, x̄, u(t,x̄))
∣∣

≤ m(t)
{‖x− x̄‖δ + ‖u(t,x) − u(t,x̄)‖<t;δ>

}
ω0

(‖x‖+ ‖x̄‖, ‖u(t,x)‖0 + ‖u(t,x̄)‖0
)

≤ m(t) ‖x− x̄‖δ
{
1 + ω1(‖x‖+ ‖x̄‖+ 2‖τ‖)} ω0

(‖x‖+ ‖x̄‖, 2m(t)
)

since for all (σ, ξ) ∈ B such that t + σ > 0 we have

∣∣(u(t,x) − u(t,x̄))(σ, ξ)
∣∣ ≤ ω1

(‖x‖+ ‖x̄‖+ 2‖ξ‖)‖x− x̄‖δ

(t + σ)
δ
2

with some non-decreasing function ω1 : R+ → R+.

We summarize these considerations in the following two theorems.

Theorem 3.3. Suppose that ϕ ∈ CB(E0) and that f satisfies (14) and (15). Then
any C0 solution u of problem (1)− (2) is a classical (C1,2) solution.

Theorem 3.4. Assume that ϕ ∈ CB(E0) and ∂ϕ ∈ CB(E0)n. Suppose that m ∈
L1[0, a], S1+δ

0 ∗m ∈ L∞[0, a], and ω0 : R2
+ → R+ is a non-decreasing function such that

∣∣f(t, x, w)− f(t, x̄, w̄)
∣∣

≤ m(t)
{‖x− x̄‖δ + ‖w − w̄‖∗<t;δ>

}
ω0

(‖x‖+ ‖x̄‖, ‖w‖0,1 + ‖w̄‖0,1

)



Parabolic Equations 127

where ‖w‖0,1 = ‖w‖0,1 + ‖∂w‖0,1 and

‖w‖∗<t;δ> = ‖w‖0,1 + θ‖∂w‖<t;δ> + (1− θ)‖∂w‖<t; 12 > (θ ∈ [0, 1]).

Then any C0,1 solution u ∈ CB(Ẽ) to problem (1)− (2) is a classical solution.

Remark 3.3. The condition ∂ϕ ∈ CB(E0)n can be weakened. If we omit this
condition, then we have to take into consideration singularities at t = 0. The norm
‖ · ‖∗<t;δ> in the above local Hölder-Lipschitz condition should be replaced by

‖w‖∗∗<t;δ> = ‖w‖<t;δ> + θ‖∂w‖<t;1+δ> + (1− θ)‖∂w‖δ
<t;2>.

4. Existence of solutions

Let Xϕ = {u ∈ CB(Ẽ) : u(t, x) Â ϕ} and denote by ‖u‖t the seminorms

‖u‖t = sup
{
u(s, y) : (s, y) ∈ Ẽ, s ≤ t

}
(t ∈ (0, a]).

Theorem 4.1. Suppose that ϕ ∈ CB(E0) and that there are m,λ ∈ L1[0, a] such
that

|f(t, x, w)| ≤ m(t) + λ(t) ‖w‖0 on E × C(B)

where f(·, x, w) ∈ L1[0, a] and f is continuous in (x,w) ∈ Rn × C(B). Assume that
Sδ

0∗m
Sδ′ ,

Sδ
0∗λ
Sδ′ ∈ L∞[0, a] where δ, δ′ ∈ [0, 1). Then there is a C0,1 weak solution to problem

(1)− (2).

Proof. We apply the Schauder-type approach. Let ψ ∈ C+
0 be given by

ψ(t) =
∫ t

0

{
m(s) + λ(s)‖ϕ̃‖s

}
exp

(∫ t

0

λ(σ) dσ

)
ds.

Define
Xϕ,ψ =

{
u ∈ Xϕ :

∣∣u(t, x)− ϕ̃(t, x)
∣∣ ≤ ψ(t) on Ẽ

}
.

Observe that Xϕ,ψ is a bounded, closed and convex subset of Xϕ. It is easy to see that
the operator T maps the set Xϕ,ψ into itself. We prove that T is compact, i.e., the
closure of T (Xϕ,ψ) is compact. It is sufficient to show that the set T (Xϕ,ψ) is uniformly
bounded and equicontinuous on all compact subsets of CB(Ẽ). Take t ∈ (0, a] and
x, x̄ ∈ Rn. If u ∈ Xϕ,ψ, then we have

|f(t, y, u(t,y))| ≤ P (t) := m(t) + λ(t) ‖u‖t.

Therefore, we get

∣∣T u(t, x̄)− T u(t, x)
∣∣ +

∫ t

0

∫

Rn

∣∣Γ(t, x̄, s, y)− Γ(t, x, s, y)
∣∣P (s) dyds

≤
∣∣ϕ̃(t, x̄)− ϕ̃(t, x)

∣∣ +
∫ t

0

c̃δ ‖x− x̄‖δ(t− s)−
δ
2 P (s) ds

≤ ‖x− x̄‖δ
{
t−

δ
2 c̃δ‖ϕ‖0 + c̃δ(Sδ

0 ∗ P )(t)
}
.
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Hence the set T (Xϕ,ψ) is equicontinuous in x on all compact subsets of E. Take arbitrary
t and t̄ such that a ≥ t̄ > t > 0. Then we have

∣∣T u(t, x)− T u(t̄, x)
∣∣

≤ ∣∣ϕ̃(t, x)− ϕ̃(t̄, x)
∣∣

+
∫ t

0

∫

Rn

∣∣Γ(t, x, s, y)− Γ(t̄, x, s, y)
∣∣P (s) dyds

+
∫ t̄

t

∫

Rn

|Γ(t̄, x, s, y)|P (s) dyds

≤ ∣∣ϕ̃(t, x)− ϕ̃(t̄, x)
∣∣

+
∫ t

0

c̃δ|t̄− t| δ
2 (t− s)−

δ
2 P (s) ds +

∫ t̄

t

c̃0P (s) ds.

Hence the set T (Xϕ,ψ) is equicontinuous in t > 0.

Now we show that T (Xϕ,ψ) is almost uniformly bounded. We have the estimate

∣∣(T u− ϕ̃)(t, x)
∣∣

≤
∫ t

0

∫

Rn

|Γ(t, x, s, y)|
{

m(s) + λ(s)‖u(s,y) − ϕ̃(s,y)‖0
}

dyds

≤ c̃0

∫ t

0

{
m(s) + λ(s)‖u− ϕ̃‖s + λ(s)‖ϕ̃‖s

}
ds

≤ ψ(t).

The continuity of the function f in x and w implies that the operator T is continuous.
By the Schauder fixed point theorem the operator T has a fixed point in Xϕ,ψ. This
completes the proof

Theorem 4.2. Let ϕ ∈ CB(E0) and there are m,λ, λ1 ∈ L1[0, a] such that

|f(t, x, w)| ≤ m(t) + λ(t) ‖w‖0 + λ1(t)‖∂w(0, 0)‖0

where λ1(t) = λ(t)
√

t. Assume that the functions Sδ
0∗m
δ′ ,

Sδ
0∗λ
δ′ ∈ L∞[0, a] and

(t− s)
1
2

∫ t

s

c0

c1
λ1(s) (t− ζ)−

1
2 (ζ − s)−

1
2 dζ ≤ θ1 < 1 (t > s).

Then there is a C0,1 weak solution to problem (1)− (2).

Proof. We recall that

Xϕ,ψ,ψ1 =

{
u ∈ CB(Ẽ)

∣∣∣∣∣
u Â ϕ and |(u− ϕ̃)(t, x)| ≤ ψ(t)

|∂j(u− ϕ̃)(t, x)| ≤ ψ1(t) (j = 1, . . . , n)

}



Parabolic Equations 129

where ψ, ψ1 ∈ C+
0 and ψ(t) = k ψ1(t)

√
t with k = c1

c0
. Suppose that ψ,ψ1 satisfy the

integral inequalities

∫ t

0

c̃0

{
m̃(s) + λ(s)ψ(s) + λ1(s)ψ1(s)

}
ds ≤ ψ(t)

∫ t

0

c̃1(t− s)−
1
2

{
m̃(s) + λ(s)ψ(s) + λ1(s)ψ1(s)

}
ds ≤ ψ1(t)

where m̃(s) = λ(s)‖ϕ̃‖s + λ1(s)‖∂ϕ̃(s, ·)‖0. Then similarly as in Theorem 2.2 we can
show that

|(T u− ϕ̃)(t, x)| ≤ ψ(t)

|∂j(T u− ϕ̃)(t, x)| ≤ ψ1(t)

}

for u ∈ Xϕ,ψ,ψ1 . We prove that the set (∂jT )(Xϕ,ψ,ψ1) is equicontinuous in t on all
compact subsets of E. If u ∈ (∂jT )(Xϕ,ψ,ψ1), then we have

∣∣∂jT u(t̄, x)− ∂jT u(t, x)
∣∣

≤ ∣∣∂jϕ̃(t̄, x)− ∂jϕ̃(t̄, x)
∣∣

+
∫ t

0

c̃1+δ(t− s)−
1+δ
2 |t̄− t| δ

2 P1(s) ds +
∫ t̄

t

c̃1+δ(t− s)−
1+δ
2 P1(s) ds

for all 0 < t < t̄ ≤ a where P1(s) = m̃(s) + λ(s)ψ(s) + λ1(s)ψ1(s). Observe that the
right-hand side does not depend on u. The equicontinuity of (∂jT )(Xϕ,ψ,ψ1) in x can
be proved in a similar way. Since f is continuous, we easily check that the operator T is
continuous, too. We conclude from the Schauder fixed point theorem that the operator
T has a fixed point in Xϕ,ψ,ψ1 which completes the proof
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