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Boundary Integral Operators for Plate Bending
in Domains with Corners
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Abstract. The paper studies boundary integral operators of the bi-Laplacian on piecewise
smooth curves with corners and describes their mapping properties in the trace spaces of
variational solutions of the biharmonic equation. We formulate a direct integral equation
method for solving interior and exterior mixed boundary value problems on non-smooth plane
domains, analyze the solvability of the corresponding systems of integral equations and prove
their strong ellipticity.
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1. Introduction

The aim of the present paper is to study boundary integral operators of the bi-Laplacian
on piecewise smooth curves with corners and to analyze a direct integral equation
method for solving the biharmonic equation with mixed boundary conditions on a non-
smooth plane domain Ω with boundary Γ. Although boundary element methods offer
important advantages over domain type methods and are frequently used for solving
plate bending or related problems for fourth-order equations (cf. [2, 12] and also the
references therein), their theoretical foundation is very limited compared with results
for second-order equations.

For the case of a smooth curve quite satisfactory results are available by using
nowadays standard tools from the theory of integral and pseudodifferential equations
and of approximation methods. In connection with indirect boundary integral equation
methods we mention Chapter 8 of the book [2], where a detailed analysis of mapping
properties of biharmonic boundary integral operators and of indirect formulations for
four types of boundary value problems can be found. As a rule, indirect methods
are designed for specific classes of problems, but their application to other types of
plate bending problems, for example to mixed boundary conditions, is complicated
both in analytical and numerical respect. The study of direct methods can be based
on the approach developed by Costabel and Wendland in [4, 9], which results in a
complete description of mapping properties of boundary integral operators and strong
ellipticity of systems of first kind integral equations corresponding to various types
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of boundary conditions. This can be used to consider different numerical methods for
solving corresponding integral equations, to prove stability and error estimates similarly
to well-established techniques for second-order equations; for the case of a free plate see
the interesting paper by Giroire and Nédélec [10].

If the boundary of the domain has corners, then the situation is quite different. The
boundary integral operators are no longer classical pseudodifferential operators and bi-
harmonic boundary value problems have in general only weak solutions. To extend the
theory developed for second-order equations in non-smooth domains one has therefore
to study the behaviour of biharmonic boundary integral operators applied to Cauchy
data of H2-functions. In [8], the first paper devoted to the study of boundary integral
equations for the biharmonic equation in non-smooth domains, Costabel, Stephan and
Wendland considered an indirect method for the solution of the boundary value prob-
lem gradu|Γ = f . Using a layer potential ansatz with the gradient of the fundamental
solution of the bi-Laplacian as integral kernel they obtained a system of two integral
equations of the first kind with logarithmic principal part. Thus the above mentioned
problem of dealing with biharmonic integral operators applied to Cauchy data of weak
solutions could be avoided. This was first treated by Bourlard in [1], where the bi-
harmonic Dirichlet problem on a polygonal domain was transformed into a variational
formulation for the first kind boundary integral equation with biharmonic single layer
potential. It was shown that the variational problem is coercive on the dual of the space
of Dirichlet data of H2-functions (the boundary values of the function and its normal
derivative). That means, the single layer potential operator is a symmetric and strongly
elliptic mapping from this dual into the trace space. Similar results were obtained in [16]
by extending some methods for second-order equations from [5, 7] to define biharmonic
boundary integral operators. These operators were associated with the bilinear form

∫

Ω

∆u∆v dx (1.1)

which is positive definite on H2
0 (Ω) and corresponds to the biharmonic Dirichlet prob-

lem. The simple idea was to consider the two functions of the Dirichlet datum of a
H2-function, which obviously are subjected to some compatibility conditions at the
corner points of Γ, as one element of a trace space and to define Neumann data of H2-
functions u with ∆2u ∈ L2 by using (1.1). Then the Neumann data belong to the dual
of the trace space. The biharmonic layer potentials are simply the values of the duality
functional applied to the Dirichlet datum (single layer) or the Neumann datum (double
layer) of the biharmonic fundamental solution and to an element of the corresponding
dual space, which becomes the density. Now the setting is the same as for potentials of
second-order equations, and by using the approach of Costabel [5] we were able to prove
the jump relations for the potentials, to define the boundary operators and analyze their
mapping properties in the trace spaces of variational solutions. The obtained results
were used to formulate boundary integral equations for interior and exterior biharmonic
Dirichlet problems in non-smooth domains and to analyze their solvability.

In this paper we extend the approach of [16] to treat other types of boundary
conditions, which appear in thin plate bending as free, simply supported or roller-
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supported plate. To this end form (1.1) has to be replaced by another form

aσ(u, v) =
∫

Ω

(
σ∆u∆v + (1− σ)

2∑

j,k=1

∂j∂ku ∂j∂kv

)
dx

connected with the bending strain energy of a Kirchhoff plate if 0 < σ < 1
2 . In Section

2 we provide the analogous construction as in [16] to define the Neumann data of H2-
functions u with ∆2u ∈ L2, which now depend on σ and contain, even for smooth u,
Dirac functionals supported at the corner points of the boundary. Further, we consider
the existence of variational solutions of interior and exterior Dirichlet and Neumann
problems. In Section 3 we introduce the biharmonic layer potentials associated with aσ,
characterize their behaviour at infinity and prove the jump relations and representation
formulas for biharmonic functions. The corresponding boundary integral operators will
be studied in Section 4. For 0 ≤ σ < 1 these operators have similar properties as the
boundary integral operators of the Laplacian. In Section 5 we transform biharmonic
boundary value problems into equivalent systems of boundary integral equations. If
the boundary value problem allows a coercive variational formulation, then the corre-
sponding system of integral equation is strongly elliptic. We study the solvability of
this system, which leads immediately to stability results for Galerkin boundary element
methods.

2. Traces of H2-functions on piecewise smooth boundaries

For the following let Γ be a simple closed curve in the (x1, x2)-plane composed of m
smooth arcs Γi. Adjacent arcs Γi−1 and Γi meet at corner points xi (i = 1, . . . , m)
with interior angles αi, 0 < αi < 2π. The interior of Γ we denote by Ω1, the exterior
R2\Ω1 by Ω2, and direct the unit normal n = (n1, n2) on Γ into Ω2. In the following we
denote by ∂j (j = 1, 2) the partial derivative with respect to xj , by ∂n = n1 ∂1 + n2 ∂2

the normal derivative and by ∂τ = −n2 ∂1 + n1 ∂2 the tangential derivative along Γ.
The norm in the Sobolev space H2(Ω1) is defined by

‖u‖H2(Ω1) =
(‖u‖2L2(Ω1)

+ |u|2H2(Ω1)

) 1
2

where

|u|2H2(Ω1)
=

2∑

j,k=1

‖∂j∂ku‖2L2(Ω1)
.

The traces of functions from H2(Ω1) can be characterized by using the following general
result.

Lemma 2.1 (see [13]). There exists a constant c > 0 not depending on u ∈ H2(Ω1)
such that

m∑

i=1

(‖u‖H3/2(Γi) + ‖∂nu‖H1/2(Γi)

)
+ ‖∂1u‖H1/2(Γ) + ‖∂2u‖H1/2(Γ) ≤ c ‖u‖H2(Ω).
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In the following we identify functions on Γ with periodic functions depending on
the arc length s and denote the derivative with respect to s by u′ = du

ds . Since with
exception of the corner points xi there holds

∂1u|Γ = n1 ∂nu− n2 ∂τu

∂2u|Γ = n2 ∂nu + n1 ∂τu

∂τ = d
ds





Lemma 2.1 suggests the definition of the trace space

V (Γ) =
{(u1

u2

)
: u1 ∈ H1(Γ), n1u2 − n2u

′
1, n2u2 + n1u

′
1 ∈ H1/2(Γ)

}

equipped with the canonical norm. We introduce the generalized trace mapping

γu =
(

u|Γ
∂nu|Γ

)
: H2(Ω1) → V (Γ).

Lemma 2.2 (see [13]). The linear mapping γ : H2
loc(R2) → V (Γ) is continuous and

has a continuous right inverse γ− : V (Γ) → H2
loc(R2). In particular, γ maps C∞0 (R2)

onto a dense subspace of V (Γ).

If we define the duality form

[(
v4

v3

)
,

(
u1

u2

)]
= −〈v4, u1〉Γ + 〈v3, u2〉Γ (2.1)

where 〈·, ·〉Γ denotes the extension of the L2-scalar product on Γ, then the dual space
of V (Γ) can be described as follows.

Lemma 2.3. The vector
(

v4
v3

)
belongs to (V (Γ))′ if and only if there exist z1, z2 ∈

H−1/2(Γ) and a number a ∈ R such that for any ϕ ∈ C∞0 (R2) the equations

〈ϕ|Γ, v4〉Γ =
〈
(ϕ|Γ)′, n2z1 − n1z2

〉
Γ

+ a
∫
Γ
ϕ ds

〈ϕ|Γ, v3〉Γ =
〈
ϕ|Γ, n1z1 + n2z2

〉
Γ

are satisfied.

To consider boundary integral equations connected with plate bending problems we
introduce the bilinear form

aσ(u, v) = aσ
Ω1

(u, v) :=
∫

Ω1

(
σ∆u∆v + (1− σ)

2∑

j,k=1

∂j∂ku ∂j∂kv

)
dx (2.2)

well-known in the variational formulation of bending problems for a thin plate with
Poisson ratio σ = λ

2 (λ + µ), λ and µ being the Lamé constants of the material. If u
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represents the deflection function on Ω1 corresponding to suitable loading and boundary
conditions, then the value of

aσ(u, u) = σ ‖∆u‖2L2(Ω1)
+ (1− σ) |u|2H2(Ω1)

(2.3)

is exactly twice the bending strain energy of the plate.
The analysis of boundary value problems for the bi-Laplacian is based on the fact

that the bilinear form aσ is coercive on appropriate function spaces, for certain values
of the parameter σ. By (2.3) the form aσ is coercive on H2(Ω1) at least for 0 ≤ σ < 1.
We mention that in the case of a smooth boundary Γ the form aσ is coercive on H2(Ω1)
if and only if −3 < σ < 1, as stated in [11]. Furthermore, for u, v ∈ C∞0 (Ω1)

∫

Ω1

∂j∂ku ∂j∂kv dx =
∫

Ω1

∂j∂ju ∂k∂kv dx

hence the value of aσ(u, v) does not depend on σ and (aσ(u, u))
1
2 = |u|H2(Ω1) is a norm

on H2
0 (Ω1) equivalent to ‖ · ‖H2(Ω1). Thus for given f ∈ L2(Ω1) and ψ ∈ V (Γ) the

problem
aσ(u, v) = 〈f, v〉Ω1 ∀ v ∈ H2

0 (Ω1)

γu = ψ

}
(2.4)

has a unique solution u ∈ H2(Ω1) being the weak solution of the Dirichlet problem

∆2u = f in Ω1

γu = ψ

}
. (2.5)

It is obvious that the solution operator defined by u = T (f, ψ) is a continuous mapping

T : L2(Ω1)× V (Γ) → H2(Ω1,∆2) =
{
u ∈ H2(Ω1) : ∆2u ∈ L2(Ω1)

}
. (2.6)

To consider other boundary value problems we define on Γ the differential operators

∂nnu = n2
1 ∂2

1u + 2n1n2 ∂1∂2u + n2
2 ∂2

2u

∂τnu = (n2
1 − n2

2)∂1∂2u− n1n2(∂2
1u− ∂2

2u)

∂ττu = n2
2 ∂2

1u− 2n1n2 ∂1∂2u + n2
1 ∂2

2u.

(2.7)

Lemma 2.4. Let u ∈ H2(Ω1, ∆2) and σ ∈ R. The mapping

δσu : ψ → [δσu, ψ] = aσ(u, γ−ψ)−
∫

Ω1

γ−ψ ∆2u dx (2.8)

is a continuous linear functional on V (Γ) that coincides for sufficiently smooth u with

[δσu, ψ] =−
∫

Γ

(
v1 ∂n∆u− (1− σ) v′1 ∂τnu

)
ds

+
∫

Γ

v2

(
σ∆u + (1− σ) ∂nnu

)
ds

(
ψ = (v1, v2) ∈ V (Γ)

)
. (2.9)
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Moreover, δσ : H2(Ω1,∆2) → (V (Γ))′ is continuous.

Proof. Since

σ∆u∆v + (1− σ)
2∑

j,k=1

∂j∂ku ∂j∂kv

= ∆u∆v + (1− σ)
(
2 ∂1∂2u ∂1∂2v − ∂2

1u ∂2
2v − ∂2

2u ∂2
1v

)
,

after applying Green’s formula with u ∈ H4(Ω1) and v ∈ H2(Ω1) one has

∫

Ω1

(
∆u∆v − v ∆2u

)
dx =

∫

Γ

(
∆u ∂nv − v ∂n∆u

)
ds

∫

Ω1

(
2 ∂1∂2u ∂1∂2v − ∂2

1u ∂2
2v − ∂2

2u ∂2
1v

)
dx =

∫

Γ

(
∂τv ∂τnu− ∂nv ∂ττu

)
ds.

Thus the value of the domain integrals aσ
Ω1

(u, v) − ∫
Ω1

v ∆2u dx depends only on γv ∈
V (Γ) and we obtain the Rayleigh-Green formula (2.9). Since

|aσ(u, v)| ≤ |σ|‖∆u‖L2(Ω1)‖∆v‖L2(Ω1) + |1− σ| |u|H2(Ω1)|v|H2(Ω1)

there exists a constant depending only on σ such that

∣∣[δσu, ψ]
∣∣ ≤ ‖∆2u‖L2(Ω1)‖γ−ψ‖L2(Ω1) + cσ |u|H2(Ω1)|γ−ψ|H2(Ω1). (2.10)

Hence the assertion follows by continuity from Lemma 2.2 and the fact that C∞(Ω1) is
dense in H2(Ω1, ∆2) (see [16])

Corollary 2.1. For u, v ∈ H2(Ω1, ∆2) Green’s second formula

∫

Ω1

(v ∆2u− u∆2v)dx = [δσv, γu]− [δσu, γv]

holds.

For ψ = (v1, v2) ∈ V (Γ) we write formula (2.9) in the form

[δσu, ψ] = −〈v1, Ñσu〉Γ + 〈v2,Mσu〉Γ (2.11)

where for sufficiently smooth u, say u ∈ H4(Ω1),

Mσu = σ∆u + (1− σ) ∂nnu

Ñσu = ∂n∆u +
d

ds
(Tσu)



 (2.12)

with
Tσu = (1− σ) ∂τnu (2.13)
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and the derivative of Tσu is understood in distributional sense. In plate bending Mσu

corresponds to the bending moment, Tσu to the twisting moment and Ñσu is known
as transverse force. In general the twisting moment Tσu is discontinuous at the corner
points of Γ. Therefore

Ñσu = Nσu +
m∑

i=1

δ(· − xi)
(
Tσu(xi

+)− Tσu(xi
−)

)

where δ(x) is the Dirac functional, Tσu(xi
+)−Tσu(xi

−) is the corner force at xi and the
function Nσu, known as Kirchhoff shear, is equal to

Nσu = ∂n∆u +
d

ds
(Tσu) on the arcs Γi. (2.14)

Since adjacent arcs meet at the corner point xi with interior angle αi, from (2.7) it
follows easily that

Tσu(xi
+)− Tσu(xi

−) = (1− σ) sin αi

(
∂τ iτ iu(xi)− ∂niniu(xi)

)
. (2.15)

Here the unit vector

ni =
(

cos
(
ϕi + π−αi

2

)
, sin

(
ϕi + π−αi

2

))
=

(
− sin

(
ϕi − αi

2

)
, cos

(
ϕi − αi

2

))

is directed as the bisector of the angle between n(xi
−) and n(xi

+), ϕi denotes the angle
between the x1-axis and n(xi

−), and

τ i = −
(

cos
(
ϕi − αi

2

)
, sin

(
ϕi − αi

2

))
.

Hence we get

Ñσu = Nσu + (1− σ)
m∑

i=1

δ(· − xi) sin αi

(
∂τ iτ iu(xi)− ∂niniu(xi)

)
. (2.16)

The vector composed of the components of the Dirichlet and Neumann data

(
γu
δσu

)
=




u
∂nu
Mσu
Ñσu


 (2.17)

will be called Cauchy datum of u ∈ H2(Ω1, ∆2) associated with the bilinear form aσ.

Let us now consider the problem to find u ∈ H2(Ω1) such that for given χ ∈ (V (Γ))′

aσ(u, v) = [χ, γv] ∀ v ∈ H2(Ω1). (2.18)
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By (2.8) this is equivalent to the Neumann problem for the biharmonic equation

∆2u = 0 in Ω1

δσu = χ

}
. (2.19)

Let us denote by P1 the space of linear functions on R2 and introduce the factor space
H2(Ω1) = H2(Ω1)/P1. It is well known that

‖u̇‖H2(Ω1) = |u|H2(Ω1)

gives a norm on the Hilbert space H2(Ω1) equivalent to the quotient norm

inf
p∈P1

‖u− p‖H2(Ω1).

Further, we denote by l (Γ) the traces of linear functions, l (Γ) = γ(P1), and consider the
space W (Γ) = V (Γ)/l (Γ) equipped with the factor norm. The adjoint space (W (Γ))′

with respect to (2.1) can be identified with the polar set

l (Γ)⊥ =
{

χ ∈ (V (Γ))′ : [χ, ψ] = 0 ∀ψ ∈ l (Γ)
}

.

Obviously, the assertions of Lemma 2.2 remain true for the mapping γ : H2(Ω1) →
W (Γ).

Lemma 2.5. Let u̇ ∈ H2(Ω1) with ∆2u̇ = 0 and 0 ≤ σ < 1. There exist constants
c1 and c2 not depending on u̇ such that

c1‖u̇‖H2(Ω1) ≤ ‖δσu̇‖(W (Γ))′ ≤ c2‖u̇‖H2(Ω1).

Proof. Since δσp = 0, p ∈ P1, the mapping δσ is defined on equivalence classes
u̇ ∈ H2(Ω1) with ∆2u ∈ L2(Ω1). Further, for any u ∈ H2(Ω1) with ∆2u = 0 there holds

[δσu, γp] = 0 (p ∈ P1), i.e. δσu ∈ l (Γ)⊥. (2.20)

From (2.10) we get
∣∣[δσu, ψ]

∣∣ ≤ cσ|u|H2(Ω1)|γ−ψ|H2(Ω1) ≤ c ‖u̇‖H2(Ω1)‖ψ̇‖W (Γ)

hence δσ maps {u̇ ∈ H2(Ω1) : ∆2u̇ = 0} into (W (Γ))′ and

‖δσu̇‖(W (Γ))′ ≤ c2‖u̇‖H2(Ω1).

On the other hand, for u ∈ H2(Ω1) with ∆2u = 0 we have

[δσu, γu] = aσ
Ω1

(u, u) = σ ‖∆u‖2L2(Ω1)
+ (1− σ) |u|2H2(Ω1)

so for 0 ≤ σ < 1
[δσu̇, γu̇] ≥ (1− σ) ‖u̇‖2H2(Ω1)

. (2.21)

Hence we derive

‖δσu̇‖(W (Γ))′ ‖γu̇‖W (Γ) ≥ (1− σ) ‖u̇‖2H2(Ω1)
≥ c1‖u̇‖H2(Ω1)‖γu̇‖W (Γ)

and the proof is finished
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Corollary 2.2. Let 0 ≤ σ < 1. The Neumann problem (2.19) has a solution
u ∈ H2(Ω1) if and only if χ ∈ l (Γ)⊥. The corresponding equivalence class u̇ ∈ H2(Ω1)
is unique.

Lemma 2.6. The set {(γϕ, δσϕ) : ϕ ∈ C∞0 (R2)} is dense in V (Γ)× (V (Γ))′.

Proof. The assertion is proved if we show that for (ψ, χ) ∈ V (Γ) × (V (Γ))′ the
relation

[δσϕ,ψ]− [χ, γϕ] = 0 ∀ϕ ∈ C∞0 (R2) (2.22)

implies ψ = χ = 0. Choosing arbitrary f ∈ L2(Ω1) we obtain by applying Corollary 2.1
and (2.6)

[
δσT (f, 0), ψ

]
=

[
δσT (f, 0), γT (0, ψ)

]− [
δσT (0, ψ), γT (f, 0)

]

=
∫

Ω1

(
T (f, 0) ∆2T (0, ψ)− T (0, ψ)∆2T (f, 0)

)
dx

= −
∫

Ω1

f T (0, ψ) dx.

Since C∞(Ω1) is dense in H2(Ω1, ∆2) relation (2.22) holds also for ϕ = T (f, 0), so∫
Ω1

f T (0, ψ) dx = 0 for all f ∈ L2(Ω1). Thus T (0, ψ) = 0 yielding ψ = γT (0, ψ) = 0.
From (2.22) it follows now that [χ, γϕ] = 0 for all ϕ ∈ H2(Ω1, ∆2) which together with
Lemma 2.2 implies χ = 0

Next we consider boundary value problems in the exterior domain Ω2. The traces
of functions given outside of Ω1 are defined so that for any ϕ ∈ C∞0 (R2)

γ(ϕ|Ω2) = γ(ϕ|Ω1)

δσ(ϕ|Ω2) = δσ(ϕ|Ω1)

}
.

Hence, if Ω̃ denotes a domain containing Ω1, u ∈ H2(Ω̃\Ω1, ∆2) and v ∈ H2(Ω̃\Ω1),
then

[δσu, γv] =
∫

Ω̃\Ω1

(
(ϕv)∆2u− σ ∆(ϕv)∆u− (1− σ)

2∑

j,k=1

∂j∂ku ∂j∂k(ϕv)
)

dx

where ϕ ∈ C∞0 (Ω̃) with ϕ ≡ 1 on a neighbourhood of Ω1.

Let us define the Hilbert space W 2(Ω2) which is a special case in a family of weighted
Sobolev spaces studied in [14] and allows variational formulations of exterior problems
for the biharmonic equation. We denote ρ(r) = log(2 + r2) and introduce

W 2(Ω2) =
{

u :
u

(1 + |x|2)ρ(|x|) ,
∂ju

(1 + |x|2) 1
2 ρ(|x|) , ∂j∂ku ∈ L2(Ω2) (j, k = 1, 2)

}

W 2
0 (Ω2) = closure of C∞0 (Ω2) in W 2(Ω2)
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equipped with the canonical norm. It is proved in [14] that the seminorm

|u|W 2(Ω2) =
( 2∑

j,k=1

‖∂j∂ku‖2L2(Ω2)

) 1
2

is a norm on W 2
0 (Ω2) and on the factor space W 2(Ω2)/P1 equivalent to the corresponding

induced norms. Hence the bilinear form

aσ
Ω2

(u, v) =
∫

Ω2

(
σ∆u∆v + (1− σ)

2∑

j,k=1

∂j∂ku ∂j∂kv

)
dx (2.23)

is positive definite on W 2
0 (Ω2) and, for 0 ≤ σ < 1, on H2(Ω2). Here we use the notations

H2(Ω2) = W 2(Ω2)/P1 and ‖u̇‖H2(Ω2) := |u|W 2(Ω2). Furthermore, for u ∈ W 2(Ω2) with
∆2u = 0 and 0 ≤ σ < 1

[δσu, γu] = − aσ
Ω2

(u, u) ≤ (σ − 1) |u|2W 2(Ω2)
, (2.24)

hence, analogously to Lemma 2.5 one obtains

Lemma 2.7. Let u̇ ∈ H2(Ω2) with ∆2u̇ = 0 and 0 ≤ σ < 1. There exist constants
not depending on u̇ such that c1‖u̇‖H2(Ω2) ≤ ‖δσu̇‖(W (Γ))′ ≤ c2‖u̇‖H2(Ω2).

Similarly to the interior problems the following assertions can be proved.

Lemma 2.8. For any ψ ∈ V (Γ) the weak formulation of the Dirichlet problem

γu = ψ

aσ
Ω2

(u, v) = 0 ∀ v ∈ W 2
0 (Ω2)

}

has a unique solution u ∈ W 2(Ω2). The exterior Neumann problem

aσ
Ω2

(u, v) = −[χ, γv] ∀ v ∈ W 2(Ω2)

has a solution u ∈ W 2(Ω2) if and only if χ ∈ l (Γ)⊥ ⊂ (V (Γ))′. The corresponding
equivalence class u̇ ∈ H2(Ω2) is unique.

3. Layer potentials for the bi-Laplacian

Here we introduce the biharmonic layer potentials, which are based on the fundamental
solution of the bi-Laplacian ∆2

G(x) = 1
8π |x|2 log |x| (x ∈ R2)

and are associated with the form aσ. Note that the operator

Gu(x) = 〈G(x, ·), u〉R2 with G(x, y) = G(x− y)

is the inverse of ∆2 on the space of compactly supported distributions on R2 and that

G : Hs
comp(R2) → Hs+4

loc (R2) (s ∈ R) (3.1)

is continuous. We have the following representation formula which follows immediately
from the special case σ = 1 given in [16].
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Lemma 3.1. Let u ∈ L2(R2) be a function with compact support such that u|Ω1 ∈
H2(Ω1), u|Ω2 ∈ H2

loc(Ω2) and f = ∆2u|R2\Γ ∈ L2(R2). Then for x ∈ R2\Γ the repre-
sentation

u(x) = Gf(x)− [{δσu}, γG(x, ·)] + [δσG(x, ·), {γu}]
holds where

{γu} = γ(u|Ω2)− γ(u|Ω1)

{δσu} = δσ(u|Ω2)− δσ(u|Ω1)

denote the jumps of the Dirichlet and Neumann data, respectively, across Γ.

Lemma 3.1 leads to the definition of the layer potentials for x ∈ R2\Γ
Vχ(x) = [χ, γG(x, ·)]
Kσψ(x) = [δσG(x, ·), ψ]

(
χ ∈ (V (Γ))′

)
(
ψ ∈ V (Γ)

)
.

(3.2)

Lemma 3.2. The biharmonic layer potentials

V : (V (Γ))′ → H2
loc(R2)

Kσ : V (Γ) → H2(Ω1)

are continuous.

Proof. Because of Vχ(x) = 〈G(x, ·), γ′χ〉R2 we can write

Vχ = Gγ′χ. (3.3)

The adjoint of the trace map γ′ : (V (Γ))′ → H−2
comp(R2) is continuous, therefore the

assertion for V follows from (3.1). Due to Lemma 3.1 the solution u = T (0, ψ) of the
Dirichlet problem (2.5) can be represented by

T (0, ψ) = VδσT (0, ψ)−Kσψ.

So Lemma 2.4 and the continuity of T imply ‖Kσψ‖H2(Ω1) ≤ c‖ψ‖V (Γ)

Note that definitions (2.1) and (3.2) lead to known representations of V and Kσ as
integral operators [17, 12]. If the components of the vector χ = (v1, v2) are integrable
functions, then we have

Vχ(x) =− 1
8π

∫

Γ

v1(y) |x− y|2 log |x− y| dsy

+ 1
8π

∫

Γ

v2(y) (ny, y − x)(2 log |x− y|+ 1) dsy.

(3.4)

From (2.16) we derive that the potential Kσψ, ψ = (v1, v2) ∈ V (Γ), is the sum of two
integrals and of a finite number of functions depending on v1(xi):

Kσψ(x) =
∫

Γ

v2(y) Mσ,yG(x, y) dsy −
∫

Γ

v1(y) Nσ,yG(x, y) dsy

− 1−σ
4π

m∑

i=1

v1(xi) sin αi

(
1− 2(ni, x− xi)2

|x− xi|2
) (3.5)
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where

Mσ,yG(x, y) =
1 + σ

4π
(log |x− y|+ 1) +

1− σ

4π

( (ny, y − x)2

|x− y|2 − 1
2

)

Nσ,yG(x, y) =
1 + σ

4π

(ny, y − x)
|x− y|2 +

1− σ

2π

( (ny, y − x)3

|x− y|4 − κy

( (ny, y − x)2

|x− y|2 − 1
2

))
.

Here κy denotes the curvature of Γ at the boundary point y, κ = dϕ
ds where ϕ is the

angle between the x1-axis and ny.

Let us define the linear spaces

Lσ
j =

{
u(x) = Vχ(x)−Kσψ(x) : (ψ, χ) ∈ V (Γ)× (V (Γ))′, x ∈ Ωj

}

of biharmonic functions representable via layer potentials. From Lemmas 3.1 and 3.2
we conclude that the space Lσ

1 corresponding to the interior domain is independent of
σ and coincides with the set of functions u ∈ H2(Ω1) satisfying ∆2u = 0. Moreover, for
u ∈ L1 the representation formula

Vδσu(x)−Kσγu(x) =
{

u(x) if x ∈ Ω1

0 if x ∈ Ω2
(3.6)

holds. The space Lσ
2 consists of functions u ∈ H2

loc(Ω2) characterized by ∆2u = 0 and
by a special asymptotics at infinity which will be described in the following lemma. To
this end we introduce the functions of (x, y) ∈ R2

g1(x, y) = 1

g2(x, y) = (x, y)

g3(x, y) = |y|2
g4(x, y) = 1

2 |y|2 + (x, y)2





denote by x̂ = x
|x| the direction of x and define

Ijχ(x) = [χ, γgj(x̂, ·)]
Jσ

j ψ(x) = [δσgj(x̂, ·), ψ]

(
χ ∈ (V (Γ))′

)
(
ψ ∈ V (Γ)

) (j = 1, . . . , 4). (3.7)

Note that Jσ
1 and Jσ

2 vanish, I1, I3 and Jσ
3 are constants, while I2, I4 and Jσ

4 depend on
the direction of x. Since the asymptotics of the fundamental solution for |x| = R →∞
can be written in the form

G(x, y) = 1
8π

(
R2 log R− g2(x̂, y)(2R log R + R) + g3(x̂, y) log R + g4(x̂, y)

)

+ O(R−1)
(3.8)

(cf. [3]), definition (3.2) of the layer potentials implies
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Lemma 3.3. For given (ψ, χ) ∈ V (Γ)× (V (Γ))′ the function

u(x) = Kσψ(x)− Vχ(x)

behaves for large |x| = R as

u(x) =− 1
8π

(
I1χR2 log R− I2χ(x)(2R log R + R)

+ (I3χ− Jσ
3 ψ) log R + I4χ(x)− Jσ

4 ψ(x)
)

+ O(R−1).
(3.9)

Corollary 3.1. The operator Kσ : V (Γ) → W 2(Ω2) is continuous.

Now one can prove the representation formula for functions u ∈ Lσ
2 .

Lemma 3.4. For u ∈ Lσ
2 with Cauchy data (γu, δσu) there holds

Kσγu(x)− Vδσu(x) =
{

u(x) if x ∈ Ω2

0 if x ∈ Ω1.
(3.10)

Proof. We enclose Ω1 by a ball BR with radius R > |x|. Then representation
formula (3.6) is valid for the bounded domain Ω2 ∩BR yielding

u(x) = Kσγu(x)− Vδσu(x)

+
∫

SR

(
uNσ,zG(x, z)−Mσ,zG(x, z) ∂nu

+ Mσu ∂nzG(x, z)−G(x, z) Nσu
)
dsz.

Using asymptotics (3.9) of u(z) as R = |z| → ∞ and asymptotics (3.8) of the funda-
mental solution it was shown in [16] that the integral

∫

SR

(
u ∂nz∆G(x, z)−∆G(x, z) ∂nu + ∆u ∂nzG(x, z)−G(x, z) ∂n∆u

)
dsz

converges to 0 as R → ∞. By the same technique one obtains after some lengthy
computations that the remaining integral converges to 0, too

Corollary 3.2. A function u ∈ Lσ
2 belongs to the weighted Sobolev space W 2(Ω2)

if and only if δσu ∈ l (Γ)⊥.

Corollary 3.3. Let 0 ≤ σ < 1. If the exterior Neumann problem

∆2u = 0 in Ω2

δσu = χ ∈ (V (Γ))′

}
(3.11)

has a solution u ∈ Lσ
2 , then this solution is unique.

Proof. Obviously, it suffices to show that δσu = 0 for u ∈ Lσ
2 implies u = 0. Due

to Lemma 2.7 we have ‖u̇‖2H2(Ω2)
= 0, hence u ∈ P1. But in view of asymptotics (3.9)

this is only possible if u = 0
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We note that the exterior Dirichlet problem

∆2u = 0 in Ω2

γu = ψ ∈ V (Γ)

}
(3.12)

is not uniquely solvable in Lσ
2 , in general. For example, the two biharmonic functions

uj(x1, x2) = xj

(
2 log |x|+ 1 + e−2 |x|−2

)

have vanishing trace γuj = 0 on the circle Γ with radius e−1, whereas for any circle Γ
with radius r 6= e−1 the problem

∆2u = 0 in Ω2

γu = 0

}
(3.13)

has only the trivial solution.

In the following we say that the curve Γ satisfies the assumption (AI) if the cor-
responding exterior homogeneous Dirichlet problem (3.13) has only the trivial solution
or, equivalently,

(AI) u ∈ Lσ
2 with γu = 0 implies δσu = 0.

Recently Costabel and Dauge proved in [6] that for any general curve Γ there exist
between 1 and 4 values of the scaling factor ρ > 0 such that the scaled curve ρΓ =
{ρx ∈ R2 : x ∈ Γ} violates assumption (AI).

Lemma 3.5. The layer potentials provide the jump relations

{γVχ} = 0,

{γKσψ} = ψ,

{δσVχ} = −χ

{δσKσψ} = 0

for all χ ∈ (V (Γ))′

for all ψ ∈ V (Γ).

Proof. Since u = Vχ ∈ H2
loc(R2) we have γ(u|Ω1) = γ(u|Ω2). Further, from (3.3)

we obtain that ∆2u = γ′χ in distributional sense, i.e.

∫

R2
u∆2ϕdx = 〈γ′χ, ϕ〉R2 = [χ, γϕ] ∀ϕ ∈ C∞0 (R2).

On the other hand,

∫

Ω1

u∆2ϕdx = aσ
Ω1

(u, ϕ)− [δσϕ, γu] = [δσ(u|Ω1), γϕ]− [δσϕ, γu]
∫

Ω2

u∆2ϕdx = aσ
Ω2

(u, ϕ) + [δσϕ, γu] = −[δσ(u|Ω2), γϕ] + [δσϕ, γu].

Thus
[χ, γϕ] = −[

δσ(Vχ|Ω2)− δσ(Vχ|Ω1), γϕ
] ∀ϕ ∈ C∞0 (R2).
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Let now u = Kσψ, ψ ∈ V (Γ), and again ϕ ∈ C∞0 (R2). Green’s second formula
yields ∫

R2
u∆2ϕdx = −[{δσu}, γϕ] + [δσϕ, {γu}]. (3.14)

The definition of Kσ provides
u = Kσψ = Gδ′σψ (3.15)

where δ′σψ denotes the compactly supported distribution on R2 defined by

〈ϕ, δ′σψ〉R2 = [δσϕ, ψ] ∀ϕ ∈ C∞0 (R2).

So ∆2u = δ′σψ in distributional sense, therefore

∫

R2
u∆2ϕdx = [δσϕ,ψ]. (3.16)

Comparing (3.14) and (3.16) we obtain

[δσϕ,ψ − {γu}] = −[{δσu}, γϕ] ∀ϕ ∈ C∞0 (R2).

Thus from (2.22) we conclude that {γKσψ} − ψ = 0 = {δσKσψ}

4. Boundary integral operators for the bi-Laplacian

In this section we study some basic properties of boundary integral operators connected
with the biharmonic layer potentials. These operators are defined as the traces

Aχ = 2 γVχ

Bσχ = 2 δσ(Vχ|Ω1)

Cσψ = 2 γ(Kσψ|Ω1)

Dσψ = −2 δσ(Kσψ|Ω1).

Formally this definition is the same as for the second order equations given in [5]. We
will show that the biharmonic boundary integral operators have analogous properties
as the corresponding operators of the Laplacian.

Lemma 4.1 [16]. The operator A : (V (Γ))′ → V (Γ) is continuous, symmetric and
strongly elliptic, and it is positive definite on (W (Γ))′, i.e. for any χ ∈ (W (Γ))′ = l (Γ)⊥

there holds
[χ,Aχ] ≥ c ‖χ‖2(V (Γ))′

with a constant c > 0 not depending on χ. If additionally the curve Γ satisfies assump-
tion (AI), then A is bijective.

Here and in the following the adjoints of boundary integral operators are taken of
course with respect to duality (2.1).
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Lemma 4.2. Let 0 ≤ σ < 1. The operator Dσ : V (Γ) → (V (Γ))′ is symmetric and
strongly elliptic with kerDσ = l (Γ) and imDσ = l (Γ)⊥. Moreover, the isomorphism
Dσ : W (Γ) → (W (Γ))′ is positive definite.

Proof. Note first that the boundedness and symmetry of Dσ follows immediately
from Lemmas 2.2, 2.4, 3.2 and the symmetry of the kernel function G. To prove that Dσ

is positive definite we take ψ ∈ V (Γ) and set u1 = −Kσψ|Ω1 and u2 = −Kσψ|Ω2 . The
jump relations lead to δσu1 = δσu2 = 1

2 Dσψ and γu2 − γu1 = −ψ. Due to Corollary
3.1 we have |u|2W 2(Ω2)

< ∞, so by (2.21) and (2.24)

1
2 [Dσψ, ψ] = [δσu1, γu1]− [δσu2, γu2]

= aσ
Ω1

(u1, u1) + aσ
Ω2

(u2, u2)

≥ (1− σ)
(‖u1‖2H2(Ω1)

+ ‖u2‖2H2(Ω2)

)
.

Since
‖ψ‖W (Γ) ≤ ‖γu1‖W (Γ) + ‖γu2‖W (Γ) ≤ c

(‖u1‖H2(Ω1) + ‖u2‖H2(Ω2)

)

we obtain [Dσψ, ψ] ≥ cσ ‖ψ‖2W (Γ), hence Dσ is strongly elliptic in V (Γ). From (2.20) it
is clear that kerDσ = l (Γ)

Lemma 4.3. The boundary operators Cσ : V (Γ) → V (Γ) and Bσ : (V (Γ))′ →
(V (Γ))′ are continuous and connected by the relation B′σ = Cσ + 2 I.

Proof. For any (ψ, χ) ∈ V (Γ)× (V (Γ))′ we obtain from (3.15) and Lemma 3.5

[Bσχ, ψ] = [δσ(Vχ|Ω1) + δσ(Vχ|Ω2) + χ, ψ]

= 〈Gγ′χ|Ω1 + Gγ′χ|Ω2 , δ
′
σψ〉R2 + [χ, ψ]

= 〈Gγ′χ, δ′σψ〉R2 + [χ, ψ]

= 〈γ′χ,Kσψ〉R2 + [χ, ψ]

= [χ, γ(Kσψ|Ω1) + γ(Kσψ|Ω2)] + [χ, ψ]

= [χ, 2γ(Kσψ|Ω1) + ψ] + [χ, ψ]

= [χ, Cσψ] + 2[χ, ψ]

and the proof is complete

If we introduce the operator Wσ = I +Cσ, then Bσ = I +W ′
σ, and Lemma 3.5 yields

γ(Kσψ|Ωj ) = 1
2 (Wσ + (−1)jI)ψ

δσ(Vχ|Ωj ) = 1
2 (W ′

σ − (−1)jI)χ
(j = 1, 2). (4.1)

Let us mention that in the special case σ = 1, where the form aσ is not coercive, we
obtained the following characterizations in [16]:

– The operator 1
2 (I −W1) = − 1

2 C1 is the Calderon projection onto the traces γu of
harmonic functions u ∈ H2(Ω1).
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– The operator 1
2 (I +W1) = 1

2 B′1 projects onto the traces γu of all harmonic func-
tions u ∈ H2

loc(Ω2) with the asymptotics u(x) = a(log |x|+ 1) + O(|x|−1), |x| → ∞,
for some real a.

– D1ψ = 0 for all ψ ∈ V (Γ).

Now we introduce the bounded linear operator

Bσ =
(−Wσ A
Dσ W ′

σ

)
:

V (Γ) V (Γ)
× −→ ×

(V (Γ))′ (V (Γ))′
(4.2)

and define the mappings

Cσ,j = 1
2 (I − (−1)jBσ) (j = 1, 2). (4.3)

Lemma 4.4. The operators Cσ,j (j = 1, 2) are the Calderon projections which
map V (Γ)× (V (Γ))′ onto the set of Cauchy data (γu, δσu) of functions u ∈ Lσ

j .

Proof. For arbitrary (ψ, χ) ∈ V (Γ)× (V (Γ))′ and u = (−1)j(Kσψ −Vχ) ∈ Lσ
j the

jump relations of Lemmas 3.5 and (4.1) imply

(
γu
δσu

)
= (−1)j

(
γ(Kσψ|Ωj )− γ(Vχ|Ωj )

δσ(Kσψ|Ωj )− δσ(Vχ|Ωj )

)

= (−1)j 1
2

(
(Wσ + (−1)jI)ψ −Aχ
−Dσψ − (W ′

σ − (−1)jI)χ

)

= 1
2 (I − (−1)jBσ)

(
ψ
χ

)

= Cσ,j

(
ψ
χ

)
.

Let now u ∈ Lσ
j . Then representation formula (3.6) or (3.10) yields

u(x) = (−1)j
(Kσγu(x)− Vδσu(x)

)
(x ∈ Ωj).

After applying the jump relations we obtain
(

γu
δσu

)
= Cσ,j

(
γu
δσu

)
.

Hence the mappings Cσ,j are bounded projections and the Cauchy data of all functions
from Lσ

j belong to the image of Cσ,j

Since the Calderon projections for the interior and exterior problems are conjugate,
Cσ,1 +Cσ,2 = I, the space V (Γ)×(V (Γ))′ can be decomposed as the direct sum of closed
subspaces

V (Γ)× (V (Γ))′ =
{
(γu, δσu) : u ∈ L1

}
+̇

{
(γu, δσu) : u ∈ Lσ

2

}
. (4.4)
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Corollary 4.1. From C2
σ,j = Cσ,j we derive the relations

Wσ A = AW ′
σ

W ′
σ Dσ = Dσ Wσ

ADσ = I −W2
σ.

(4.5)

Lemma 4.5. Let 0 ≤ σ < 1. The operator (I −Wσ) : V (Γ) → V (Γ) is bijective,
whereas (I +Wσ) : V (Γ) → V (Γ) is Fredholm with index zero, ker (I +Wσ) = l (Γ) and
im (I +Wσ) = A(l (Γ)⊥).

Proof. From (4.5) we have

ADσ = (I +Wσ)(I −Wσ) = (I −Wσ)(I +Wσ). (4.6)

Since A and Dσ (0 ≤ σ < 1) are strongly elliptic, the operator ADσ is Fredholm
with index zero, and by well-known arguments (cf. [15: Theorems 1.3.1 and 1.3.3])
the operators (I ±Wσ) are Fredholm itself. Based on relations (4.1) one can use the
uniqueness of the interior Dirichlet problem in L1 and of the exterior Neumann problem
in Lσ

2 to derive that
ker (I −Wσ) = ker (I −W ′

σ) = 0.

Therefore (I +Wσ) is a Fredholm operator with index 0, from (4.6) its kernel and image
can be determined by using Lemmas 4.1 and 4.2

5. Boundary integral equations for plate bending problems

Using the layer potentials and boundary integral operators it is now quite easy to trans-
form biharmonic boundary value problems into integral equations over the boundary.
For example, the results of Sections 2 and 3 and certain layer potential representations
lead immediately to equivalent integral equations for Dirichlet and Neumann problems.
However, the analysis of indirect methods for other types of boundary conditions seems
to be more involved. Here we concentrate on a direct method which produces strongly el-
liptic systems of boundary integral equations equivalent to mixed biharmonic boundary
value problems. Having properties of boundary integral operators at hand the analy-
sis of the proposed method simply extends the well-studied approach for second-order
equations to our situation.

We introduce the bounded bilinear form on V (Γ)× (V (Γ))′

〈(ψ

χ

)
,
(ρ

τ

)〉
V (Γ)×(V (Γ))′

:= [τ, ψ] + [χ, ρ]. (5.1)

From (4.2) we see that for any (ψ, χ) ∈ V (Γ)× (V (Γ))′ the equality
〈
Bσ

(ψ

χ

)
,
(ψ

χ

)〉
V (Γ)×(V (Γ))′

= −[χ,Wσψ] + [χ,Aχ] + [Dσψ, ψ] + [W ′
σχ, ψ]

= [χ,Aχ] + [Dσψ, ψ]

(5.2)
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holds. Let us denote by P : V (Γ) → V (Γ) a bounded projection, set Q = I − P and
introduce the projection P in V (Γ)× (V (Γ))′ by

P =
(P 0

0 Q′
)

:
V (Γ) imP
× −→ ×

(V (Γ))′ imQ′.
(5.3)

Note that
imP × imQ′ = im P

imQ× imP ′ = im (I −P)

are closed subspaces of V (Γ)× (V (Γ))′ which are in duality with respect to (5.1). Since
(imQ)⊥ = (kerP)⊥ = imP ′, equality (5.2) leads to

〈
Cσ,j

(Qψ

P ′χ
)
,
(Qψ

P ′χ
)〉

V (Γ)×(V (Γ))′

= 1
2

〈(
I − (−1)jBσ

)(Qψ

P ′χ
)
,
(Qψ

P ′χ
)〉

V (Γ)×(V (Γ))′

= (−1)j+1 1
2

(
[AP ′χ,P ′χ] + [DσQψ,Qψ]

)
.

Hence for any projection P the mappings

APσ = (−1)j+1PCσ,j (I −P) = 1
2 PBσ(I −P) :

imQ imP
× −→ ×

imP ′ imQ′
(5.4)

do not depend on j = 1, 2. If 0 ≤ σ < 1, then in view of Lemmas 4.1 and 4.2 the
operator APσ satisfies a G̊arding inequality

〈
(APσ + T)

(ψ

χ

)
,
(ψ

χ

)〉
V (Γ)×(V (Γ))′

≥ c
(
‖ψ‖2V (Γ) + ‖χ‖2(V (Γ))′

)

for all (ψ, χ) ∈ imQ× imP ′, with some constant c > 0 and a compact operator T. Since
the adjoint of APσ with respect to form (5.1) provides the same property we derive

Lemma 5.1. Let 0 ≤ σ < 1 and P be a bounded projection in V (Γ). Then APσ
defined in (5.4) is a Fredholm operator with index zero from im (I −P) into imP and
strongly elliptic with respect to (5.1).

Note that the two trivial cases P = I and P = 0 are treated in Lemmas 4.1 and
4.2, respectively.

The mapping APσ is closely connected with the following biharmonic boundary value
problem:

Find u ∈ Lσ
j such that Pγu = ρ and Q′δσu = τ (5.5)

where (ρ, τ) ∈ imP × imQ′ are given boundary values. Indeed, for u ∈ Lσ
j we know

from Lemma 4.4 that

Cσ,j

(
γu
δσu

)
=

(
γu
δσu

)
.
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To solve problem (5.5) we decompose
(

γu
δσu

)
=

( Pγu
Q′δσu

)
+

( Qγu
P ′δσu

)

so that the unknowns ψ = Qγu and χ = P ′δσu have to satisfy

(I − Cσ,j)
(

ψ
χ

)
= (Cσ,j − I)

(
ρ
τ

)
. (5.6)

In particular, applying the projection P to both sides we get the equation

APσ

(
ψ
χ

)
= (−1)j P (Cσ,j − I)

(
ρ
τ

)
. (5.7)

Lemma 5.2. Let (ρ, τ) ∈ imP × imQ′.
(i) If u ∈ Lσ

j satisfies (5.5), then ψ = Qγu and χ = P ′δσu solve equation (5.7).

(ii) If (ψ, χ) ∈ imQ× imP ′ is a solution of (5.7), then the function u given in Ωj

by
u = (−1)j

(Kσ(ψ + ρ)− V(χ + τ)
)

(5.8)

solves boundary value problem (5.5).

Proof. It remains to show statement (ii). For u from (5.8) there holds in view of
Lemma 4.4 (

γu
δσu

)
= Cσ,j

(
ψ + ρ
χ + τ

)
.

Since equation (5.7) is fulfilled we have

P (I − Cσ,j)
(

ψ + ρ
χ + τ

)
= 0

implying Pγu = P(ψ + ρ) = ρ and Q′δσu = Q′(χ + τ) = τ

Thus any solution of the boundary value problem (5.5) can be obtained by solving
the system of boundary integral equations (5.7). Note that in general this system has
more linear independent solutions than (5.5).

Lemma 5.3. Let 0 ≤ σ < 1 and βj (j = 1, 2) be the dimension of the null space
of the corresponding homogeneous problem (5.5) with ρ = τ = 0. Then

dimker APσ = β1 + β2 ≤ 3 and β1 = dimQ(l(Γ)).

Proof. Since u ∈ Lσ
j with (γu, δσu) ∈ imQ × imP ′, i.e. Pγu = Q′δσu = 0,

determines an element (γu, δσu) ∈ kerAPσ and by (4.4)
{
(γu, δσu) : u ∈ L1

} ∩ {
(γu, δσu) : u ∈ Lσ

2

}
= ∅

it is clear that dimkerAPσ ≥ β1 + β2. On the other hand, since V (Γ) × (V (Γ))′ is the
direct sum of these subspaces there exists a basis in kerAPσ consisting of elements of the
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subspaces. Due to Lemma 5.2/(ii) and representation formulas (3.6) and (3.10) we get
therefore dimkerAPσ ≤ β1 + β2.

Let now u ∈ L1 with Pγu = Q′δσu = 0. Then

aσ
Ω1

(u, u) = [δσu, γu] = [δσu,Pγu] + [Q′δσu, γu] = 0

and Lemma 2.5 yields u ∈ P1, i.e. γu ∈ l (Γ) and δσu = 0. Hence the homogeneous
boundary conditions can be satisfied by β1 = dim Q (l(Γ)) linear independent elements
of L1. Using (2.24), Corollaries 3.2 and 3.3 it can be seen quite similarly that

u ∈ Lσ
2 ∩W 2(Ω2) with Pγu = Q′δσu = 0 implies u = 0.

Hence any non-trivial solution of the homogeneous boundary value problem in the outer
domain Ω2 satisfies δσu /∈ l (Γ)⊥ or, more precisely, the corresponding equivalence class
δσu̇ in the factor space (V (Γ))′/l (Γ)⊥ is different from zero, δσu̇ 6= 0. Consequently,
if (ψ, χ) ∈ (imQ × imP ′) ∩ kerAPσ and χ 6= 0, then the equivalence class χ̇ 6= 0 in
(V (Γ))′/l (Γ)⊥. This means that β2 is not greater than the number of linear independent
elements χ ∈ imP ′ with χ̇ 6= 0 which equals to dimP (l(Γ)) = 3−dimQ (l(Γ)) = 3−β1

Now we introduce the assumption

(AP) If u ∈ Lσ
2 satisfies Pγu = 0 and (I − P ′)δσu = 0, then u = 0

and consider boundary value problem (5.5) for j = 2.

Theorem 5.1. Suppose that Γ satisfies assumption (AP), let (ρ, τ) ∈ imP × imQ′
and 0 ≤ σ < 1. Then the boundary value problem for the bi-Laplacian

∆2u = 0 in Ω2

Pγu = ρ, (I − P ′) δσu = τ

}
(5.9)

has in the space Lσ
2 a unique solution given by

u = Kσ(ψ + ρ)− V(χ + τ)

where (ψ, χ) ∈ imQ× imP ′ solves the system of boundary integral equations

APσ

(
ψ
χ

)
= 1

2 P (I −Bσ)
(

ρ
τ

)
. (5.10)

If additionally the projection P reproduces the traces of linear functions, Pγp = γp for
all p ∈ P1, then (5.10) is uniquely solvable.

For j = 1 boundary value problem (5.5) admits the following variational formulation:

Find u ∈ H2(Ω1) such that Pγu = ρ and

aσ
Ω1

(u, v) = [τ,Qγv] ∀ v ∈ H2
P(Ω1) = {u ∈ H2(Ω1) : Pγu = 0}. (5.11)

It is clear that problem (5.11) is uniquely solvable for 0 ≤ σ < 1 if and only if the only
linear function p satisfying Pγp = 0 is the trivial function p = 0.
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Theorem 5.2. Suppose that P(l (Γ)) = l (Γ), 0 ≤ σ < 1 and let (ρ, τ) ∈ imP ×
imQ′. The unique weak solution of the boundary value problem for the bi-Laplacian

∆2u = 0 in Ω1

Pγu = ρ, (I − P ′) δσu = τ

}
(5.12)

can be obtained by the formula

u = V(χ + τ)−Kσ(ψ + ρ)

where (ψ, χ) ∈ imQ× imP ′ solves the system of boundary integral equations

APσ

(
ψ
χ

)
= − 1

2 P (I + Bσ)
(

ρ
τ

)
. (5.13)

If Γ satisfies assumption (AP), then system (5.13) is uniquely solvable.

Roughly spoken, if the boundary conditions are such that the biharmonic bound-
ary value problem can be transformed into a coercive variational problem, then it is
equivalent to a strongly elliptic system of boundary integral equations.

As an example we now consider the choice of the projection P for mixed boundary
conditions. We assume that the boundary Γ is composed of four disjoint parts Γc, Γh,
Γr, and Γf such that

Γ = Γc ∪ Γh ∪ Γr ∪ Γf

and consider a bounded projection P in V (Γ) providing

P
(

v1

v2

)
=

(
w1

w2

)
∈ V (Γ) with

{
w1 = v1, w2 = v2 on Γc

w1 = v1 on Γh

w2 = v2 on Γr

(5.14)

whereas the functions wj are extended to the other parts of Γ in some specific way.
Clearly, there exists of variety of projections giving (5.14), which differ only in the
method of extending wj . But the concrete form of the projection P is not important,
we need only the existence of bounded projections, ‖Pψ‖V (Γ) ≤ c ‖ψ‖V (Γ), which is
obvious. Since for the adjoint of Q = I − P we have

Q′
(

v4

v3

)
=

(
z4

z3

)
∈ (V (Γ))′ with

{ 〈v4, w1〉Γ = 〈z4, w1〉Γ
〈v3, w2〉Γ = 〈z3, w2〉Γ

for all
(

w1

w2

)
∈ kerP =

{(
v1

v2

)
∈ V (Γ) : v1|Γc∪Γh

= 0 and v2|Γc∪Γr = 0
}

we conclude that in weak sense

Q′
(

v4

v3

)
=

(
z4

z3

)
∈ (V (Γ))′ with

{
z3 = v3, z4 = v4 on Γf

z3 = v3 on Γh

z4 = v4 on Γr.
(5.15)



Plate Bending in Non-Smooth Domains 153

We note that the space kerP×kerQ′ in which the unknowns (ψ, χ) of system (5.6) have
to be sought is independent of the concrete choice of P. Moreover, the definition of the
trace spaces together with the description of kerP×kerQ′ imposes certain compatibility
conditions for the components of ψ and χ at singular boundary points, i.e. corners and
points at which the type of boundary conditions changes. We will not go into detail, we
mention only that it is important to take into account these compatibility conditions in
choosing the approximation spaces for the numerical solution of (5.6).

If we formulate the boundary conditions in (5.5)

Pγu = ρ =
(g1

g2

)
∈ imP

Q′δσu = τ =
(g4

g3

)
∈ imQ′

in terms of the Cauchy data of u which are defined in (2.17), then we obtain from (5.14)
and (5.15) the following well-known mixed boundary conditions of plate bending:

(i) clamped: u = g1, ∂nu = g2 on Γc,
(ii) hinged or simply supported: u = g1, Mσu = g3 on Γh,

(iii) roller-supported: ∂nu = g2, Ñσu = g4 on Γr,

(iv) free: Mσu = g3, Ñσu = g4 on Γf .

Now the stability of the Galerkin method for solving the system of integral equations
derived from mixed boundary conditions (i) - (iv) can be proved by standard arguments
for sequences of finite-dimensional spaces of approximating functions Xh ⊂ kerP and
Yh ⊂ kerQ′, h → 0, so that

⋃

h

Xh × Yh is dense in kerP × kerQ′.

Theorem 5.3. Suppose that 0 ≤ σ < 1 and that the interior and the exterior bound-
ary value problems for the biharmonic equation with homogeneous boundary conditions
(i) - (iv), i.e. gi = 0, have only trivial solutions. Then the Galerkin equations

〈
Bσ

(ψh

χh

)
,
(ϕh

φh

)〉
V (Γ)×(V (Γ))′

= 2(−1)j
〈
(Cσ,j − I)

(ρ

τ

)
,
(ϕh

φh

)〉
V (Γ)×(V (Γ))′

for all
(

ϕh

φh

) ∈ Xh× Yh are uniquely solvable for all sufficiently small h and the approx-
imate solutions

uh = (−1)j
(Kσ(ψh + ρ)− V(χh + τ)

)

converge quasioptimally to the biharmonic function u in Ωj (j = 1, 2) satisfying bound-
ary conditions (i) - (iv). For example, for any x ∈ Ωj the estimate

∣∣u(x)− uh(x)
∣∣ ≤ c

(
inf

ϕh∈Xh

∥∥Qγu− ϕh

∥∥
V (Γ)

+ inf
φh∈Yh

∥∥P ′δσu− φh

∥∥
(V (Γ))′

)

holds with some constant c > 0 not depending on u and h.
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