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On the Fredholm Property of the Stokes Operator
in a Layer-Like Domain

S. A. Nazarov and K. Pileckas

Abstract. The Stokes problem is studied in the domain Ω ⊂ R3 coinciding with the layer
Π = {x = (y, z) : y = (y1, y2) ∈ R2, z ∈ (0, 1)} outside some ball. It is shown that the
operator of such problem is of Fredholm type; this operator is defined on a certain weighted
function space Dl

β(Ω) with norm determined by a stepwise anisotropic distribution of weight
factors (the direction of z is distinguished). The smoothness exponent l is allowed to be a
positive integer, and the weight exponent β is an arbitrary real number except for the integer
set Z where the Fredholm property is lost. Dimensions of the kernel and cokernel of the operator
are calculated in dependence of β. It turns out that, at any admissible β, the operator index
does not vanish. Based on the generalized Green formula, asymptotic conditions at infinity are
imposed to provide the problem with index zero.
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1. Introduction

Let Ω ⊂ R3 be a domain coinciding outside the ball BR0 = {x ∈ R3 : |x| < R0} with
the infinite layer

Π =
{

x = (y, z) : y = (y1, y2) ∈ R2, z ∈ (0, 1)
}

. (1.1)

For simplicity we assume the boundary ∂Ω to be smooth. Without loss of generality we
also fix R0 = 1. The set ∂Ω \B1 contains infinite parts of two planes

S(0) =
{
x : y ∈ R2, z = 0

}

S(1) =
{
x : y ∈ R2, z = 1

}

which form the boundary ∂Π of the layer Π. We consider the Stokes system

−ν∆u +∇p = f

−div u = g

}
(in Ω) (1.2)
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with the boundary conditions

u = h (on ∂Ω) (1.3)

where
u = (u1, u2.u3) is the velocity field
p is the pressure in the fluid
f = (f1, f2, f3) is an external force
g is a given scalar-valued function in Ω
h is a given vector-valued function on ∂Ω
ν is the constant coefficient of viscosity
∇ = ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
), ∆ = ∇ · ∇, div u = ∇ · u

” · ” means the scalar product in R3.
In the previous paper [15] we have studied the properties of solutions (u, p) to

problem (1.2) - (1.3) in a two-parametric scale of weighted function spaces Dl
β(Ω) and

Rl
β(Ω; ∂Ω) such that the mapping

Dl
β(Ω) 3 (u, p) 7−→ S l

β(u, p) = (f , g,h) ∈ Rl
β(Ω; ∂Ω), (1.4)

where Sl
β is the operator of the Stokes probem (1.2) - (1.3), becomes continuous. In (1.4)

l is a regularity index and β a weight index. The exact definitions of these spaces and
their properties are presented in Section 2. In terms of these spaces we have proved (see
[15]) regularity results and a coercive estimate for the solution (u, p) ∈ L2

β(Ω)× L2
β(Ω)

where the latter space consists of functions with finite norm

∥∥(u, p); L2
β(Ω)× L2

β(Ω)
∥∥ =

( ∫

Ω

(1 + |y|2)β(|u|2 + |p|2) dx

) 1
2

.

Moreover, in [15] the asymptotic representation of the solution (u, p) ∈ L2
β(Ω)× L2

β(Ω)
is constructed.

In this paper we prove the Fredholm property of mapping (1.4), calculate the di-
mensions of the kernel and cokernel and therefore the index of the operator Sl

β in (1.4).
Moreover, we derive integral formulae for the coefficients in the asymptotic represen-
tation of the solution, which lead to a generalized Green formula. This formula, in
particular, furnishes asymptotic conditions at infinity (in the same way as in the paper
[16] where the Stokes operator was studied in domains with cylindrical outlets to in-
finity). Note also that the Fredholm property of the Neumann problem operator for a
second order elliptic equation in a layer-like domain was proved in [13].
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2. Weighted function spaces and preliminary results

2.1 Function spaces. Let G be an arbitrary domain in Rn (n ≥ 2). As usual, denote
by C∞(G) the set of all indefinitely differentiable functions in G and let C∞0 (G) be a
subset of functions from C∞(G) with compact supports in G. Further, W l,2(G) (l ≥ 0)
indicates the Sobolev space and W l− 1

2 ,2(∂G) (l ≥ 1) the space of traces on the boundary
∂G of functions from W l,2(G). Besides, W 0,2(G) = L2(G) and W l,2

loc(G) consists of
functions which belong to W l,2(K) for every compact K ⊂ G. The spaces of scalar-
and vector-valued functions are not distinguished in notations. The norm of an element
u in the function space X is denoted by ‖u; X‖.

Let Ω ⊂ R3 be a layer-like domain. Denote by C∞0 (Ω) the subset of functions from
C∞(Ω) with compact supports in Ω (functions from C∞0 (Ω) are equal to zero for large
|x|, but not necessarily on ∂Ω). We define the norm

‖u; V l
β(Ω)‖ =

( ∫

Ω

l∑

|µ|=0

(1 + r2)β−l+|µ||∇µ
xu(x)|2dx

) 1
2

(2.1)

with homogeneous isotropic weight distribution. In (2.1) r = |y| (y ∈ R2), x = (y, z) ∈
R3, µ = (µ1, µ2, µ3) with µ1, µ2, µ3 ≥ 0 is a multi-index, and

∇µ
xu =

∂|µ|u
∂xµ1

1 ∂xµ2
2 ∂xµ3

3

(|µ| = µ1 + µ2 + µ3).

Analogously,

‖u;V l
β(R2)‖ =

( ∫

R2

l∑

|γ|=0

(1 + r2)β−l+|γ||∇γ
yu(y)|2dy

) 1
2

(2.2)

for functions u depending on y ∈ R2 only where γ = (γ1, γ2) with γ1, γ2 ≥ 0. The
spaces V l

β(Ω) and V l
β(R2) are the closures of C∞0 (Ω) and C∞0 (R2) in norms (2.1) and

(2.2), respectively. The spaces V l
β(G) with norm (2.1) or (2.2) were first employed by

V. A. Kondratiev [1] (Kondratiev spaces) while treating solutions of elliptic boundary
value problems in domains G ⊂ Rn (n ≥ 2) with conical outlets to infinity (in this case
the weight in (2.1) should be changed to (1 + |x|2)).

Let β ∈ R and let l, κ denote integers such that l ≥ 0 and 0 ≤ κ ≤ l. We introduce
the space V l

β,κ(Ω) as the closure of C∞0 (Ω) in the norm

‖v;V l
β,κ(Ω)‖ =

( ∑

α+|γ|≤l

∫

Ω

(1 + r2)β+|γ|−(|γ|−κ)+ |∂α
z ∂γ

y v(y, z)|2dydz

) 1
2

(2.3)

where α ≥ 0, γ = (γ1, γ2) with γ1, γ2 ≥ 0, |γ| = γ1 + γ2, ∂α
z = ∂α

∂zα , ∂γ
y = ∂|γ|

∂y
γ1
1 ∂y

γ2
2

and

(t)+ = t+|t|
2 is the positive part of t ∈ R.
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As it can be observed in (2.3), differentiation in z does not change the weight
multiplier. Differentiation in y of order |γ| ≤ κ increases the weight exponent by |γ| (i.e.
reflects the Kondratiev distribution of weights [1]). At |γ| = κ the weight distribution
function has a step. Namely, the subtrahend (|γ| − κ)+ compensates the growth of
the weight exponent provided |γ| > κ. In the case of a cone where all directions are
equivalent such step-weighted spaces were introduced and investigated in [4, 5].

It is easy to see that
V 0

β (Ω) = V0
β,0(Ω) = L2

β(Ω)

while

‖v; L2
β(Ω)‖ =

( ∫

Ω

(1 + r2)β |v(x)|2dx

) 1
2

.

Finally, for l ≥ 1 we introduce the trace space V l− 1
2

β,κ (∂Ω) of functions v ∈ V l
β,κ(Ω)

supplied with the norm

‖w;V l− 1
2

β,κ (∂Ω)‖ = inf
{‖v;V l

β,κ(Ω)‖ : v = w on ∂Ω
}
. (2.4)

The trace w on ∂Ω of v ∈ V l
β,κ(Ω) is forgetting the normal direction z and the weight

distribution in the norm of V l− 1
2

β,κ (∂Ω) turns into an isotropic one while preserving the

step property. This becomes evident after using an equivalent norm in V l− 1
2

β,κ (∂Ω).

Lemma 2.1 (see [15]). The norm ‖ζ;V l− 1
2

β,κ (∂Ω)‖ (κ ≤ l) is equivalent to

||| ζ ||| =
{

∥∥ζ; W l− 1
2 ,2(∂Ω ∩B2)

∥∥2

+
1∑

j=0

( ∑

0≤|γ|≤l−1

∫

S(j)\B1

(1 + r2)β+|γ|−(|γ|−κ)+ |∂γ
y ζ(y)|2dy

+
∑

|γ|=l−1

∫

S(j)\B1

∫

S(j)\B1

∣∣∣∂γ
y

(
(1 + |y|2)β+κζ(y)

)

− ∂γ
ỹ

(
(1 + |ỹ|2)β+κζ(ỹ)

)∣∣∣
2

|y − ỹ|−3dydỹ

)} 1
2

.

(2.5)

In (2.5) integration over S0 and S1 is performed separately in order to avoid con-
fusion. The reason is that for large r the boundary ∂Ω consists of two non-intersecting
parts and the distance in R3 between two points y and ỹ located one above the other on
S0 and S1 is equal to 1, while the distance between them on ∂Ω is O(|y|). Interpretating
the symbol |y− ỹ| appropriately one can delete the first sum over j in (2.5) and replace
Sj \B1 by ∂Ω \B1.

2.2 Auxiliary propositions. Below we make use of basic properties of the spaces
V l

β,κ(Ω) which we collect in this section.
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Lemma 2.2 (see [15]). Let v ∈ V l
β,κ(Ω) (l ≥ 1, 0 ≤ κ ≤ l − 1, β ∈ R). Then

∂yv ∈ V l−1
β+1,κ−1(Ω) and ∂zv ∈ V l−1

β,κ (Ω). There holds the inequality

‖∂yv;V l−1
β+1,κ−1(Ω)‖+ ‖∂zv;V l−1

β,κ (Ω)‖ ≤ c ‖v;V l
β,κ(Ω)‖.

Lemma 2.3.
(i) The embeddings

V l
β,κ(Ω) ↪→ V l−1

β,κ (Ω) (l ≥ 1, 0 ≤ κ ≤ l − 1) (2.6)

V l
β1,κ(Ω) ↪→ V l

β,κ(Ω) (l ≥ 0, 0 ≤ κ ≤ l, β1 > β) (2.7)

are continuous.
(ii) If l ≥ 1, 0 ≤ κ ≤ l − 1 and ε > 0, then the embedding

V l
β,κ(Ω) ↪→ V l−1

β−ε,κ(Ω) (2.8)

is compact.

Proof. Continuity of the embeddings (2.6) - (2.7) follows from the definition of the
norm (2.1). Moreover,

∥∥u; V l−1
β−ε,κ(Ω \B2R)

∥∥ ≤ cR−ε
∥∥u; V l

β,κ(Ω \BR)
∥∥.

Since V l
β,κ(Ω ∩B2R) coincides with W l,2(Ω ∩B2R) algebraically and topologically, well

known properties of Sobolev spaces show that the embedding operator (2.8) can be
represented as sum of a small operator (as R → ∞) and a compact one. Thus (2.8) is
compact

Let us prove one simple interpolation result.

Lemma 2.4. Let v ∈ [V1
β,0(Ω)]∗, where [V1

β,0(Ω)]∗ is the dual space to V1
β,0(Ω) with

respect to the scalar product in L2(Ω). Suppose that ∇v ∈ L2
−β(Ω). Then v ∈ L2

−β(Ω)
and

‖v; L2
−β(Ω)‖2 ≤ c

(
‖v; [V1

β,0(Ω)]∗‖2 + ‖∇v; L2
−β(Ω)‖2

)
.

Proof. Let us cover the domain Ω by the infinite union of ”cubes”

Qs,k =
{
x ∈ Ω : |x1 − s|, |x2 − k| ≤ 1

2

}
(s, k ∈ Z).

By [17 : Chapter 3/Lemma 7.1], for any function v ∈ W−1,2(Qs,k) with ∇v ∈ L2(Qs,k)
there holds the inclusion v ∈ L2(Qs,k) and the estimate

‖v; L2(Qs,k)‖2 ≤ c
(
‖v; W−1,2(Qs,k)‖2 + ‖∇v; L2(Qs,k)‖2

)

with constant c independent of s, k ∈ Z. Let us multiply the last inequalities by (1 +
(s2 + k2))−β and sum them over all s, k ∈ Z. Taking into account that (1 + r2) is
equivalent to (1 + (s2 + k2)) in Qs,k, we obtain

‖v; L2
−β(Ω)‖2 ≤ c

( ∑

k,s∈Z

(
1 + (s2 + k2)

)−β‖v; W−1,2(Qs,k)‖2 + ‖∇v; L2
−β(Ω)‖2

)
.
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Further, the equivalency of the norms ‖η(1 + r2)β/2; W 1,2(Ω)‖ and ‖η; V1
β,0(Ω)‖ gives

the inequality
∑

k,s∈Z

(
1 + (s2 + k2)

)−β‖v; W−1,2(Qs,k)‖2 ≤ c ‖v; [V1
β,0(Ω)]∗‖2

which competes the proof of the lemma

2.3 Space Dl
β(Ω) - the domain of the Stokes operator. We fix some weight and

regularity indeces, i.e. numbers β ∈ R and l ∈ N0 and denote by Dl
β(Ω) the space of

vector functions (u, p) satisfying the inclusions

u′ ∈ V l+1
β+1,l(Ω) u3 ∈ V l+1

β+2,l−1(Ω) (2.9)

p ∈ V l
β,l(Ω) ∂zp ∈ V l−1

β+2,l−1(Ω). (2.10)

The norm in Dl
β(Ω) is given by the formula

‖(u, p);Dl
β(Ω)‖

= ‖u′;V l+1
β+1,l(Ω)‖+ ‖u3;V l+1

β+2,l−1(Ω)‖+ ‖p;V l
β,l(Ω)‖+ ‖∂zp;V l−1

β+2,l−1(Ω)‖. (2.11)

Such definition of the space Dl
β(Ω) has been used in the paper [15]. For purporses of

this paper it is more convenient to employ the following equivalent definition. Let us
represent the pressure function p as sum

p(x) = p⊥(y, z) + p(y) (2.12)

where

p(y) =
∫ 1

0

p(y, z) dz

is the mean value of p with respect to z ∈ (0, 1). The projection p⊥ obviously has zero
mean value:

p⊥(y, z) = p(y, z)− p(y) = p(y)− p(y) = 0.

Moreover,
∂yp⊥(y, z) = ∂yp(y, z)− ∂yp(y) = ∂yp(y)− ∂yp(y) = 0.

Hence by the one-dimensional Poincare inequality we obtain p⊥ ∈ L2
β+2(Ω), ∂yp⊥ ∈

L2
β+3(Ω) and

‖p⊥; L2
β+2(Ω)‖ ≤ c ‖∂zp⊥; L2

β+2(Ω)‖ = c ‖∂zp; L2
β+2(Ω)‖

‖∂yp⊥; L2
β+3(Ω)‖ ≤ c ‖∂z∂yp⊥; L2

β+3(Ω)‖.
Thus p⊥ ∈ V l

β+2,l(Ω) and

‖p⊥; V l
β+2,l(Ω)‖ ≤ c ‖∂zp; V l−1

β+2,l−1(Ω)‖.
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For the mean value p we get the inclusion p ∈ V l
β+l(R2) and the estimate

‖p; V l
β+l(R2)‖ ≤ c ‖p; V l

β,l(Ω)‖.

Therefore the space Dl
β(Ω) may be redefined as space of all vector functions (u, p) such

that u satisfies inclusions (2.9) and p admits representation (2.12) with

p⊥ ∈ V l
β+2,l(Ω)

p ∈ V l
β+l(R2)

}
. (2.13)

An equivalent norm in Dl
β(Ω) is given by the formula

‖(u, p);Dl
β(Ω)‖

= ‖u′;V l+1
β+1,l(Ω)‖+ ‖u3;V l+1

β+2,l−1(Ω)‖+ ‖p⊥;V l
β+2,l(Ω)‖+ ‖p; V l

β+l(R2)‖. (2.14)

2.4 Space Rl
β(Ω; ∂Ω) – the range of the Stokes operator. The space Rl

β(Ω; ∂Ω)
(l ≥ 1) consists of triples (f , g,h) such that

g ∈ V l
β+2,l−1(Ω)

h′ ∈ V l+ 1
2

β+1,l(∂Ω)

h3 ∈ V l+ 1
2

β+2,l−1(∂Ω)





(2.15)

while f admits the representation

f = f0 + ∂zf1 +∇ψ (2.16)

with
f0 ∈ V l−1

β+2,l−1(Ω)

f ′1 ∈ V l
β+1,l(Ω)

f13 ∈ V l
β+2,l−1(Ω)

ψ⊥ ∈ V l
β+2,l(Ω)

ψ ∈ V l
β+l(R2)





. (2.17)

The norm in Rl
β(Ω; ∂Ω) is given by

‖(f , g,h);Rl
β(Ω; ∂Ω)‖

= inf
{
‖f0;V l−1

β+2,l−1(Ω)‖+ ‖f ′1;V l
β+1,l(Ω)‖

+ ‖f13;V l
β+2,l−1(Ω)‖+ ‖ψ⊥;V l

β+2,l(Ω)‖+ ‖ψ;V l
β+l(R2)‖

}

+ ‖g;V l
β+2,l−1(Ω)‖+ ‖h′;V l+ 1

2
β+1,l(∂Ω)‖+ ‖h3;V l+ 1

2
β+2,l−1(∂Ω)‖

(2.18)

where the infimum is taken over all representations (2.16). From Lemmata 2.2 and 2.3
we derive the following assertions.
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Lemma 2.5. The embeddings

Rl
β(Ω; ∂Ω) ↪→Rl−1

β (Ω; ∂Ω)

Rl
β1

(Ω; ∂Ω) ↪→Rl
β(Ω; ∂Ω)

}
(l ≥ 1, β1 > β)

are continuous.

Theorem 2.1. The operator Sl
β of problem (1.2)− (1.3),

Dl
β(Ω) 3 (u, p) 7−→ Sl

β(u, p) = (f , g,h) ∈ Rl
β(Ω; ∂Ω) (2.19)

is continuous.

2.5 Coercive estimate for the solution of problem (1.2) - (1.3). The following
result is proved in [15].

Theorem 2.2. Let (u, p) ∈ L2
β(Ω)×L2

β(Ω) be the solution of problem (1.2)− (1.3)
with right-hand side (f , g) ∈ Rl

β(Ω; ∂Ω) (l ≥ 1, β ∈ R). Then (u, p) ∈ Dl
β(Ω) and

‖(u, p);Dl
β(Ω)‖

≤ c
(
‖(f , g,h);Rl

β(Ω; ∂Ω)‖+ ‖u; L2
β(Ω)‖+ ‖p⊥;L2

β(Ω)‖+ ‖p;L2
β(R2)‖

)
.

(2.20)

In order to prove the Fredholm property of mapping (2.19) we need to transform
estimate (2.20) into

‖(u, p);Dl
β(Ω)‖ ≤ c

(
‖(f , g,h);Rl

β(Ω; ∂Ω)‖+ ‖K(u, p);Dl
β(Ω)‖

)
(2.21)

where K is a compact operator in Dl
β(Ω). As shown in [15], the function p ∈ L2

β(R2) ∩
W l,2

loc(R2) satisfies the Poisson equation

− 1
6∆′

yp(y) = F(y) (y ∈ R2) (2.22)

where
F(y) = F (1)(y) + div′y F (2)(y) + ∆′

yF (3)(y) + ∆′
yF (0)(y)

F (0)(y) =
∫ 1

0

∂zp(y, z)
(

1
6z − 1

2z2 + 1
3z3

)
dz

F (1)(y) = 2ν

∫ 1

0

g(y, z) dz

F (2)(y) = −
∫ 1

0

f ′(y, z)z(z − 1) dz

F (3)(y) = −ν

∫ 1

0

div ′yu
′(y, z)z(z − 1) dz.



On the Fredholm Property 163

The inclusion (f , g,h) ∈ Rl
β(Ω; ∂Ω) furnishes f ′ ∈ L2

β+1(Ω), div′y f ′ ∈ L2
β+2(Ω) and

g ∈ L2
β+2(Ω). Hence, F (1) ∈ L2

β+2(R2), div′y F (2) ∈ L2
β+2(R2) and

‖F (1); L2
β+2(R2)‖+ ‖div′yF (2);L2

β+2(R2)‖ ≤ c‖(f , g,h);Rl
β(Ω; ∂Ω)‖.

Further, (u, p) ∈ Dl
β(Ω) so that

u′ ∈ V l+1
β+1,l(Ω)

∂zp ∈ L2
β+2(Ω)

∆′
ydiv′y u′ ∈ L2

β+3(Ω) ⊂ L2
β+2(Ω)

∆′
y(∂zp) ∈ L2

β+4(Ω) ⊂ L2
β+2(Ω).

This implies ∆′
yF (0) ∈ L2

β+2(R2), ∆′
yF (3) ∈ L2

β+2(R2) and

∥∥∆′
yF (0); L2

β+2(R2)
∥∥ +

∥∥∆′
yF (3); L2

β+2(R2)
∥∥

≤ c
(∥∥∆′

ydiv′y u′; L2
β+2(Ω)

∥∥ +
∥∥∆′

y(∂zp); L2
β+2(Ω)

∥∥
)
.

Thus,
F = F (1) + div′y F (2) + ∆′

y

(F (0) + F (3)
) ∈ L2

β+2(R2)

and

‖F ; L2
β+2(R2)‖

≤ c
(
‖(f , g,h);Rl

β(Ω)‖+ ‖∆′
ydiv′y u′;L2

β+2(Ω)‖+ ‖∆′
y(∂zp); L2

β+2(Ω)‖
)
.

(2.23)

The punctured space R2 \ {0} might be interpreted as two-dimensional cone (a
complete one) in R2 so that R2 is a domain with conical outlet to infinity. Therefore
general theorems on elliptic problems in such domains can be applied while treating the
solution p of equation (2.22). It is known (see [1, 2, 12]) that such problems have the
Fredholm property in the scale of Kondratie spaces V l

γ(R2) if and only if every power
solution w(y) = r−λΨ(ϕ) of the corresponding homogeneous problem is trivial, provided
that λ lies on the line {λ ∈ C : Re λ = γ − l + 1} ((r, ϕ) are polar coordinates in R2).
For the Laplace operator (2.22) all power solutions consist of harmonic polynomials of
orders m ∈ N0 and derivatives of the fundamental solution Γ(y) = − 1

2π ln |y|. This
information together with the general results (see [1, 2, 12]) and estimate (2.23) gives

Lemma 2.6. Let p ∈ L2
β(R2) ∩W l,2

loc(R2) (l ≥ 2, β 6∈ ±N0) be the solution of the
Poisson equation (2.22). Then p ∈ V 2

β+2(R2) and there holds the inequality

‖p V 2
β+2(R2)‖ ≤ c

(
‖F ; L2

β+2(R2)‖+ ‖K1p; V 2
β+2(R2)‖

)

≤ c
(
‖(f , g,h);Rl

β(Ω; ∂Ω)‖+ ‖∆′
ydiv′yu

′; L2
β+2(Ω)‖

+ ‖∆′
y(∂zp); L2

β+2(Ω)‖+ ‖K1p; V 2
β+2(R2)‖

)
(2.24)

where K1 is a compact operator in V 2
β+2(R2).



164 S. A. Nazarov and K. Pileckas

Remark 2.1. Lemma 2.6 remains valid also for l = 1 and l = 0. However, because
of the shortage of the regularity in these cases the Poisson equation (2.22) for p should
be understood in the sence of distributions, i.e. the solution p ∈ L2

β(R2) satisfies the
integral identity

− 1
6

∫

R2
p(y)∆′

yη(y) dy

=
∫

R2

(
F (1)(y)η(y)−F (2)(y) · ∇′yη(y) +

(F (0)(y) + F (3)(y)
)
∆′

yη(y)
)
dy

(2.25)

for all η ∈ C∞0 (R2) where

F (0) ∈ L2
β+2(R2) ⊂ L2

β+1(R2)

F (1) ∈ L2
β+2(R2) ⊂ L2

β+1(R2)

F (2) ∈ L2
β+1(R2)

F (3) ∈ L2
β+2(R2) ⊂ L2

β+1(R2).

Since results analogous to Lemma 2.6 are true for the solution p ∈ L2
β(R2) of the Poisson

identity (2.25) (e.g. [2]: Section 6.3] and [12: Theorems 3.5.7 and 4.2.4]), we conclude
the estimate

‖p L2
β(R2)‖ ≤ c

(
‖(f , g,h);Rl

β(Ω; ∂Ω)‖+ ‖div′y u′; L2
β+1(Ω)‖

+ ‖∂zp; L2
β+1(Ω)‖+ ‖K̃1p; L2

β(R2)‖
) (2.26)

where K̃1 is a compact operator in L2
β(R2)

First, let l ≥ 2 and β 6∈ ±N0. Using inequality (2.24) we can rewrite estimate (2.20)
in the form

‖(u, p);Dl
β(Ω)‖ ≤ c

(
‖(f , g,h);Rl

β(Ω; ∂Ω)‖+ ‖u; L2
β(Ω)‖

+ ‖p⊥; L2
β(Ω)‖+ ‖∆′

ydiv′y u′;L2
β+2(Ω)‖

+ ‖∆′
y(∂zp); L2

β+2(Ω)‖+ ‖K1p; V 2
β+2(R2)‖

)
.

(2.27)

By Lemma 2.2, ∆′
ydiv′y u′ ∈ V l−2

β+4,l−3(Ω) and ∆′
y(∂zp) ∈ V l−3

β+4,l−3(Ω). Moreover, by
virtue of Lemma 2.3 the embeddings

V l−2
β+4,l−3(Ω) ↪→ L2

β+2(Ω)

V l−3
β+4,l−3(Ω) ↪→ L2

β+2(Ω)

V l+1
β+1,l(Ω) ↪→ L2

β(Ω)

V l+1
β+2,l−2(Ω) ↪→ L2

β(Ω)

V l
β+2,l(Ω) ↪→ L2

β(Ω)
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are compact. Hence, there hold the inequalities

‖∆′
ydiv′y u′;L2

β+2(Ω)‖ ≤ c ‖K2u′;V l+1
β+1,l(Ω)‖

‖∆′
y(∂zp); L2

β+2(Ω)‖ ≤ c ‖K3p⊥; V l
β+2,l(Ω)‖

‖(u′, u3); L2
β(Ω)× L2

β(Ω)‖ ≤ c ‖K4(u′, u3); V l+1
β+1,l(Ω)× V l+1

β+2,l−1(Ω)‖
‖p⊥; L2

β(Ω)‖ ≤ c ‖K5p⊥; V l
β+2,l(Ω)‖

where Ki (i = 2, 3, 4, 5) are compact operators. Therefore from (2.27) estimate (2.21)
follows. In the cases l = 0 and l = 1 we analogously get estimate (2.21) using inequality
(2.26) instead of (2.24). Thus, we have proved

Theorem 2.3. Let (u, p) ∈ Dl
β(Ω) be the solution of problem (1.2) − (1.3) with

right-hand side (f , g,h) ∈ Rl
β(Ω; ∂Ω) (l ≥ 1, β ∈ R \ {±N0}). Then estimate (2.21)

holds with K being a compact operator in Dl
β(Ω).

2.6 Asymptotic representation of the solution. Let us formulate a result concern-
ing the asymptotic behavior of the solution (u, p) of problem (1.2) - (1.3).

Theorem 2.4 (see [15]). Assume that

(f , g,h) ∈ Rl
β+k(Ω; ∂Ω) (l ≥ 1, β 6∈ ±N0, k ∈ N). (2.28)

Then the solution
(u, p) ∈ L2

β(Ω)× L2
β(Ω) (2.29)

of problem (1.2)− (1.3) admits the asymptotic representation

(
u
p

)
= χ(r)

∑

−β−k−1<m<−β−1

(
c+
mu+

m(y, z) + c−mu−m(y, z)
c+
mp+

m(y) + c−mp−m(y)

)
+

(
ũ
p̃

)
(2.30)

where χ is a smooth cut-off function with χ(r) = 1 for r ≥ 2 and χ(r) = 0 for r ≤ 1,

u±m
′(y, z) = 1

2ν z(z − 1)∇′yp±m(y), u±3m(y, z) = 0, p+
0 (y) = 1, p−0 (y) = − 1

2π ln r

p+
m(y) = (2π|m|)− 1

2 rm cos(mϕ)

p−m(y) = (2π|m|)− 1
2 rm sin(|m|ϕ)

}
(2.31)

c±m (m ∈ ±N0) are constants and (ũ, p̃) ∈ Dl
β+k(Ω). There holds the estimate

‖(ũ, p̃);Dl
β+k(Ω)‖+

∑

−β−k−1<m<−β−1

(|c+
m|+ |c−m|)

≤ c
(
‖(f , g,h);Rl

β+k(Ω; ∂Ω)‖+ ‖u; L2
β(Ω)‖+ ‖p⊥; L2

β(Ω)‖+ ‖p; L2
β(R2)‖

)
.

(2.32)

Remark 2.2. Analogous asymptotic formulae were obtained also for second order
scalar elliptic operators (see [9, 11]) and for the Lame operator (see [6 - 8, 10]).
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2.7 Green’ formula. Let (u, p) ∈ Dl
β(Ω) and (v, q) ∈ C∞0 (Ω). Then for the Stokes

problem (1.2)− (1.3) there holds Green’ formula
∫

Ω

(−ν∆u +∇p) · v dx−
∫

Ω

q divu dx +
∫

∂Ω

u · (nq − ν∂nv) ds

=
∫

Ω

(−ν∆v +∇q) · u dx−
∫

Ω

p div v dx +
∫

∂Ω

v · (np− ν∂nu) ds.

(2.33)

Here n is the unit vector of the outward normal to ∂Ω and ∂n = ∂
∂n denotes the

derivative with respect to n. Note that all integrals in (2.33) are finite since (v, q) is
identically zero for large |x|. It is not difficult to verify that the integrals in (2.33)
remain finite if (v, q) ∈ Dl

−β−2(Ω). Therefore by continuity we conclude the following
assertion.

Lemma 2.7. Green’ formula (2.33) holds true for any pairs (u, p) ∈ Dl
β(Ω) and

(v, q) ∈ Dl
−β−2(Ω).

3. The Fredholm property

In this section we prove the main result of the paper: the Fredholm property of the
Stokes operator Sl

β , i.e. we prove that the range Sl
βDl

β(Ω) is a closed subspace of
Rl

β(Ω; ∂Ω) and that
dimkerSl

β < ∞
dim cokerSl

β < ∞.

Theorem 3.1. The operator Sl
β (l ≥ 1) of the Stokes problem (1.2) − (1.3) is of

Fredholm type, if β 6∈ Z. If β ∈ Z, then the range of Sl
β is not closed.

Proof. The finite-dimensionality of kerSl
β and the closedness of the range Sl

βDl
β(Ω)

follow from estimate (2.21) (see Theorem 2.3) and a lemma by J. Peetre (see [18] or [3:
Lemma 2.5.1]).

Let us prove the finite-dimensionality of cokerSl
β . We show that the subspace

ker(Sl
β)∗ = cokerSl

β admits the representation

cokerSl
β =

{(
v, q, (nq − ν∂nv)

∣∣
∂Ω

)
: (v, q) ∈ kerSl

−β−2

}
. (3.1)

Let us consider the bounded linear functional F(v,q) given on Rl
β(Ω; ∂Ω) by the formula

F(v,q)(f , g,h) =
∫

Ω

f · v dx−
∫

Ω

g q dx +
∫

∂Ω

h · (nq − ν∂nv) ds

(v, q) ∈ Dl
−β−2(Ω).

(3.2)

If (f , g,h) ∈ Sl
βDl

β(Ω) and (v, q) ∈ kerSl
−β−2, then from Green’s formula (2.33) it

follows that F(v,q)(f , g,h) = 0. Thus F(v,q) is orthogonal to Sl
βDl

β(Ω) and therefore
F(v,q) ∈ ker (Sl

β)∗. Hence we have proved the inclusion
{(

v, q, (nq − ν∂nv)|∂Ω

)
: (v, q) ∈ kerSl

−β−2

}
⊂ ker(Sl

β)∗. (3.3)
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In order to prove the inverse inclusion we first consider the case l = 1 and introduce the
operator S∗β adjoint to Sβ (with respect to the scalar product in L2(Ω)4 × L2(∂Ω)3).
For brevity we write Sβ , Dβ(Ω) etc., omitting the regularity index l = 1. We mention as
well known fact (see, e.g., [3, 19]) that the operator S∗β acts on the space of distributions
by the formula

Rβ(Ω; ∂Ω)∗ 3 (v, q,w) 7−→ S∗β(v, q,w) = S(πΩv, πΩq) + w ⊗ δ∂Ω.

Here πΩv and πΩq are the extensions of v and q, respectively, by zero from Ω to the entire
R3, δ∂Ω is the Dirac function concentrated on ∂Ω so that w ⊗ δ∂Ω is the distribution
defined by the formula

(w ⊗ δ∂Ω, ϕ)R3 = (w, ϕ)∂Ω

(
ϕ ∈ C∞0 (R3)

)

where (·, ·)∂Ω denotes the scalar product in L2(∂Ω), and

S(πΩv, πΩq) =
(− ν∆πΩv +∇πΩq;−divπΩv

)

is the Stokes operator (1.2). Note that due to Green’s formula (2.33) this operator is
formally self-adjoint.

Let ω, ω̂ be two neighbourhoods of a point in Ω and ω ⊂ ω̂. If the right-hand side
U = (U1, U2, U3, U4) of the equation

S∗β(v, q,w) = U ∈ Dβ(Ω)∗ (3.4)

belongs to Hs(Ω ∩ ω̂)3 × Hs+1(Ω ∩ ω̂), then first (v, q) belongs to Hs+2(Ω ∩ ω)3 ×
Hs+1(Ω∩ω), second it satisfies the relations S(v, q) = U in Ω∩ω and v = 0 on ∂Ω∩ω,
and third w coincides with the trace of (nq−ν∂nv) on ∂Ω∩ω (see [19] and [3: Chapter
2.5.3]). Since kerS∗β contains the solutions (v, q,w) ∈ Rβ(Ω; ∂Ω)∗ of the homogeneous
equation (3.4) (i.e. U = 0), we conclude that (v, q) ∈ C∞loc(Ω) solves the homogeneous
Stokes problem (1.2) - (1.3) and w is the trace of (nq − ν∂nv) on ∂Ω. Further, by
definition Rβ(Ω; ∂Ω) contains the subspace

R = L2
β+2(Ω)3 × V1

β+2,0(Ω)× V
3
2
β+1,1(∂Ω)2 × V

3
2
β+2,0(∂Ω)

(we assume that f1 = 0 and ψ = 0 in representation (2.16) for f , i.e. f = f0). Con-
sequently, Rβ(Ω; ∂Ω)∗ ⊂ R∗. The first two factors in R∗ coinside with L2

−β−2(Ω)3 ×
[V1

β+2,0(Ω)]∗ and hence we have v ∈ L2
−β−2(Ω)3 and q ∈ [V1

β+2,0(Ω)]∗.

Let us show that q belongs to L2
−β−2(Ω). Denote by ζρ the smooth cut-off function

with ζρ(r) = 1 for r ≤ ρ, ζρ(r) = 0 for r ≥ 2ρ and

|∇ζρ(r)| ≤ c (1 + r2)−
1
2

|∇∇ζρ(r)| ≤ c (1 + r2)−1

}
(3.5)
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with constant c independent of ρ and r. We multiply the homogeneous Stokes equations
(1.2) by ζρ(r)2(1 + r2)−β−1v(x) and integrate by parts in Ω:

ν

∫

Ω

ζρ(r)2(1 + r2)−β−1|∇v(x)|2dx

=
∫

Ω

q v(x) · ∇[ζρ(r)2(1 + r2)−β−1] dx

− ν

∫

Ω

∇v(x) · v(x)∇[ζρ(r)2(1 + r2)−β−1] dx

= I1 + I2.

(3.6)

Using (3.5) it is easy to show that

|I2| ≤ ν
4

∫

Ω

ζρ(r)2(1 + r2)−β−1|∇v(x)|2dx + c(ν)
∫

Ω

(1 + r2)−β−2|v(x)|2dx. (3.7)

For the first summand I1 we get

|I1| ≤
∥∥q; [V1

β+2,0(Ω)]∗
∥∥ ∥∥v∇[ζρ(r)2(1 + r2)−β−1]; V1

β+2,0(Ω)
∥∥

≤ c
∥∥q; [V1

β+2,0(Ω)]∗
∥∥

×
( ∫

Ω

(1 + r2)−β−2|v|2dx + ν

∫

Ω

ζ2
ρ(1 + r2)−β−1|∇v|2dx

) 1
2

≤ ν
4

∫

Ω

ζ2
ρ(1 + r2)−β−1|∇v|2dx

+ c(ν)
(∥∥q; [V1

β+2,0(Ω)]∗
∥∥2 +

∫

Ω

(1 + r2)−β−2|v|2dx

)
.

(3.8)

Substituting (3.7), (3.8) into (3.6) we derive the estimate

∫

Ω

ζ2
ρ(1 + r2)−β−1|∇v|2dx ≤ c

(
‖q; [V1

β+2,0(Ω)]∗‖2 +
∫

Ω

(1 + r2)−β−2|v|2dx

)

< ∞
(3.9)

with constant c independent of ρ. Passing in (3.9) ρ → ∞, we get ∇v ∈ L2
−β−1(Ω).

Since the solution (v, p) is smooth, from local estimates it follows (see [15: Proof of
Lemma 3.1]) that ∇q ∈ L2

−β−1(Ω) ⊂ L2
−β−2(Ω) and

‖∇q; L2
−β−1(Ω)‖ ≤ c ‖∇v; L2

−β−1(Ω)‖.

By Lemma 2.4 we conclude that q ∈ L2
−β−2(Ω) and

‖q; L2
−β−2(Ω)‖ ≤ c

(
‖q; [V1

β+2,0(Ω)]∗‖+ ‖∇q; L2
−β−2(Ω)‖

)
< ∞.
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Thus the solution (v, p) of the homogeneous Stokes problem (1.2) - (1.3) belongs to
L2
−β−2(Ω)3 × L2

−β−2(Ω). By Theorem 2.2, (v, p) belongs to D−β−2(Ω) and hence

kerS∗β ⊂
{(

v, q, (nq − ν∂nv)|∂Ω

)
: (v, q) ∈ kerS−β−2

}
. (3.10)

Formulae (3.3) and (3.10) prove representation (3.1) of cokerSβ . Since the numbers β
and −β − 2 belong to the prohibited set Z simultaneously, dimkerS−β−2 < ∞ and the
finite-dimensionality of cokerSβ is proved. Moreover, from (3.2) and Green‘s formula
(2.33) we derive the following compatibility conditions for the Stokes problem (1.2) -
(1.3): ∫

Ω

f · v dx−
∫

Ω

g q dx +
∫

∂Ω

h · (nq − ν∂nv) ds = 0 (3.11)

for all (v, p) ∈ kerS−β−2.
Let us consider the case l > 1. Assume that (f , g,h) ∈ Rl

β(Ω; ∂Ω) ⊂ R1
β(Ω; ∂Ω) with

β 6∈ Z. If the right-hand side (f , g,h) satisfies the compatibility conditions (3.11), then
there exists a solution (u, p) ∈ D1

β(Ω) of problem (1.2) - (1.3). By virtue of Theorem
2.2 we get (u, p) ∈ Dl

β(Ω). This means that (f , g,h) is orthogonal to ker [Sl
β ]∗. By the

Hahn-Banach theorem this gives

ker [Sl
β ]∗ ⊂

{(
v, q, (nq − ν∂nv)|∂Ω

)
: (v, q) ∈ kerS1

−β−2

}
.

Since by Theorem 2.2 kerS1
−β−2 = kerSl

−β−2, the last relation together with (3.3)
furnishes

ker [Sl
β ]∗ =

{(
v, q, (nq − ν∂nv)|∂Ω

)
: (v, q) ∈ kerSl

−β−2

}
. (3.12)

Thus in the case β 6∈ Z
dim ker [Sl

β ]∗ = dimkerSl
−β−2 < ∞.

This proves the Fredholm property for Sl
β with l > 1 and β 6∈ Z.

Consider now the case β ∈ Z. Since Dl
β(Ω) ⊂ Dl

β−ε(Ω) and Rl
β(Ω; ∂Ω) ⊂ Rl

β−ε(Ω;
∂Ω) for all ε > 0, it follows that

kerSl
β ⊂ kerSl

β−ε

cokerSl
β ⊂ cokerSl

β+ε.

Consequently, the subspaces kerSl
β and cokerSl

β are finite-dimensional for all β ∈ R.
We shall show that for β ∈ Z the range ImSl

β is not closed and hence Sl
β looses the

Fredholm property.
Let β = −m− 1 (m ∈ Z). Denote by χ the smooth cut-off function with χ(r) = 1

for r < 1 and χ(r) = 0 for r > 2 and let χR(r) = χ( r
R ) (R ≥ 2). We take

p0(y) = −(2π)−1 ln r

pm(y) = (2π|m|)− 1
2 rm cos(mϕ) (m 6= 0)

um(y, z) = 1
2ν z(z − 1)∇pm(y)
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and put
(ûm, p̂m) = (1− χ(r))χR(r)(um, pm).

It is easy to compute that
∥∥(ûm, p̂m); Dl

−m−1(Ω)
∥∥2

≥
∥∥(ûm, p̂m); L2

−m(Ω)3 × L2
−m−1(Ω)

∥∥2

≥ c

(
1 +

∫ R

2

(
r−2mr2(m−1) + r−2(m+1)r2m

)
r dr

)

≥ c
(
1 + ln

R

2

)
.

(3.13)

On the other hand, (um, pm) satisfies the homogeneous Stokes problem (1.2) - (1.3) in
Ω \ {x : r = 0}. Therefore

−ν∆ûm +∇p̂m = [−ν∆ +∇, (1− χ)χR](um, pm) ≡ fm
div ûm = [div, (1− χ)χR]um ≡ gm

ûm = 0

(x ∈ Ω)

(x ∈ Ω)

(x ∈ ∂Ω)

where [A,B] stands for the commutator of the operators A and B. The right-hand side
(fm, gm) has a compact support lying in the union of the annuli {x ∈ Ω : 1 < r < 2}
and {x ∈ Ω : R < r < 2R}. Calculating the norm ‖(fm, gm); Rl

−m−1(Ω; ∂Ω)‖2, we find
that it is bounded by the expression

c

(
1 +

∫ 2R

R

R−2r−2mr2mr dr

)
≤ const (3.14)

where c is independent of R ∈ (2,∞). The range ImSl
−m−1 is closed if and only if for

every (v, q) ∈ Dl
−m−1(Ω)ª kerSl

−m−1 the estimate
∥∥(v, q); Dl

−m−1(Ω)
∥∥ ≤ c∗

∥∥Sl
−m−1(v, q); Rl

−m−1(Ω; ∂Ω)
∥∥

holds true with constant c∗ independent of (v, q). Letting R → ∞ in formulae (3.14)
and (3.13) we see that for (ûm, p̂m) the last estimate fails, i.e. ImSl

−m−1 is not closed.
The theorem is proved

Lemma 3.1. If β ≥ −1, then Sl
β is a monomorphism, and if β < −1, then Sl

β is
an epimorphism.

Proof. Let β ≥ −1 and (u, p) ∈ kerSl
β . Multiplying the homogeneous equations

(1.2) by u and integrating by parts in Ω, we derive

ν

∫

Ω

|∇u(x)|2dx = 0. (3.15)

(Note that by definition of the space Dl
β(Ω) all the integrals involved converge for

β ≥ −1.) From (3.15) it follows |∇u(x)| = 0 and hence u(x) = 0. The Stokes equations
(1.2) imply ∇p = 0 in Ω, i.e. p(x) = c. If c 6= 0, then the integral

∫
Ω
(1 + r2)β |c|2dx

diverges (recall that β ≥ −1) what contradicts with the condition p ∈ L2
β(Ω). Thus

c = 0 and kerSl
β = ∅ for β ≥ −1. For β < −1 the relation dim cokerSl

β = 0 follows
from (3.12), since in this case −2− β > −1 and kerSl

−2−β = ∅
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4. Coefficients in the asymptotics and computation of the index

Let (u, p) ∈ Dl
β(Ω) (β > −1) be a solution of the Stokes problem (1.2) - (1.3) with

right-hand side (f , g,h) ∈ Rl
β+k(Ω; ∂Ω) (k ∈ N). From Theorem 2.4 it follows that the

solution (u, p) admits the asymptotic representation (2.30) - (2.31). On the other hand,
by Lemma 3.1 we know that the operator Sl

β with β > −1 is a monomorphism, i.e. the
solution is unique. Therefore, the coefficients c±−m (m ∈ N) in the asymptotic formulae
(2.30) - (2.31) are uniquely determined by the right-hand side (f , g,h). In this section
we find integral formulae for the coefficients c−0 and c±−m (m ∈ N).

We start with the computation of c−0 .

Lemma 4.1. Let (u, p) ∈ Dl
β(Ω), β ∈ (−2,−1), be a solution of problem (1.2)−(1.3)

with right-hand side (f , g,h) ∈ Rl
β+1(Ω; ∂Ω). Then the coefficient c−0 in the asymptotic

formula (
u(x)
p(x)

)
= χ(r)

(
c+
0 u+

0 (y, z) + c−0 u−0 (y, z)
c+
0 p+

0 (y) + c−0 p−0 (y)

)
+

(
ũ(x)
p̃(x)

)
(4.1)

where (ũ, p̃) ∈ Dl
β+1(Ω) (see (2.30)) admits the integral representations

c−0 = −12ν

( ∫

∂Ω

h · n ds−
∫

Ω

g dx

)
. (4.2)

Proof. Let us apply to the solutions (u, p) and (u+
0 , p+

0 ) = (0, 1) Green’s formula
in the domain ΩR = {x ∈ Ω : r < R (R > 2)}:∫

ΩR

(−ν∆u +∇p) · 0 dx−
∫

ΩR

div u dx +
∫

∂ΩR∪SR

u · n ds = 0

where ∂ΩR = ∂Ω ∩ ΩR and SR = {x ∈ Ω : r = R}. This furnishes

−
∫

ΩR

g dx +
∫

∂ΩR

h · n ds +
∫

SR

u · n ds = 0. (4.3)

Taking into account representation (4.1) for u, we compute∫

SR

u · n ds = c−0

∫

SR

u−0 · n ds +
∫

SR

ũ · n ds

= − c−0
4νπ

∫

SR

z(z − 1)∇ ln r · ∇r ds +
∫

SR

ũ · n ds

= c−0
12ν +

∫

SR

ũ · n ds.

Since ũ ∈ L2
β+2(Ω), β ∈ (−2,−1), we get

∣∣∣∣
∫

SR

ũ · n ds

∣∣∣∣ ≤ c

(
R−2(β+2)+1

∫

SR

(1 + r)2(β+2)|ũ|2ds

) 1
2

≤ c

(
R

∫

SR

(1 + r)2(β+2)|ũ|2ds

) 1
2

= o(R−1) → 0 as R →∞
(at least for some subsequence Rl). Substituting the last two formulae into (4.3) and
passing to the limit as Rl →∞, we derive (4.2)
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In the previous lemma we have already used a special solution of the homogeneous
Stokes problem ζ+

0 (x) =
(
u+

0 (y, z), p+
0 (y)

)T = (0, 1)T . Let us construct special solutions
ζ±m = (ξ±m, η±m)T for m ∈ N.

Lemma 4.2. For every m ∈ N there exist solutions ζ±m of the homogeneous Stokes
problem (1.2)− (1.3) which admit the asymptotic forms

ζ±m =
(

ξ±m(x)
η±m(x)

)
=

(
u±m(y, z)
p±m(y)

)
+

(
ξ̃
±
m(x)

η̃±m(x)

)
(m ∈ N) (4.4)

where
(
u±m(y, z), p±m(y)

)
1) are given by (2.31) and (ξ̃

±
m, η̃±m) ∈ Dl

γ(Ω) with arbitrary γ
satisfying the relation

−1 < γ < 0. (4.5)

Proof. We shall look for the solution (ξ±m, η±m) in form (4.4). Since (u±m, p±m)
solve the homogeneous Stokes problem (1.2) - (1.3) in the layer Π, we obtain for
(ξ̃
±
m, η̃±m) the non-homogeneous problem (1.2) - (1.3) with right-hand side (0, 0,h±m)

where h±m = −u±m|∂Ω has compact support contained in {x ∈ ∂Ω : |x| < 1}. Thus,
(0, 0,h±m) ∈ Rl

γ(Ω; ∂Ω) ⊂ Rl
γ−1(Ω; ∂Ω). Since (γ − 1) ∈ (−2,−1), the operator Sl

γ−1 is
of Fredholm type (Theorem 3.1) and dim cokerSl

γ−1 = 0 (Lemma 3.1). Therefore, prob-
lem (1.2) - (1.3) is solvable in Dl

γ−1(Ω) for all right-hand sides from Rl
γ−1(Ω; ∂Ω) and

we find the remainder (ξ̃
±
m, η̃±m) ∈ Dl

γ−1(Ω). Moreover, (ξ̃
±
m, η̃±m) admits the asymptotic

representation (4.1):
(

ξ̃
±
m(x)

η̃±m(x)

)
= χ(r)

(
c+
0 u+

0 (y, z) + c−0 u−0 (y, z)
c+
0 p+

0 (y) + c−0 p−0 (y)

)
+

(
ξ̂
±
m(x)

η̂±m(x)

)

with (ξ̂
±
m, η̂±m) ∈ Dl

γ(Ω). We normalize (ξ̃
±
m, η̃±m) by the condition lim|x|→∞ η̃±m(x) = 0

so that c+
0 = 0. Since ξ̃

±
m|∂Ω = −u±m|∂Ω on ∂Ω, from (4.2) we get

c−0 = 12ν

∫

∂Ω

h±m · n ds = 12ν

∫

Ω

div u±m(y, z) dx = 0 (m ∈ N).

Thus we obtain (ξ̂
±
m, η̂±m) = (ξ̃

±
m, η̃±m) ∈ Dl

γ(Ω) and this concludes the proof of the
lemma

Let us compute now the coefficients c±−m (m ∈ N).

Lemma 4.3. Let (u, p) ∈ Dl
β(Ω) (β > −1) be a solution of problem (1.2) − (1.3)

with right-hand side (f , g,h) ∈ Rl
β+k(Ω; ∂Ω) (k ∈ N). Then the coefficients c±−m in the

asymptotic formulae (2.30)− (2.31) admit the integral representations

c±−m = −12ν

( ∫

Ω

f · ξ±mdx−
∫

Ω

g η±mdx +
∫

∂Ω

h · (η±mn− ν∂nξ±m)ds

)

(− β − k − 1 < −m < −β − 1
) (4.6)

1) Note that for m ∈ N the functions p±m are harmonic polynomials and therefore (u±m, p±m) ∈
C∞(Ω̄).
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where (ξ±m, η±m) are the solutions of the homogeneous problem (1.2) − (1.3) constructed
in Lemma 4.2.

Proof. Let us apply to (u, p) and (ξ±m, η±m) Green’s formula in the domain ΩR =
{x ∈ Ω : r < R (R > 2)}:

∫

ΩR

(−ν∆u +∇p) · ξ±mdx−
∫

ΩR

div u η±mdx +
∫

∂ΩR∪SR

u · (nη±m − ν∂nξ±m) ds (4.7)

=
∫

ΩR

(−ν∆ξ±m +∇η±m) · u dx−
∫

ΩR

div ξ±m p dx +
∫

∂ΩR∪SR

ξ±m · (np− ν∂nu) ds.

Since (ξ±m, η±m) fulfils the homogeneous equations (1.2) - (1.3), from (4.7) we derive
∫

ΩR

f · ξ±mdx−
∫

ΩR

g η±mdx +
∫

∂ΩR

h · (nη±m − ν∂nξ±m) ds

+
∫

SR

u · (nη±m − ν∂nξ±m) ds =
∫

SR

ξ±m · (np− ν∂nu) ds.

(4.8)

Let us calculate the right-hand side of (4.8). Taking account of the asymptotic repre-
sentations (2.30) - (2.31) and (4.4) for (u, p) and (ξ±m, η±m), respectively, we get

∫

SR

ξ±m · (np− ν∂nu) ds

=
∫

SR

ξ̃
±
m · (np− ν∂nu) ds (4.9)

+
∫

SR

u±m ·
∑

−β−k−1<−l<−β−1

[
n
(
c+
−lp

+
−l + c−−lp

−
−l

)− ν
(
c+
−l∂nu+

−l + c−−l∂nu−−l

)]
ds.

The first integral in the right-hand side here can be majorated by

(
R

∫

SR

|ξ̃±m|2(1 + r2)γ+1ds

) 1
2
(

R

∫

SR

|p|2(1 + r2)βR−2(β+γ+1)−2ds+

R

∫

SR

|u|2(1 + r2)β+1R−2(β+γ+1)−4ds

) 1
2

≤ c

(
R

∫

SR

|ξ̃±m|2(1 + r2)γ+1ds

) 1
2

×
(

R

∫

SR

|p|2(1 + r2)βds + R−1

∫

SR

|u|2(1 + r2)β+1ds

) 1
2

.

(4.10)

Since ξ̃
±
m ∈ L2

γ+1(Ω), u ∈ L2
β+1(Ω), p ∈ L2

β(Ω) (see the definition of the space Dl
β(Ω)),

expresion (4.10) vanishes as R →∞ (at least, for some subsequence Rj →∞). Further,
using the relations

∫ 2π

0

cos(mϕ) sin(|l|ϕ) dϕ = 0
∫ 2π

0

sin(|m|ϕ) sin(|l|ϕ) dϕ =
∫ 2π

0

cos(mϕ) cos(lϕ) dϕ = πδm,l
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we find that
∫

SR

u±m ·
∑

−β−k<−l<−β−1

[
n
(
c+
−lp

+
−l + c−−lp

−
−l

)− ν
(
c+
−l∂nu+

−l + c−−l∂nu−−l

)]
ds

=
∫

SR

u±m · n(
c+
−mp+

−m + c−−mp−−m

)
ds

− ν

∫

SR

u±m · (c+
−m∂nu+

−m + c−−m∂nu−−m

)
ds

= c±−m

∫

SR

(2ν)−1z(z − 1)∂np±mp±−m ds + R−2c(m)

= − 1
24ν c±−m + o(R−1).

(4.11)

Analogously one can compute the integral
∫

SR

u · (nη±m − ν∂nξ±m) ds = 1
24ν c±−m + o(R−1). (4.12)

Substituting formulae (4.9) - (4.12) into (4.8) and passing R → ∞, we derive formula
(4.6)

Now we are in a position to compute the dimensions of kerSl
β and cokerSl

β .

Theorem 4.1.
(i) If β ∈ (k − 1, k) (0 ≤ k ∈ Z), then dim cokerSl

β = 2k + 1.

(ii) If β ∈ (q − 1, q) (Z 3 q ≤ −1), then dim kerSl
β = −2q − 1.

(iii) If β ∈ (p, p + 1) (p ∈ Z), then IndSl
β = −2p− 1.

Proof. Let (f , g,h) ∈ Rl
β(Ω; ∂Ω) (β ∈ (k − 1, k), k ≥ 0). Then there exists a

solution (u, p) ∈ Dl
β1

(Ω) (β1 = β − k − 1 ∈ (−2,−1)) of problem (1.2) - (1.3). (Note
that Rl

β(Ω; ∂Ω) ⊂ Rl
β1

(Ω; ∂Ω) and by Lemma 3.1 the operator Sl
β1

(β1 ∈ (−2,−1))
is an epimorphism.) For (u, p) there holds the asymptotic formula (2.30) where the
constants c−0 and c±−m (m = 1, . . . , k) admit the integral representations (4.2) and
(4.6), respectively. Hence under 2k + 1 compatibility conditions

∫

∂Ω

h · n ds−
∫

Ω

g dx = 0
∫

Ω

f · ξ±mdx−
∫

Ω

g η±mdx +
∫

∂Ω

h · (η±mn− ν∂nξ±m) ds = 0 (m = 1, . . . , k)

we obtain (
u(x)
p(x)

)
= c+

0

(
0
1

)
+

(
ũ(x)
p̃(x)

)

where (ũ, p̃) ∈ Dl
β(Ω). Normalizing this solution by the condition lim|x|→∞ p(x) = 0

we get (u, p) = (ũ, p̃) ∈ Dl
β(Ω). Thus assuming 2k + 1 compatibility conditions to

be valid, we have proved the existence of the solution (u, p) ∈ Dl
β(Ω). Since for β ∈
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(k−1, k) (k ≥ 0) the operator Sl
β is a Fredholm monomorphism (see Lemma 3.1), these

conditions are necessary. Therefore, we conclude

dim cokerSl
β = 2k + 1.

Statement (ii) follows now from the fact that

dimkerSl
β = dim cokerSl

−β−2.

Statement (iii) has become evident

5. Asymptotic conditions at infinity

As follows from Lemma 3.1, there is no admissible β such that the operator Sl
β is

of index zero. In order to compensate this lack we introduce function spaces with
detached asymptotics and impose conditions at infinity. For β < −1 the operator Sl

β is
an epimorphism, and for β > −1, Sl

β is a monomorphism (see Lemma 3.1). Let us take

β± = −1±N ± δ
(
N ∈ N0, δ ∈ (0, 1)

)
. (5.1)

For simplicity we fix the regularity index l and omit it in notations. Moreover, we
denote

Sl
β± = S±, Dl

β±(Ω) = D±(Ω), Rl
β±(Ω; ∂Ω) = R±(Ω; ∂Ω).

Let us consider the mapping S− : D−(Ω) 7−→ R−(Ω; ∂Ω) and its preimage D±(Ω) of
the lineal R+(Ω; ∂Ω) ⊂ R−(Ω; ∂Ω) (since the preimage is related both to the indices
” + ” and ” − ”, we mark it by ” ± ”). Due to Theorem 2.4, D±(Ω) consists of vector
functions U = (u, p) taking the asymptotic form

U =
(

u
p

)
=

∑

−N≤m≤N

χ

[
c+
m

(
u+

m

p+
m

)
+ c−m

(
u−m
p−m

) ]
+

(
ũ
p̃

)
(5.2)

where Ũ = (ũ, p̃) ∈ D+(Ω) and (u±m, p±m) are given by (2.31). This means that D±(Ω)
is formed by the sum of linear combinations of the special solutions (u±m, p±m) and the
”rapidly” decaying remainder Ũ = (ũ, p̃) ∈ D+(Ω). Furthermore, the quotient space
D±(Ω)/D+(Ω) can be identified with R4N+2 and we introduce in D±(Ω) the norm
induced by the asymptotic representation (5.2)

‖U;D±(Ω)‖ =
(
‖Ũ;D+(Ω)‖2 + ‖a;R2N+1‖2 + ‖b;R2N+1‖2

) 1
2

where a and b are columns of height 2N + 1,

a =
(
c−0 , c+

−1, c
−
−1, . . . , c

+
−N , c−−N

)T

b =
(
c+
0 , c+

1 , c−1 , . . . , c+
N , c−N

)T
.

(5.3)

Let S± be the restriction of S− on D±(Ω). Due to estimate (2.32),

‖a;R2N+1‖+ ‖b;R2N+1‖ ≤ c
(
‖S±U;R+(Ω; ∂Ω)‖+ ‖(u, p); L2

β−(Ω)‖
)
.

Therefore the operator
S± : D±(Ω) 7−→ R+(Ω; ∂Ω) (5.4)

of problem (1.2) - (1.3) is continuous. Moreover, in view of Theorems 3.1 and 4.1, it
inherits properties of S− and the following assertion is valid.



176 S. A. Nazarov and K. Pileckas

Theorem 5.1. The mapping (5.4) is a Fredholm epimorphism and

dimker S± = dim kerS− = 2N + 1. (5.5)

There appear the continuous projections

D±(Ω) 3 U 7−→ π1U = a ∈ R2N+1

D±(Ω) 3 U 7−→ π0U = b ∈ R2N+1.
(5.6)

We also determine
π =

(π1

π0

)
: D±(Ω) 7−→ R4N+2.

We treat π0U, π1U and πU as columns in R2N+1, R2N+1 and R4N+2, respectively.
Let us connect with Green’s formula (2.33) the linear form

QΩ(U,V) = QΩ(u, p; v, q)

defined by

QΩ(U;V) ≡ (−ν∆u +∇p, v)Ω + (−div u, q)Ω + (u, qn− ν∂nv)∂Ω

− (u,−ν∆v +∇q)Ω − (p,−div v)Ω − (pn− ν∂nu,v)∂Ω

(5.7)

where (·, ·)Ω and (·, ·)∂Ω stand for extensions of the scalar products in L2(Ω) and L2(∂Ω),
respectively. Since (u±m, p±m) satisfy the homogeneous equations (1.2) - (1.3) in Π \ {x ∈
R3 : r = 0}, for any U,V ∈ D±(Ω) we get the inclusions (see (5.2))

(− ν∆u +∇p,−div u,u|∂Ω

)
(− ν∆v +∇q,−div v,v|∂Ω

)
}

∈ R+(Ω, ∂Ω)

and therefore all integrals in the left-hand side of (5.7) converge. Hence QΩ is a contin-
uous antisymmetric form on D±(Ω)2,

QΩ(V;U) = −QΩ(U;V). (5.8)

Due to Lemma 2.7,
QΩ(V;U) = QΩ(U;V) = 0 (5.9)

for all V ∈ D+(Ω) ⊂ D±(Ω) and all U ∈ D±(Ω). Thus QΩ can be naturally treated as
a form defined on the quotient space

(
D±(Ω)/D+(Ω)

)2 ≈ R4N+2 × R4N+2.

Lemma 5.1. If U,V ∈ D±(Ω), then

QΩ(U;V) = 〈π0U, π1V〉2N+1 − 〈π1U, π0V〉2N+1 (5.10)

where 〈·, ·〉K = 12ν [·, ·]K with [·, ·]K being the scalar product in RK .
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Proof. According to the asymptotic form (5.2), we can represent U as sum

U =
(

u
p

)
=

∑

1≤m≤N

χ

[
c+
0

(
u+

0

p+
0

)
+ c+

m

(
u+

m

p+
m

)
+ c−m

(
u−m
p−m

) ]

+
∑

−N≤m≤−1

χ

[
c−0

(
u−0
p−0

)
+ c+

m

(
u+

m

p+
m

)
+ c−m

(
u−m
p−m

) ]
+

(
ũ
p̃

)

= UN + U−N + Ũ
(
Ũ ∈ D+(Ω)

)
.

Analogously,
V = VN + V−N + Ṽ

(
Ṽ ∈ D+(Ω)

)
.

By virtue of (5.9), QΩ(U, Ṽ) = QΩ(Ũ,V) = 0 so that

QΩ(U,V)−QΩ(U−N ,VN )−QΩ(UN ,V−N )−QΩ(U−N ,V−N )

= QΩ(UN ,VN ).
(5.11)

Arguing as in the proof of Lemmata 4.1 and 4.3 and applying Green’s formula in the
truncated domain ΩR, we find that

lim
R→∞

(
QΩR(U−N ,VN ) + QΩR(UN ,V−N )

)
= 〈π1U, π0V〉2N+1 − 〈π0U, π1V〉2N+1

lim
R→∞

QΩR
(U−N ,V−N ) = 0. (5.12)

Thus, the left-hand side of equality (5.11) is finite. The term QΩR
(UN ,VN ) is equal

to the sum
∑2N

j=1 αjR
j where αj are constants. Therefore, its limit as R → ∞ can be

finite only if αj = 0 (j = 1, . . . , 2N ; arguing as in the proof of Lemma 4.3, one can
compute directly that αj = 0). Thus, we have got the equality QΩ(UN ,VN ) = 0 which
together with (5.11) - (5.12) implies (5.10)

• We call (5.10) the generalized Green’s formula.

Lemma 5.2. Let

X =
(
B
S

)
and Y =

(−T
Q

)
(5.13)

where B, T, S, Q are (2N + 1)× (4N + 2)-matrices. Suppose that X and Y satisfy the
relation

Y∗X = J ≡
(
O I
−I O

)
. (5.14)

Then the generalized Green’s formula (5.10) may be rewritten as

(−ν∆u +∇p, v)Ω + (−div u, q)Ω + (u, TV)∂Ω + 〈BπU,TπV〉2N+1

= (u,−ν∆v +∇q)Ω + (p,−divv)Ω + (TU,v)∂Ω + 〈SπU,QπV〉2N+1

(5.15)

where TU = (pn− ν∂nu)|∂Ω.

Proof. Simple algebraic manipulations with matrices turn (5.10) into (5.15) (cf.
[12: Section 6.2.2] and [16: Lemma 6.2])
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Remark 5.1.
1) From (5.14) it follows that detX 6= 0 and Y = (JX−1)∗. Therefore, for any

(2N +1)× (4N +2)-matrix B, the rank of which is equal to 2N +1, there exist matrices
S, T, Q such that (5.13) - (5.15) are fulfilled. If S is also fixed and det

(B
S
) 6= 0, then T

and Q are uniquely defined.
2) If S = T and Q = B, Green’s formula (5.15) takes the form

(−ν∆u +∇p,v)Ω + (−div u, q)Ω + (u, TV)∂Ω + 〈BπU,TπV〉2N+1

= (u,−ν∆v +∇q)Ω + (p,−div v)Ω + (TU,v)∂Ω + 〈TπU,BπV〉2N+1.
(5.16)

• We call (5.16) the symmetric generalized Green’s formula.

Based on the generalized Green’s formulae (5.15) and (5.16) and arguing in the
same way as in [12, 16], we provide problem (1.2) - (1.3) with the additional conditions

BπU = H ∈ R2N+1. (5.17)

• We call (5.17) the asymptotic conditions at infinity.

We connect problem (1.2) - (1.3), (5.17) with the mapping

D±(Ω) 3 U 7−→ AU = (S±U,BπU) ∈ R±(Ω; ∂Ω) (5.18)

where R±(Ω; ∂Ω) = R+(Ω; ∂Ω) × R2N+1. It is clear that A inherits the Fredholm
property from S±. Furthermore, in (5.18) we observe 2N +1 additional conditions and
therefore the difference of the indices of S± and A is equal to 2N + 1, i.e. IndA = 0.
Precisely, this equality follows from

IndA = Ind
(
S±

∣∣
{U∈D±(Ω):BπU=0}

)
= Ind S± − (2N + 1) = 0.

Theorem 5.2.
1) kerA = {V ∈ kerS± : BπV = 0}.
2) If the generalized Green’s formula (5.15) is valid, then

cokerA =
{(

V, TV
∣∣
∂Ω

,TπV
)

: V ∈ kerS±, QπV = 0
}

. (5.19)

Proof. The first assertion follows from the inclusion kerA ⊂ kerS± , the second
one has been proved in [12: Proposition 6.2.5] (see also [16: Theorem 6.5])

The subspace dimkerS± contains the solution ζ+
0 = (0, 1) and the solutions ζ±m =

(ξ±m, η±m) (m = 1, . . . , N) of the homogeneous problem (1.2) - (1.3) (see Lemma 4.2).
Since the dimension of kerS± coincides with the number of linear independent solutions
we have found that kerS± becomes the linear hull of them:

kerS± = L{
ζ+
0 , ζ+

1 , ζ−1 , . . . , ζ+
N , ζ−N

} ≡ {
ζ = Zc : c ∈ R2N+1

}
(5.20)

where Z =
(
ζ+
0 , ζ+

1 , ζ−1 , . . . , ζ+
N , ζ−N

)
is a 4 × (2N + 1)-matrix-function or, what is the

same, a row of solutions. Due to Lemma 4.2, each element ζ ∈ kerS± can be represented
in the form

ζ = Zc = Xc− χYMc + Ũc (5.21)
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where the solution rows X and Y are defined by

X =

((
u+

0

p+
0

)
,

(
u+

1

p+
1

)
,

(
u−1
p−1

)
, . . . ,

(
u+

N

p+
N

)
,

(
u−N
p−N

) )

Y =

((
u−0
p−0

)
,

(
u+
−1

p+
−1

)
,

(
u−−1

p−−1

)
, . . . ,

(
u+
−N

p+
−N

)
,

(
u−−N

p−−N

) )
,

M is a constant (2N + 1)× (2N + 1)-matrix and Ũ ∈ D+(Ω)2N+1. Note that

π0Zc = c

π1Zc = −Mc

}
. (5.22)

• We call the matrix M the augmented flow polarization matrix.

Theorem 5.3. M is a symmetric matrix.

Proof. Let c,C be arbitrary constant vectors in R2N+1. Since Zc and ZC are
solutions of the homogeneous problem (1.2) - (1.3) we get QΩ(Zc;ZC) = 0. On the
other hand, from the generalized Green’s formula (5.10) there follows that

QΩ(Zc; ZC) = 〈π0Zc, π1ZC〉2N+1 − 〈π1Zc, π0ZC〉2N+1

= 〈Mc,C〉2N+1 − 〈c,MC〉2N+1

= 〈c, (M∗ −M)C〉2N+1

= 0.

Thus, M = M∗

Remark 5.2. The matrix M has the form M =
(

0
0T

0
M

)
where 0 = (0, . . . , 0) and

M is a symmetric 2N × 2N -matrix. This follows from the fact that the solution ζ+
0 has

the form ζ+
0 = (0, 1)T and from the symmetry of M.

• We call the matrix M the flow polarization matrix.

Theorem 5.4. Let B = B (−M, I)T where I is the unit (2N +1)×(2N +1)-matrix.
Then

dimkerA = 2N + 1− rankB. (5.23)

Proof. The elements ζ ∈ kerS± admit the representation ζ = Zc (c ∈ R2N+1;
see (5.21)). Since π1ζ = c, π0ζ = −Mc and due to the symmetry of M, Bπζ = 0 if and
only if B (−M, I)T c = 0. Therefore, owing to Theorem 5.2/(1) we conclude (5.23)

Remark 5.3. In view of (5.19) the compatibility conditions for problem (1.2) -
(1.3), (5.17) take the form

(f ,v)Ω + (g, q)Ω + (h, TU)∂Ω + 〈H,TπV〉2N+1 = 0 (5.24)

for all V = (v, q) ∈ kerS± with QπV = 0.

In accordance with (5.19), (5.24) it is very natural to say that problems (1.2) - (1.3),
(5.17) and (1.2) - (1.3) with additional conditions

QπV = K ∈ R2N+1 (5.25)

are adjoint with respect to the generalized Green’s formula (5.15). In the case when the
symmetric generalized Green’s formula (5.16) takes place, problem (1.2) - (1.3), (5.17)
becomes formally self-adjoint.
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Theorem 5.5.

1) If Ω = Π, then M = O.

2) If Ω 6= Π and Ω ⊂ Π, then the matrix M is positive definite.

Proof. Let c = (0, c′) with c′ ∈ R2N \ {0} be arbitrary. We take

V = (v, q) = Zc = V0 + V# ∈ kerS±

where
V0 = (v0, q0) = Xc

V# = (v#, q#) = −χYMc + Ũc ∈ Dl
γ(Ω) (γ ∈ (−1, 0))

(see (5.21) and Lemma 4.2). By formula (4.6) and the definition of M we get

〈Mc′, c′〉2N =
∫

∂Ω

v# · T (V) ds. (5.26)

(Note that −ν∆v# +∇q# = 0 and div v# = 0.) If Ω = Π, then V0 is the exact solution
of the homogeneous problem (1.2) - (1.3). Hence V# = 0 and M = O.

Since v# = −v0 on ∂Ω,

∫

∂Ω

v# · T (V) ds =
∫

∂Ω

v# · T (V#) ds−
∫

∂Ω

v0 · T (V0) ds. (5.27)

Integrating by parts in Ω and Π \ Ω, we derive

∫

∂Ω

v# · T (V#) ds =
∫

Ω

|∇v#|2dx

∫

∂Ω

v0 · T (V0) ds = −
∫

Π\Ω
|∇v0|2dx.

(5.28)

The sign ”− ” in the second equality of (5.28) appears because of the oposite direction
of the outward normal n. The Dirichlet integral of v# is finite since V# ∈ Dl

γ(Ω) for
γ ∈ (−1, 0). The formula

〈Mc′, c′〉2N =
∫

Ω

|∇v#|2dx +
∫

Π\Ω
|∇v0|2dx > 0

follows from (5.26) - (5.28) and completes the proof

Example 5.1. Let N = 0 and B = (1, 0) is a matrix of size 1 × 2. Then the
condition BπU = π1U = c−0 prescribes the total flux of the fluid over the surface
SR. The matrix Z consists of one solution ζ+

0 . Hence dim kerS± = 1, π1Zc = 0
for all c and M = O (see (5.22)). We have B = B(−M, I)T = O and, by Theorem
5.4, dim kerA = 1 − rankB = 1. Therefore the operator A is an epimorphism with
one-dimentional kernel (constant pressure).
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If B = (0, 1), then BπU = π0U = c+
0 prescribes the limit of the pressure component

as r → ∞. We get π0Zc = 1, M = I and B = B(−M, I)T = I. By Theorem 5.4,
dimkerA = 1− rankB = 0 and the operator A is an isomorphism.

Example 5.2. Let N = 1 and

B =




1 0 0 0 0 0
0 0 0 0 cos α sin α
0 0 0 0 − sin α cos α


 .

We consider the condition BπU = (H1,H2, 0)T which prescribes the total flux H1 over
SR and the linear flux H2 of u in the direction eα = (cos α, sin α) (cf. [14]). We obtain
Z = {ζ+

0 , ζ+
1 , ζ−1 }, dim kerS± = 3 and

B = B (−M, I)T =




0 0 0
0 cos α sinα
0 − sinα cos α


 .

Hence dimkerA = 3− rankB = 1 and the operator A is an epimorphism.
If we prescribe instead of the total flux the limit H1 of the pressure component as

r →∞, we shall take

B =




0 0 0 1 0 0
0 0 0 0 cos α sin α
0 0 0 0 − sin α cos α




and consider the condition BπU = (H1,H2, 0)T . In this case we get the unitary matrix

B = B (−M, I)T =




1 0 0
0 cos α sinα
0 − sinα cos α


 ,

dimkerA = 3− rankB = 0 and the operator A is an isomorphism.
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