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On the Fredholm Property of the Stokes Operator
in a Layer-Like Domain

S. A. Nazarov and K. Pileckas

Abstract. The Stokes problem is studied in the domain ©Q C R? coinciding with the layer
I={z=(y,2): y=(y1,92) € R? 2z € (0,1)} outside some ball. It is shown that the
operator of such problem is of Fredholm type; this operator is defined on a certain weighted
function space DE(Q) with norm determined by a stepwise anisotropic distribution of weight
factors (the direction of z is distinguished). The smoothness exponent [ is allowed to be a
positive integer, and the weight exponent 3 is an arbitrary real number except for the integer
set Z where the Fredholm property is lost. Dimensions of the kernel and cokernel of the operator
are calculated in dependence of §. It turns out that, at any admissible 3, the operator index
does not vanish. Based on the generalized Green formula, asymptotic conditions at infinity are
imposed to provide the problem with index zero.
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1. Introduction

Let Q C R? be a domain coinciding outside the ball B, = {x € R : |z| < Ry} with
the infinite layer

H:{a::(y,z): y:(yl,yg)ERQ,zE(O,l)}. (1.1)

For simplicity we assume the boundary 02 to be smooth. Without loss of generality we
also fix Ry = 1. The set 02 \ By contains infinite parts of two planes

S(O):{x:yGRz,z:O}
S(l):{x:y€R2,z:1}

which form the boundary OII of the layer II. We consider the Stokes system

—vAu+Vp=f
venTvp } (in Q) (1.2)
—diva=yg
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with the boundary conditions
u=h (on 09) (1.3)

where

u = (uq,uz.ug) is the velocity field

p is the pressure in the fluid

f = (f1, f2, f3) is an external force

g is a given scalar-valued function in €2

h is a given vector-valued function on 052

v is the constant coefficient of viscosity
V=0;2,-2,-2),A=V-V,divu=V-u

8901 ) Bmg ) 83:3
means the scalar product in R3.

» »

In the previous paper [15] we have studied the properties of solutions (u,p) to
problem (1.2) - (1.3) in a two-parametric scale of weighted function spaces DIB(Q) and

ng(ﬂ, 0€) such that the mapping
D(9) 3 (u,p) — Sh(u,p) = (£, 9,h) € RE(D;00), (1.4)

where Slﬁ is the operator of the Stokes probem (1.2) - (1.3), becomes continuous. In (1.4)
[ is a regularity index and (8 a weight index. The exact definitions of these spaces and
their properties are presented in Section 2. In terms of these spaces we have proved (see
[15]) regularity results and a coercive estimate for the solution (u,p) € L%(Q) X L%(Q)
where the latter space consists of functions with finite norm

1
2

0 p)s L3(2) x Z2()]| = ( Ll + |p|2>dx)

Moreover, in [15] the asymptotic representation of the solution (u,p) € L%(Q) X L%(Q)
is constructed.

In this paper we prove the Fredholm property of mapping (1.4), calculate the di-
mensions of the kernel and cokernel and therefore the index of the operator Slﬁ in (1.4).
Moreover, we derive integral formulae for the coefficients in the asymptotic represen-
tation of the solution, which lead to a generalized Green formula. This formula, in
particular, furnishes asymptotic conditions at infinity (in the same way as in the paper
[16] where the Stokes operator was studied in domains with cylindrical outlets to in-
finity). Note also that the Fredholm property of the Neumann problem operator for a
second order elliptic equation in a layer-like domain was proved in [13].
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CIM/Fundacao Calouste Gulbenkian (Coimbra) - Thematic Term on Theoretical and
Computational Fluid Dynamics. The Portuguese financial support is deeply acknowl-
edged.



On the Fredholm Property 157
2. Weighted function spaces and preliminary results

2.1 Function spaces. Let G be an arbitrary domain in R™ (n > 2). As usual, denote
by C°(G) the set of all indefinitely differentiable functions in G and let C5°(G) be a
subset of functions from C'°°(G) with compact supports in G. Further, Wh2(G) (I > 0)
indicates the Sobolev space and W'~ 22(@) (I > 1) the space of traces on the boundary
OG of functions from W'2(G). Besides, W%2(G) = L*(G) and Wllgi(G) consists of
functions which belong to W2(K) for every compact K C G. The spaces of scalar-
and vector-valued functions are not distinguished in notations. The norm of an element
u in the function space X is denoted by ||u; X||.

Let Q C R? be a layer-like domain. Denote by C5°(Q2) the subset of functions from
C®° () with compact supports in Q (functions from C§°(Q) are equal to zero for large
|z|, but not necessarily on 0f2). We define the norm

lJus V(2 (/ Z (14 r2)B= 1l 7ty (2))| da:) (2.1)

[1|=0

with homogeneous isotropic weight distribution. In (2.1) r = |y| (y € R?), z = (y,2) €
RS; n= (/1’17 w2, N3) with K1, 2, (13 > Ois a mU1ti'indeX7 and

glely

VHy = = .
z U axlltl 8I12Lzax/ét3 (|“‘ 1+ p2 + MS)

Analogously,

v = ([ 3 e g 22)

|v[=0

for functions u depending on y € R? only where v = (v1,72) with 71,72 > 0. The
spaces V4(Q) and V}(R?) are the closures of C3°(Q) and Cg°(R?) in norms (2.1) and
(2.2), respectively. The spaces Vﬁl(G) with norm (2.1) or (2.2) were first employed by
V. A. Kondratiev [1] (Kondratiev spaces) while treating solutions of elliptic boundary
value problems in domains G C R™ (n > 2) with conical outlets to infinity (in this case
the weight in (2.1) should be changed to (1 + |z]?)).

Let 8 € R and let [, kK denote integers such that [ > 0 and 0 < x < [. We introduce
the space V}jﬁ(Q) as the closure of C$°(f2) in the norm

(NI

||v; V,Bn( )H—( Z / 1+r B+1v—(vI— “”]6“8%}(3/, 2)| dydz> (2.3)

a+|v|<l
5o vl
where a > 0, v = (71,72) with y1,72 > 0, |y] = 71 + 72, 05 = zD" 9y = dy 91; e and

(t)4 = %'ﬂ is the positive part of t € R.
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As it can be observed in (2.3), differentiation in z does not change the weight
multiplier. Differentiation in y of order |y| < k increases the weight exponent by |v| (i.e.
reflects the Kondratiev distribution of weights [1]). At |y| = k the weight distribution
function has a step. Namely, the subtrahend (|y| — k)4 compensates the growth of
the weight exponent provided |y| > k. In the case of a cone where all directions are
equivalent such step-weighted spaces were introduced and investigated in [4, 5].

It is easy to see that
V3(Q) = V5,0(Q) = L3(Q)

while

lvs L (@)1l = </Q(1 "’Tz)ﬁ!v(x)]zdx)é

_1
Finally, for [ > 1 we introduce the trace space V/é’,f (092) of functions v € Vj  (Q)
supplied with the norm

Jw; Vi 2 (99)]| = inf {03V}, ()] : v = w on 9Q}. (2.4)

The trace w on 952 of v € Vé ..(82) is forgetting the normal direction z and the weight
1
distribution in the norm of Vg 2 (092) turns into an isotropic one while preserving the

step property. This becomes evident after using an equivalent norm in V (80)

Lemma 2.1 (see [15]). The norm ||§;V/g;f (0Q)| (k < 1) is equivalent to

|||<|||={||<,Wl 2000 By

1
+Z (1+r2)ﬂ+|7|_(w|_“)+|8;’C(y)|2dy
=0 0<|'y|<l 1 S(”\Bl

" Z /S(J)\B1 /S(J)\Bl ‘67 1+ |y| )5+K<( ))

[v|=l—

(2.5)

1
2

— 0y (1 +[71)"¢(7) ‘ ly — g1~ 3dydy)}

In (2.5) integration over Sy and S; is performed separately in order to avoid con-
fusion. The reason is that for large r the boundary 02 consists of two non-intersecting
parts and the distance in R? between two points y and 7 located one above the other on
So and S; is equal to 1, while the distance between them on 02 is O(|y|). Interpretating

the symbol |y — 7| appropriately one can delete the first sum over j in (2.5) and replace
S; \ By by 0Q\ B;.

2.2 Auxiliary propositions. Below we make use of basic properties of the spaces
Vlﬁyﬂ(Q) which we collect in this section.
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Lemma 2.2 (see [15]). Letv € V5 () (1 > 1,0 <k <1—-1,8 € R). Then
Oyv € Vé;llﬁil(ﬁ) and 0,v € VZB_KI (Q). There holds the inequality

1005 Vi1 e (DN + 110205 V5 ()] < e flo; Vi ()]
Lemma 2.3.
(1) The embeddings

Vi Q) = VENQ)  (121,0<k<1-1) (2.6)
Vi, n(Q) = Vh () (1>0,0< k<16 >f) 2.7)

are continuous.
(i) If1>1,0< Kk <I1—1 and e > 0, then the embedding

Vi () = Vi L (Q) (2.8)

18 compact.

Proof. Continuity of the embeddings (2.6) - (2.7) follows from the definition of the
norm (2.1). Moreover,

u; V2L (@ Bag)|| < eR™||u; V}.(2\ Br)]|.

Since Vé,K(Q N Bar) coincides with W2(Q N Byr) algebraically and topologically, well
known properties of Sobolev spaces show that the embedding operator (2.8) can be
represented as sum of a small operator (as R — oo0) and a compact one. Thus (2.8) is
compact l

Let us prove one simple interpolation result.

Lemma 2.4. Let v € [V} ((Q)]*, where [V} (Q)]* is the dual space to Vj o(€2) with
respect to the scalar product in L?(SY). Suppose that Vv € LQ_B(Q). Then v € LQ_B(Q)

and
o 22 (N1 < e(llos VB o (2 + V0s L2 5()]2).

Proof. Let us cover the domain 2 by the infinite union of ”cubes”
Qs ={z€Q: |21 — 8|, |22 — k| < 3} (s,k €Z).

By [17 : Chapter 3/Lemma 7.1], for any function v € W=12(Q, 1) with Vv € L*(Q; )
there holds the inclusion v € L?(Q; %) and the estimate

||U; L2<Qs,k)||2 S C<||U; W_1’2(Qs,k)||2 + HVU; LQ(Qs,k)”2>

with constant ¢ independent of s,k € Z. Let us multiply the last inequalities by (1 +
(52 + k2))7% and sum them over all s,k € Z. Taking into account that (1 + 72) is
equivalent to (1 + (s? + k?)) in Qs , we obtain

lv; L2 5(Q)II7 < C< S+ +8) o WRRQa)I + [V L25(9)||2>~

k,sE€EZ
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Further, the equivalency of the norms [n(1 + r2)%/2; Wh2(Q)| and |ln; V} o(Q)]| gives
the inequality

S (14 (2 + K)o WRQun) 12 < ello; V()]
k,sE€EZ

which competes the proof of the lemma H

2.3 Space ’Dg(ﬂ) - the domain of the Stokes operator. We fix some weight and
regularity indeces, i.e. numbers § € R and [ € Ny and denote by DZB(Q) the space of

vector functions (u, p) satisfying the inclusions
u e Vi (9) uz € Vb, 1(9) (2.9)
pEV5,(Q) 0.p € Viio,_1(9Q). (2.10)

The norm in D/lg(Q) is given by the formula

1(w, p); D ()]

- (2.11)
= (s VE O+ lluas Vs o (D1 + 193 Va1 + 10205 Vi s 1 (D))

Such definition of the space Dlﬁ(Q) has been used in the paper [15]. For purporses of
this paper it is more convenient to employ the following equivalent definition. Let us
represent the pressure function p as sum

p(z) = pi(y,2) +Dpy) (2.12)

where )
mmzﬁpmaw

is the mean value of p with respect to z € (0,1). The projection p, obviously has zero
mean value:

p.(y,2) =py,z) —ply) = p(y) — py) = 0.

Moreover,

apr_ (y,2) = 8yp(y, z) — 3y2_9(y) = ayﬁ(y) - 3y2_9(y) =0.
Hence by the one-dimensional Poincare inequality we obtain p; € L% 12(9Q), Oyp1 €
L3, 5(9) and

D13 Lo < cll0epis L Q)] = cllzp; L »(Q)]

10yp1; L3I < cll0:=0yp1; L 5(Q)].

Thus p, € Vj,,,(Q) and

Ip1s Visa (N < clldap; Vi, 1 ().
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For the mean value p we get the inclusion p € Vﬁl i (R?) and the estimate

173 Va1 (R < cllps Vi (Q)]I-

Therefore the space D%(Q) may be redefined as space of all vector functions (u, p) such
that u satisfies inclusions (2.9) and p admits representation (2.12) with

€ Vo, (0
b f”’l(2 ) } . (2.13)
p € Vg (R7)
An equivalent norm in DZB(Q) is given by the formula
u,p); DL(Q
I(w.p): D (@) -

= [lu's Va1 + Hlus; Vioa oy (DI + 1 Vo (] + 117 Vi (R

2.4 Space T\’,,lc.,(ﬂ, 90N) — the range of the Stokes operator. The space RZB(Q, o0)
(I > 1) consists of triples (f, g, h) such that
g e V}j+2,z—1(9)
I+3
h' ¢ Visi1.(09) (2.15)
l+2
while f admits the representation
f =1, + 0.f; + Vo (2.16)
with
fo eV ﬁ+2 1—1())
f| e Vﬁ+1 1(€2)
fi3 € V,6’+2l 1(2) ¢ (2.17)
(ONIS Vﬁ+2 1(2)
1/} € Vﬁ—H (RQ) J
The norm in Rlﬁ(Q, 092) is given by

H(f,g,h>'7€ia(9‘8ﬂ)l|
= inf {|Ifo; Vb1 (DN + £ Va1 (D)
113 Voot D+ 1015 V(@) + 185 Vi, (R}

Pt Yt
+ ||9§Vé+2,z—1( )|l + bV 511, OQ)[| + [[hs; Vg, 5, 1 (09Q)]

(2.18)

where the infimum is taken over all representations (2.16). From Lemmata 2.2 and 2.3
we derive the following assertions.
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Lemma 2.5. The embeddings

R5(;00) — Ry (9;00)

R, (2 09) — R ($2%;09) } (=1, 6> p)

are continuous.

Theorem 2.1. The operator Sé of problem (1.2) — (1.3),
D(Q) 3 (u,p) — Sh(u,p) = (£, g, h) € RE(Q;00) (2.19)

18 continuous.

2.5 Coercive estimate for the solution of problem (1.2) - (1.3). The following
result is proved in [15].

Theorem 2.2. Let (u,p) € L3(Q) x L3(Q) be the solution of problem (1.2) — (1.3)
with right-hand side (f,g) € R5(Q;09) (1> 1,8 €R). Then (u,p) € D4(Q) and

1(u, p); D ()|

l 2 2 —. 12 2 (220)
< o(1(£, 9, 1) RE(: 9| + l[ws LE@) | + lpas L3 + s LA R2)])).

In order to prove the Fredholm property of mapping (2.19) we need to transform
estimate (2.20) into

1w, 2): DH@) < e(lI(F, 9. 1): R 00) + 1K (wp): DH@)  (2.21)

where K is a compact operator in DZB(Q) As shown in [15], the function p € L3(R?) N
W}2(R2) satisfies the Poisson equation

loc
—AB(y) = Fly)  (yeR?) (2.22)

where

Fly) = FV(y) +divy, FO(y) + ALFD (y) + A, FO(y)
1
J-"(O)(y) = / 8Zp(y,z)(%z — %z2 + %23)(12
0
1
FH(y) = 21// 9(y, 2) dz
0
1
FO(y) = / £(y, 2)z(z — 1) dz
0

1
FO(y) = —1//0 div,u'(y, 2)z(z — 1) dz.
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The inclusion (f,g,h) € Rlﬁ(Q;E)Q) furnishes £ € L3,,(Q), div, f' € L3 ,(Q) and
g € L3,,(). Hence, FI) € L2 ,(R?), div, F@ € L?,,(R?) and

IFD; LB o (R[] + [|divy, F®s LE (R < ¢l (£, 9, h); R (2;00)]-
Further, (u,p) € DZB(Q) so that

u e Vit (Q) Al divi u' € L%, 4(Q) C L3, 5(Q)
0.p € L%+2(Q) AL (9.p) € L3 4(Q) C L3 5(9).

This implies A} 7 € L%, (R?), A, F®) e L3 ,(R?) and

AL FO; 12, (B2 + ||, FO; 13,,(R?)|
< ef | adivy s 3,5 + 1A @:p): L3 5(@)])-

Thus,
F— (1) —|—divly F2 4 A;j (]:(0) +]:(3)) c L%+2(R2)

and
HJT§ L%H(RQ)H

.l 5y T2 / (2'23)
< c(I1(F, g, ) REQ)] + 185 div), w's L3,5() | + | A} (0:p); LE42()]]).

The punctured space R? \ {0} might be interpreted as two-dimensional cone (a
complete one) in R? so that R? is a domain with conical outlet to infinity. Therefore
general theorems on elliptic problems in such domains can be applied while treating the
solution p of equation (2.22). It is known (see [1, 2, 12]) that such problems have the
Fredholm property in the scale of Kondratie spaces le (R?) if and only if every power
solution w(y) = =¥ () of the corresponding homogeneous problem is trivial, provided
that A lies on the line {A\ € C: ReA =~ —1+1} ((r,p) are polar coordinates in R?).
For the Laplace operator (2.22) all power solutions consist of harmonic polynomials of
orders m € Ny and derivatives of the fundamental solution I'(y) = —5= In|y|. This
information together with the general results (see [1, 2, 12]) and estimate (2.23) gives

loc

Poisson equation (2.22). Then p € VBH(RQ) and there holds the inequality

Lemma 2.6. Let p € L3(R*) N WE2(R2) (1> 2,8 & £Ng) be the solution of the

1P V322 < c(I1F: LR + K175 VE2(R)))
< o(1(F, 9, 1) R(Q: 09) | + || A diviu's Lo (€) (2.24)

118 (0:p); Lol + 1175 V2 (R2)]))

where K is a compact operator in V3. ,(R?).
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Remark 2.1. Lemma 2.6 remains valid also for [ = 1 and [ = 0. However, because
of the shortage of the regularity in these cases the Poisson equation (2.22) for p should
be understood in the sence of distributions, i.e. the solution p € L% (R?) satisfies the
integral identity

- %/RQ ply)A,n(y) dy
= /]R 2 (7(1)(y)77(y) —FO ) - Vi) + (FO () +f(3)(y))A’yn(y)>dy

for all n € C5°(R?) where

Since results analogous to Lemma 2.6 are true for the solution p € L%(RQ) of the Poisson
identity (2.25) (e.g. [2]: Section 6.3] and [12: Theorems 3.5.7 and 4.2.4]), we conclude
the estimate

17 L3®)]| < e(II(F, 9, 0); R (2 99) ]| + [[div, w's L3 ()]

B (2.26)
1005 L3 1 ()] + 1K L3(R)))

where K; is a compact operator in L% (R?) 1

First, let { > 2 and § € £Ny. Using inequality (2.24) we can rewrite estimate (2.20)
in the form

I, ) D@ < e(II(F, 9, ) R 00)]] + [us L ()]
I LI + 147 div, w's L3, () (2:27)
+ 185(0:p); LoDl + 1KaB: V2 (RO)]).

By Lemma 2.2, A;diV; u e Véﬁ;,z-:&(Q) and A} (9.p) € Vlﬁfjl’l_g(ﬁ). Moreover, by
virtue of Lemma 2.3 the embeddings

Véfu 3(Q) — L%+2(Q)
Véﬁu 5(Q) = L,%+2(Q)
é_:-ll () — L%(Q)
Vil ioa(Q) = L3(9Q)
Vﬁ+2 () — L%(Q)
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are compact. Hence, there hold the inequalities

AL divy, w5 L3, (Q)]] < ellCou’s VL ()]
1A4(8:p); L2 < ¢||Kapi; Vo ()]
(' ug); L3(Q) x LE(Q)|| < ¢||Ka(w',ug); V5iY () x Vi ()]
lp1s L) < e[IKspi; Vi (Q)
where KC; (i = 2,3,4,5) are compact operators. Therefore from (2.27) estimate (2.21)

follows. In the cases [ = 0 and | = 1 we analogously get estimate (2.21) using inequality
(2.26) instead of (2.24). Thus, we have proved

Theorem 2.3. Let (u,p) € Df@(Q) be the solution of problem (1.2) — (1.3) with
right-hand side (f,g,h) € RZB(Q;aQ) (I > 1,8 € R\ {£Ny}). Then estimate (2.21)
holds with IC being a compact operator in Df}(ﬂ)

2.6 Asymptotic representation of the solution. Let us formulate a result concern-
ing the asymptotic behavior of the solution (u, p) of problem (1.2) - (1.3).

Theorem 2.4 (see [15]). Assume that
(f,9,h) € Ry (2;00) (121, 8¢ +No, k €N). (2.28)
Then the solution
(u,p) € L3(Q) x L3(Q) (2.29)
of problem (1.2) — (1.3) admits the asymptotic representation

(3)=xn > ()

B—k—1<m<—p-—1

) (2.30)

e St

where x is a smooth cut-off function with x(r) =1 forr > 2 and x(r) =0 forr <1,

ut(y,2) = L2z~ DViph(y), ui,(y.2) =0, pi(y) =1, py(y)=—o=lnr

Pa(y) = (2mlml)~ 2™ cos(mep)
" L (2.31)
P (y) = 2mlm|)=2r™ sin(|m|e)
¢t (m € £Ny) are constants and (@,p) € D%Jrk (). There holds the estimate
(8, 5); D1 (V)] + > (lem| + lemD)
—fB—k—1<m<—p£—-1 (232)

< c(I1(F, 9, 0)s Rl (9 09) | + 1w LA + lIpas L3@)] + 17 L3 (R2)]) ).

Remark 2.2. Analogous asymptotic formulae were obtained also for second order
scalar elliptic operators (see [9, 11]) and for the Lame operator (see [6 - 8, 10]).
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2.7 Green’ formula. Let (u,p) € Dj(Q) and (v,q) € C5°(Q). Then for the Stokes
problem (1.2) — (1.3) there holds Green’ formula

/(—VAu+ Vp) - -vdr — / gdivudx —l—/ u- (ng —vo,v)ds
“ “ o (2.33)

:/(—I/Av+Vq)-ud:zc—/pdivvdx+/ v - (np — voyu) ds.
Q Q o9

Here n is the unit vector of the outward normal to 92 and 0, = 8%1 denotes the
derivative with respect to n. Note that all integrals in (2.33) are finite since (v, q) is
identically zero for large |z|. It is not difficult to verify that the integrals in (2.33)
remain finite if (v, q) € D" 5_2(82). Therefore by continuity we conclude the following
assertion.

Lemma 2.7. Green’ formula (2.33) holds true for any pairs (u,p) € DZB(Q) and
(v,q) € DLs_o().

3. The Fredholm property

In this section we prove the main result of the paper: the Fredholm property of the
Stokes operator Sk, i.e. we prove that the range SlﬁDlﬁ(Q) is a closed subspace of

ng(ﬂ, 0€) and that
dim ker 8}3 < o0
dim coker S}; < 00.
Theorem 3.1. The operator Slﬁ (I > 1) of the Stokes problem (1.2) — (1.3) is of
Fredholm type, if B € Z. If B € Z, then the range of Sf/), s not closed.

Proof. The finite-dimensionality of ker S é and the closedness of the range S éDlﬁ(Q)
follow from estimate (2.21) (see Theorem 2.3) and a lemma by J. Peetre (see [18] or [3:
Lemma 2.5.1]).

Let us prove the finite-dimensionality of coker Sé. We show that the subspace
ker(S}j)* = coker Slﬁ admits the representation

coker Sé = {(v, q, (ng — V@nv)|89) : (v,q) € ker Sl_ﬁ_Q}. (3.1)

Let us consider the bounded linear functional F{y 4) given on Rlﬁ(Q, 0%2) by the formula

F(v,q>(f797h)=/f~Vd:v—/qux+/ h - (ng — v9,v)ds
Q Q o2

(v,q) € DL 5().

If (f,9,h) € SlﬁDé(Q) and (v,q) € kerSl_ﬁ_Q, then from Green’s formula (2.33) it
follows that Fy 4 (f,g,h) = 0. Thus F{ 4 is orthogonal to SéDlﬁ(Q) and therefore
Fiv,q) € ker (Slﬁ)* Hence we have proved the inclusion

{(v, ¢, (ng —v9,v)|aa) : (v,q) € ker Sl_ﬁ_z} C ker(SlB)*. (3.3)

(3.2)
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In order to prove the inverse inclusion we first consider the case | = 1 and introduce the
operator Sj adjoint to Sp (with respect to the scalar product in L*(2)* x L?(9Q)%).
For brevity we write Sg, Dg(§2) etc., omitting the regularity index [ = 1. We mention as
well known fact (see, e.g., [3, 19]) that the operator S} acts on the space of distributions
by the formula

Rp(;00)" 3 (v,q,w) — Sz(v,q,w) = S(mqVv,maq) + W ® dgq.

Here mov and mqq are the extensions of v and ¢, respectively, by zero from 2 to the entire
R3, dpq is the Dirac function concentrated on 02 so that w ® dsq is the distribution
defined by the formula

(W ® don, )rs = (W, 0)an (¢ € C5°(R?))
where (-, -)gq denotes the scalar product in L?(992), and
S(mqv,T0q) = ( — vAmqv + V7ag; —diVT('QV)

is the Stokes operator (1.2). Note that due to Green’s formula (2.33) this operator is
formally self-adjoint.

Let w,® be two neighbourhoods of a point in Q and @ C @. If the right-hand side
U = (U, U,, Us, Uy) of the equation

Si(v,q,w) = U € Dg(Q)* (3.4)

belongs to H*(Q N&)? x H*TH(Q N @), then first (v,q) belongs to H*T2(Q N w)3 x
H*THQNw), second it satisfies the relations S(v,q) = U in QNw and v = 0 on N Nw,
and third w coincides with the trace of (ng—v0,v) on 02Nw (see [19] and [3: Chapter
2.5.3]). Since ker S5 contains the solutions (v, ¢, w) € Rp(£2;9Q)" of the homogeneous

equation (3.4) (i.e. U = 0), we conclude that (v, q) € C°.(Q) solves the homogeneous

loc

Stokes problem (1.2) - (1.3) and w is the trace of (ng — v9,v) on 092. Further, by
definition R(§2; 0€2) contains the subspace

R = L%+2(Q)3 X Véu,o(ﬂ) X V§+1,1(39)2 X V§+2,o(aﬂ)

(we assume that f; = 0 and ¢ = 0 in representation (2.16) for f, i.e. f = f;). Con-
sequently, Rg(2;00)* C R*. The first two factors in R* coinside with L% ; ,(0)3 x

~B-2
Vi40.0()]* and hence we have v € L2 5 ,(Q)° and g € Vi, o(Q)]".

Let us show that ¢ belongs to L2 572(9). Denote by ¢, the smooth cut-off function
with (,(r) =1 for r < p, (,(r) =0 for r > 2p and

(3.5)
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with constant ¢ independent of p and ». We multiply the homogeneous Stokes equations

(1.2) by ¢,(r)%(1 + r?)~P~1v(z) and integrate by parts in €2

/Cp (1+12) ==YV (z)|%dz
- / v(z) - VG, (L + 1) da

—v [ (@) vl VIG 1+ 1) P o
=1 + I>.

Using (3.5) it is easy to show that

L] < /g,, (1+72) 1|vV(x>|2dx+c(u)/(1+r2)—5—2\v(x)\2dg:.

Q

For the first summand I, we get

11 < [las V3o o[ [VVIG ()2 (1 +72) 7771 Vi s o(Q)

< cllg; WViya,0(T

X (/(1+r2)ﬂ2|v|2dm+y/ C§(1+r2)ﬁl|Vv|2dx>
Q Q
< g/ﬁ G+ Vv Pda

+c(y)<||q; Vii20Q)] H +/ 1+47r%)~ 5_2\v\2dx>.

Substituting (3.7), (3.8) into (3.6) we derive the estimate

/ G L+ ) P VvPde < C(Hq; Vo201 + / (1+ T2)52|V|2d$)
Q Q

< 00

with constant ¢ independent of p. Passing in (3.9) p — oo, we get Vv € L2

(3.8)

(3.9)

5-1().

Since the solution (v,p) is smooth, from local estimates it follows (see [15: Proof of

Lemma 3.1]) that Vg € L? 5 (Q) C L? 5_,(Q) and
IVa; L2 5 ()] < el Vvs L2 5 1 ()]

By Lemma 2.4 we conclude that ¢ € L2_5_2(Q) and

la: L2 5o (@)1l < (145 Vhan o @) | + IVa: L255()]) < o
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Thus the solution (v,p) of the homogeneous Stokes problem (1.2) - (1.3) belongs to

L2 5 5(Q)% x L2 5_,(Q). By Theorem 2.2, (v,p) belongs to D_3_5() and hence

ker §j C {(v,q, (ng — vd,v)|an) : (v,q) € kerS_g_g}. (3.10)

Formulae (3.3) and (3.10) prove representation (3.1) of coker Sg. Since the numbers 3
and —(3 — 2 belong to the prohibited set Z simultaneously, dimker S_g_o < co and the
finite-dimensionality of coker S is proved. Moreover, from (3.2) and Green‘s formula
(2.33) we derive the following compatibility conditions for the Stokes problem (1.2) -
(1.3):

/f~vdx—/qux+/ h-(ng—vd,v)ds =0 (3.11)
Q Q o9

for all (v,p) € kerS_pg_».

Let us consider the case [ > 1. Assume that (f,g,h) € Rlﬂ(Q, 00) C RE(Q, 0Q) with
0 & Z. If the right-hand side (f, g, h) satisfies the compatibility conditions (3.11), then
there exists a solution (u,p) € Dj(Q) of problem (1.2) - (1.3). By virtue of Theorem

2.2 we get (u,p) € Dé(Q) This means that (f, g, h) is orthogonal to ker [Slﬂ]* By the
Hahn-Banach theorem this gives

ker [Slﬁ]* C {(V,q, (ng — v0,v)|aq) : (v,q) € kerSiﬁ_z}.

Since by Theorem 2.2 ker Siﬁ_Q = ker Sl_ﬁ_2, the last relation together with (3.3)
furnishes

ker [SL]* = {(v, ¢, (ng — v9,v)|aq) : (v, q) € ker 5’—@—2}- (3.12)
Thus in the case § ¢ Z
dim ker [Slﬁ]* = dim kerSl_ﬁ_Q < 00.

This proves the Fredholm property for Sé with [ > 1 and 8 € Z.

Consider now the case § € Z. Since DZ(Q) C DL () and Rlﬁ(Q; 00) C RZB_E(Q;
0Q) for all € > 0, it follows that

ker S}j C ker Sfa—s
coker S}; C coker S é Le

Consequently, the subspaces ker Sé and coker Sé are finite-dimensional for all g € R.
We shall show that for § € Z the range Im SZB is not closed and hence Slﬁ looses the
Fredholm property.

Let = —m —1 (m € Z). Denote by x the smooth cut-off function with x(r) =1

for r <1 and x(r) = 0 for 7 > 2 and let xr(r) = x(5) (R >2). We take

po(y) = —(27‘(’)_1 Inr
Pm(y) = (2m|m|) ™2™ cos(myp) (m # 0)

U (y,2) = 552(2 = 1)Vpm ()
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and put
(U, Pn) = (1 = x(r))xR(r) (W, prm).-
It is easy to compute that

@, Bn); D-er ()]

> [|@m, B ); L2,,(2)° x L2

—-m —m—1

R
> C(l +/ (r=2myp2(m=1) g =20t D) 2my . gy
2

@)
) (3.13)

Zc<1+1n§>.

On the other hand, (u,,,p.,) satisfies the homogeneous Stokes problem (1.2) - (1.3) in
Q\{z: r =0}. Therefore

—vAU, + VD = [-vA+ VYV, (1 — X)xr|(Wm,pm) =, (2 € Q)
divu,, = [div, (1 — x)xr]Uum = gm (x € Q)
U, =0 (x € 09)
where [A, B| stands for the commutator of the operators A and B. The right-hand side
(f., gm) has a compact support lying in the union of the annuli {z € Q: 1 < r < 2}

and {r € Q: R <r < 2R}. Calculating the norm ||(£,,, gm); R ,,_1(£;99)||?, we find
that it is bounded by the expression

2R
c<1 + R™2p—2myp2my d7’> < const (3.14)
R

where c is independent of R € (2,00). The range ImS' ,, _; is closed if and only if for
every (v,q) € D! () ©ker St ,,_; the estimate

—m—1
920 DLy (@] < x|S0 RL, (00|
holds true with constant ¢, independent of (v, q). Letting R — oo in formulae (3.14)

and (3.13) we see that for (U,,, Pr,) the last estimate fails, i.e. ImS,, _; is not closed.
The theorem is proved i

Lemma 3.1. If 8 > —1, then Slﬁ 1s a monomorphism, and if 3 < —1, then SlB 18
an epimorphism.

Proof. Let 8 > —1 and (u,p) € ker Sé. Multiplying the homogeneous equations
(1.2) by u and integrating by parts in €2, we derive

1// |Vu(z)[*dz = 0. (3.15)
Q

(Note that by definition of the space Dlﬁ(Q) all the integrals involved converge for
B > —1.) From (3.15) it follows |Vu(z)| = 0 and hence u(xz) = 0. The Stokes equations
(1.2) imply Vp = 0 in Q, i.e. p(z) = ¢. If ¢ # 0, then the integral [,(1 + r2)7|c[*dx
diverges (recall that § > —1) what contradicts with the condition p € L%(Q) Thus
¢ = 0 and ker Slﬁ = () for 8 > —1. For B < —1 the relation dim coker Sé = 0 follows
from (3.12), since in this case —2 — # > —1 and ker 85275 =0
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4. Coefficients in the asymptotics and computation of the index

Let (u,p) € D4(Q) (6 > —1) be a solution of the Stokes problem (1.2) - (1.3) with
right-hand side (f,g,h) € R,lﬁ’+k(Q§ 0Q) (k € N). From Theorem 2.4 it follows that the
solution (u, p) admits the asymptotic representation (2.30) - (2.31). On the other hand,
by Lemma 3.1 we know that the operator Sé with 8 > —1 is a monomorphism, i.e. the

solution is unique. Therefore, the coefficients ¢, (m € N) in the asymptotic formulae
(2.30) - (2.31) are uniquely determined by the right-hand side (f, g, h). In this section
we find integral formulae for the coefficients ¢, and cj_[m (m e N).

We start with the computation of c; .

Lemma 4.1. Let (u,p) € Dlﬂ(Q),ﬂ € (—2,—-1), be a solution of problem (1.2)—(1.3)
with right-hand side (f,g,h) € RZB_H(Q; 0Q). Then the coefficient ¢, in the asymptotic

() ()

where (0,p) € DlﬁH(Q) (see (2.30)) admits the integral representations

00:—12V(/th-nds—/ﬂgdx>. (4.2)

Proof. Let us apply to the solutions (u,p) and (ug,pg) = (0,1) Green’s formula
in the domain Qp ={z € Q: r <R (R>2)}:

/ (—yAu+Vp)~0d:z:—/ divudw—i—/ u-nds =0
Qr Qr 0N RUSR
where 0Qr = 002N Qg and Sg = {z € Q: r = R}. This furnishes
—/ gdm—i—/ h-nds+/ u-nds = 0. (4.3)
Qr 01975 Sr

Taking into account representation (4.1) for u, we compute

/u-nds:ca/ uE-nds—k/ u-nds
SR Sr SR

:—% z(z—l)Vlnr-Vrds-l—/ u-nds
SR SR

_ %o q .
—12y+/sunds.
R

Since 0t € L3, ,(Q), 0 € (=2, 1), we get

/ u-nds SC(R_Q(BH)“/ (1—|—T)2(5+2)\ﬁ|2ds)
SR SR

2

< C(R/ (1+ r)2<5+2>|ﬁ\2ds>
Sr

=o(R') =0 as R— o

(at least for some subsequence R;). Substituting the last two formulae into (4.3) and
passing to the limit as R; — oo, we derive (4.2)
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In the previous lemma we have already used a special solution of the homogeneous
Stokes problem ¢j (z) = (ug (v, z),par(y))T = (0,1)T. Let us construct special solutions
¢E = (&, nE)T for m e N.

m m?nm

Lemma 4.2. For every m € N there exist solutions Ci of the homogeneous Stokes
problem (1.2) — (1.3) which admit the asymptotic forms

& = (siz(x)) _ (ﬁ(y,z)) . (éim) (m € N) (4.4)

s () Pa(y) i ()

~+
where (u (y,2),pE(y)) V) are given by (2.31) and (,,,75) € D! () with arbitrary ~
satisfying the relation

-l<~vy<o. (4.5)
Proof. We shall look for the solution (£5,7%) in form (4.4). Since (uf,p)

solve the homogeneous Stokes problem (1.2) - (1.3) in the layer II, we obtain for
(éi,ﬁffl) the non-homogeneous problem (1.2) - (1.3) with right-hand side (0,0, h)
where ht = —ul|sq has compact support contained in {z € 9Q : |z| < 1}. Thus,
(0,0,h) € RL(Q;0Q) € RL_,(€;09). Since (y — 1) € (=2, —1), the operator S!_; is
of Fredholm type (Theorem 3.1) and dim coker 8! | = 0 (Lemma 3.1). Therefore, prob-

lem (1.2) - (1.3) is solvable in D! () for all right-hand sides from R! _,(€;0€2) and

~+ ~E
we find the remainder (€,,,7L) € nyf1(9)~ Moreover, (€, ,7E) admits the asymptotic
representation (4.1):

(560) o (S5 155 (82

co Po (¥) + oo (y) = (z)
~+ ~+
with (§,,7E) € D%(Q) We normalize (&,,,72) by the condition lim,|_, e 75 (z) = 0
so that cg = 0. Since éibg = —ul|sn on 99, from (4.2) we get

cO_:121//89hi-nds=121//Qdivu:‘;(y,z)dx=0 (m € N).

P -
Thus we obtain (£,,,7%) = (52,17?5) € ny(Q) and this concludes the proof of the
lemma B

Let us compute now the coefficients ¢*,  (m € N).

Lemma 4.3. Let (u,p) € DIZG(Q) (6 > —1) be a solution of problem (1.2) — (1.3)
with right-hand side (f,g,h) € Rlﬁ+k(§2; Q) (k € N). Then the coefficients c¢=,, in the
asymptotic formulae (2.30) — (2.31) admit the integral representations

s = —121/(/ fesde — / gntdx +/ h-(nin— V@nﬁi)ds)
Q Q o9
(-B-k—-1<-m<—3-1)

(4.6)

U Note that for m € N the functions p}, are harmonic polynomials and therefore (ui, p,j,i) €

().
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where (&5, nE) are the solutions of the homogeneous problem (1.2) — (1.3) constructed
i Lemma 4.2.

Proof. Let us apply to (u,p) and (£&,7E) Green’s formula in the domain Qp =

{reQ:r<R (R>2)}:

/ (—vAu + Vp) - £ dx — / divuntdz + / u- (ot —vd,&5)ds  (4.7)

Qr Qr 0N RrUSR

= / (—vAEE +Vnt) - ude — / div &£ pdx + / ¢E . (np — vd,u) ds.
Qr Qr ONRUSR

Since (&£, nE) fulfils the homogeneous equations (1.2) - (1.3), from (4.7) we derive

m7nm

/ f~§ida}—/ gnidw%—/ h- (nni —V@nﬁi)ds
o Qr o0 R (4.8)

—|—/ u- (nnt — 08,65 ds = ¢ . (np — vd,u) ds.
SR SR

Let us calculate the right-hand side of (4.8). Taking account of the asymptotic repre-
sentations (2.30) - (2.31) and (4.4) for (u,p) and (&5, nE), respectively, we get

&E - (np — vd,u)ds
Sr

= éi - (np — vo,u)ds (4.9)
Sr

+ / llrin . Z [n(cflpfl + C:lp:l) - V(Ci_lanu—_’—l + C:lanu:l>]d3-
Sr

—B—k—1<—I<—B-1

The first integral in the right-hand side here can be majorated by

~ 2
<R/s AR TQ)wldS) (R/S p|2(1 + r2)P R-2B+rH)=2g4 ¢
R R

: N 3
Rl |u?(1+ T2)5+1R—2(B+7+1)—4d5> < c(R/ ygfny?(l + r2)7+1ds) (4.10)
Sr Sr

X (R/ |p|2(1+r2)ﬁds+R_l/ \u|2(1+r2)ﬁ+1ds)
SR SR

~+
Since £, € L2, ,(Q), u e L3, ,(Q), p € L3(Q) (see the definition of the space Dj(R)),
expresion (4.10) vanishes as R — oo (at least, for some subsequence R; — 00). Further,
using the relations

2m
/ cos(me) sin(|l|¢) de =0
0

27 2
/ sin(|m|p) sin(|l|@) dp = / cos(myp) cos(lp) dp = T,
0 0
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we find that

/ u;, > {n@tzptz +c2yp2y) —v(efnul; + 00Ty |ds
Sk —B—k<—I<—B-1

= [ (et ) d
R

— V/ u,in . (cfmanufm + c:m&nu:m) ds (4.11)
Sr
= / (2v)"L2(z — 1)Opptp,, ds+ R 2¢(m)
Sr
= —ﬁc%m +o(R™1).
Analogously one can compute the integral
/ u- (ot — 00,65 ds = ﬁcfm +o(R™1). (4.12)
Sr

Substituting formulae (4.9) - (4.12) into (4.8) and passing R — oo, we derive formula
(4.6) 1
Now we are in a position to compute the dimensions of ker S é and coker Sé.
Theorem 4.1.
Q) Ifpe(k—1,k) (0<ke€Z), then dimcokerSlﬁ =2k +1.

(i) If e (q—1,q9) (Z>q<-1), then dimkerSé =—-2¢q—1.

(iii) If B € (p,p+1) (p € Z), then IndSlﬁ =—-2p—1.

Proof. Let (f,g,h) € RIB(Q;(?Q) (6 € (k—1,k),k > 0). Then there exists a
solution (u,p) € D4 (Q) (b1 =8 —k—1 € (=2,-1)) of problem (1.2) - (1.3). (Note
that R5(Q;00) € RE (Q;09Q) and by Lemma 3.1 the operator S5 (61 € (—2,-1))
is an epimorphism.) For (u,p) there holds the asymptotic formula (2.30) where the

constants ¢; and ¢&, (m = 1,...,k) admit the integral representations (4.2) and
(4.6), respectively. Hence under 2k + 1 compatibility conditions

/ h-nds—/gdx:()
oQ Q

/f-&idx—/gnidw+/ h-(nin—vd,5)ds=0 (m=1,...,k)
Q Q o0

(s) = () + (52)

where (@,p) € D5(€2). Normalizing this solution by the condition lim|g| e p(z) = 0

we obtain

we get (u,p) = (u,p) € DZB(Q) Thus assuming 2k + 1 compatibility conditions to
be valid, we have proved the existence of the solution (u,p) € Dlﬁ(Q) Since for § €
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(k—1,k) (k > 0) the operator SZB is a Fredholm monomorphism (see Lemma 3.1), these
conditions are necessary. Therefore, we conclude

dim coker Sé =2k +1.
Statement (ii) follows now from the fact that
dim ker Slﬁ = dim coker S" B2

Statement (iii) has become evident i

5. Asymptotic conditions at infinity

As follows from Lemma 3.1, there is no admissible § such that the operator Slﬁ is
of index zero. In order to compensate this lack we introduce function spaces with
detached asymptotics and impose conditions at infinity. For § < —1 the operator Sf/), is

an epimorphism, and for 8 > —1, Slﬁ is a monomorphism (see Lemma 3.1). Let us take
Br=—1+N=+6 (N €Np,d €(0,1)). (5.1)
For simplicity we fix the regularity index [ and omit it in notations. Moreover, we
denote
Sh, =8¢, DL (Q)=Di(Q), Rh (Q00) =Ry(Q200).

Let us consider the mapping S— : D_(Q) — R_(2;99) and its preimage D4 (Q2) of
the lineal R4 (Q;00) C R_(Q;00) (since the preimage is related both to the indices
7+7 and 7 — 7, we mark it by ” +£7). Due to Theorem 2.4, D, (£2) consists of vector
functions U = (u, p) taking the asymptotic form
a
+{ - 5.2
(5) 62

_|_ —
U:(“): > X[c;(uﬁ)ﬂ,;(um)
P) _NGien P Pm

where U = (@,p) € D4 (Q) and (u, pt) are given by (2.31). This means that D (Q)
is formed by the sum of linear combinations of the special solutions (ur,pt) and the
"rapidly” decaying remainder U = (0,p) € Dy(2). Furthermore, the quotient space
D1 (Q)/D4(Q) can be identified with R*V+2 and we introduce in D () the norm
induced by the asymptotic representation (5.2)

S

10D (@)l = (1105 D () + 12 REVF2 4 b5 R2V+2)
where a and b are columns of height 2N + 1,

a:(cg,ci'l,c:l,...,CL\”C:N)T (5 3)
b:(cg,cf,cl_,...,c},c;,)T '
Let &4 be the restriction of S_ on D (€2). Due to estimate (2.32),
o RENHL [ REVH | < (€405 R (9 09) + 1w, p)s L3_(9)]]).
Therefore the operator
S1: DL(Q) — R4(Q;00) (5.4)

of problem (1.2) - (1.3) is continuous. Moreover, in view of Theorems 3.1 and 4.1, it
inherits properties of S_ and the following assertion is valid.
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Theorem 5.1. The mapping (5.4) is a Fredholm epimorphism and

dimker &4 = dimkerS_ = 2N + 1. (5.5)

There appear the continuous projections

Di(Q) > Ur— mU=acR¥F!

5.6
Di(Q) > Ur— 17U =b € RZVHL, (5:6)

We also determine -
T = ( 1) : D (Q) —s RVT2Z,
o
We treat moU, m U and 7U as columns in R2V+1 R2N+1 and R*V+2 | respectively.

Let us connect with Green’s formula (2.33) the linear form
QQ(U7V) = QQ(uvp; \Z q)
defined by

Qa(U; V) = (—vAu+ Vp, v)o + (=divu, g)o + (0, qn — v0,v)aq

5.7
— (0, —vAv +Vg)o — (p, —divv)a — (pn — 0,1, V)sn 5.1)

where (-, -)q and (-, -) s stand for extensions of the scalar products in L?(Q) and L?(9),
respectively. Since (u, pi) satisfy the homogeneous equations (1.2) - (1.3) in II\ {z €

m’pm

R3 : r = 0}, for any U,V € D4 (Q) we get the inclusions (see (5.2))

( —vAu+ Vp, —div u, u[ag)

€ R (92,00
(—VAV—I—Vq, —divv,v|ag) } +( )

and therefore all integrals in the left-hand side of (5.7) converge. Hence Qg is a contin-

uous antisymmetric form on D ()2

QRa(V;U) = —Qa(U; V). (5.8)

Due to Lemma 2.7,
Qa(V;U) =Qa(U; V) =0 (5.9)

for all V€ D () C DL (2) and all U € D4 (). Thus Qq can be naturally treated as
a form defined on the quotient space

(D1(Q)/Dy (Q))° ~ RIVH2 5 RINH2,
Lemma 5.1. If U,V € D4 (Q), then
Qo(U; V) = (moU, m V)ani1 — (MU, moV)an11 (5.10)

where (-,Y = 12v [, "] with [-,-]x being the scalar product in RX.
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Proof. According to the asymptotic form (5.2), we can represent U as sum

+ - -

U:(“): 3 X[cg(“g)+c;(“;n)+c;<“zn)]
p 1§m§N p(] pm pm

_ (g 4 [ uf _ [,

+ Z X | ¢ 2l ten | )t ™

—N<m<-1 pO pm pm

= UN—f—U,N-f—INJ— (INJ S D+(Q)).

()

e gt

Analogously, N _
V=Vy+V_y+V (VeD,(Q).

By virtue of (5.9), Qq(U, V) = Qq(U, V) = 0 so that
Qa(U,V) = Qa(U_n,VN) = Qa(Un,V_N) = Qa(U_N,V_n)
= Qa(Un, Vy).

Arguing as in the proof of Lemmata 4.1 and 4.3 and applying Green’s formula in the
truncated domain g, we find that

(5.11)

RIEDOO <QQR(U—N,VN) + QQR(UNaV—N>) = (mU,mV)ant+1 — (moU, m1 V)ant1
Rhm QQR(U_N,V_N) = 0. (512)

Thus, the left-hand side of equality (5.11) is finite. The term Qq,(Un, V) is equal
to the sum 2351 a;jR7 where « are constants. Therefore, its limit as R — oo can be
finite only if a; =0 (j = 1,...,2N; arguing as in the proof of Lemma 4.3, one can

compute directly that a; = 0). Thus, we have got the equality Qo(Un, V) = 0 which
together with (5.11) - (5.12) implies (5.10) B

e We call (5.10) the generalized Green’s formula.
Lemma 5.2. Let

X = (Ig) and Y = (TQT) (5.13)

where B, T, S, Q are (2N + 1) x (4N + 2)-matrices. Suppose that X and Y satisfy the
relation
v 7 (O I
YX—J:(_H @). (5.14)
Then the generalized Green’s formula (5.10) may be rewritten as
(—vAu+ Vp, v)q + (—=divu, g)o + (0, TV)sa + (BrU, TrV)an 41

5.15
~ (w, VAV + Voo + (p,—divv)a + (TUV)on + 67U, QrVisny )

where TU = (pn — vd,u)laq.

Proof. Simple algebraic manipulations with matrices turn (5.10) into (5.15) (cf.
[12: Section 6.2.2] and [16: Lemma 6.2]) B
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Remark 5.1.

1) From (5.14) it follows that detX # 0 and Y = (JX~!)*. Therefore, for any
(2N 4+ 1) x (4N + 2)-matrix B, the rank of which is equal to 2N + 1, there exist matrices
S, T, Q such that (5.13) - (5.15) are fulfilled. If S is also fixed and det (g) # 0, then T
and QQ are uniquely defined.

2) If S=T and Q = B, Green’s formula (5.15) takes the form

(—vAu+ Vp,v)g + (—=divu,q)o + (0, TV)sq + (BrU, T V)an 11

5.16
= (u,—vAv + Vq)q + (p, —divv)g + (TU,v)sq + (T7U,BrV)ani1. (5.16)

e We call (5.16) the symmetric generalized Green’s formula.

Based on the generalized Green’s formulae (5.15) and (5.16) and arguing in the
same way as in [12, 16], we provide problem (1.2) - (1.3) with the additional conditions

BrU = H € RV, (5.17)

o We call (5.17) the asymptotic conditions at infinity.
We connect problem (1.2) - (1.3), (5.17) with the mapping

D+() 5 Ur— AU = (6.U,BrU) € Ry (0;09) (5.18)

where Ry (Q;00Q) = R, (Q;00) x RZVFTL Tt is clear that A inherits the Fredholm
property from &y. Furthermore, in (5.18) we observe 2N + 1 additional conditions and
therefore the difference of the indices of G4+ and A is equal to 2N + 1, i.e. IndA = 0.
Precisely, this equality follows from

Ind A = Ind( ) =Ind&+ — (2N +1) =0.

G+ } {U€eD4 (Q): BxU=0}

Theorem 5.2.
1) kerA={V €ker&y : BrV = 0}.
2) If the generalized Green’s formula (5.15) is valid, then

coker A = {(V,ijm,mv) .V eker Sy, QuV = o}. (5.19)

Proof. The first assertion follows from the inclusion ker A C ker &4 , the second
one has been proved in [12: Proposition 6.2.5] (see also [16: Theorem 6.5]) I

The subspace dim ker & contains the solution ¢§ = (0,1) and the solutions ¢t =

m

(¢X.nE) (m =1,...,N) of the homogeneous problem (1.2) - (1.3) (see Lemma 4.2).
Since the dimension of ker &4 coincides with the number of linear independent solutions

we have found that ker G4 becomes the linear hull of them:
ker Sy = L{¢T.¢F . ¢h- - ¢ Cn ) ={¢=3c: ce R*VT1} (5.20)

where 3 = (C(J{,CIL,CI, ol CX,) is a 4 x (2N + 1)-matrix-function or, what is the
same, a row of solutions. Due to Lemma 4.2, each element ¢ € ker G can be represented
in the form

¢ =3¢ = Xc — xYMe + Y (5.21)
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where the solution rows X and %) are defined by

= (()-()-()GE)()
0= (). () () )

M is a constant (2N + 1) x (2N + 1)-matrix and £ € D, (Q)2V 1. Note that

mode = ¢ } . (5.22)
m13c = —MNle

e We call the matrix 91 the augmented flow polarization matriz.
Theorem 5.3. M is a symmetric matriz.

Proof. Let c,C be arbitrary constant vectors in R2NY*1. Since 3c and 3C are
solutions of the homogeneous problem (1.2) - (1.3) we get Qq(3c;3C) = 0. On the
other hand, from the generalized Green’s formula (5.10) there follows that

Qa(3¢;3C) = (mo3c, m13C)an+1 — (m13¢, m3C)an 11
= (Mc,C)ant1 — (¢, MC)an+1
= (c,(M" —M)C)an+1
= 0.
Thus, 9 = 9t* 1
Remark 5.2. The matrix 9t has the form 9t = (oT ») where 0 = (0,...,0) and

M is a symmetric 2N x 2N-matrix. This follows from the fact that the solution ¢j has
the form ¢§ = (0,1)7 and from the symmetry of M.

e We call the matrix M the flow polarization matriz.

Theorem 5.4. Let B = B (=9, )T where I is the unit (2N +1) x (2N +1)-matriz.
Then
dimker A = 2N + 1 — rank B. (5.23)

Proof. The elements ¢ € ker &1 admit the representation ¢ = 3¢ (c € R2V+1;
see (5.21)). Since m ¢ = ¢, mo¢ = —Mic and due to the symmetry of MM, Br{ = 0 if and
only if B (=9, 1)Tc = 0. Therefore, owing to Theorem 5.2/(1) we conclude (5.23)

Remark 5.3. In view of (5.19) the compatibility conditions for problem (1.2) -
(1.3), (5.17) take the form

(£, v)a + (9, Qo + (0, TU)sq + (H, TrV)on 41 =0 (5.24)
for all V = (v,q) € ker 64 with QnV = 0.

In accordance with (5.19), (5.24) it is very natural to say that problems (1.2) - (1.3),
(5.17) and (1.2) - (1.3) with additional conditions

QrV =K ¢ R?V*! (5.25)

are adjoint with respect to the generalized Green’s formula (5.15). In the case when the
symmetric generalized Green’s formula (5.16) takes place, problem (1.2) - (1.3), (5.17)
becomes formally self-adjoint.
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Theorem 5.5.
1) If Q =11, then M = Q.
2) If Q # 11 and Q C 11, then the matriz M is positive definite.

Proof. Let ¢ = (0,c’) with ¢’ € R?" \ {0} be arbitrary. We take
V=(v,q)=3c¢=V°+V# cker&,
where
VY= ¢ = Xc
(see (5.21) and Lemma 4.2). By formula (4.6) and the definition of M we get

(Mc', Yoy = /BQ v# . T(V)ds. (5.26)

(Note that —vAv# 4+ Vq# = 0 and divv# = 0.) If Q = II, then V? is the exact solution
of the homogeneous problem (1.2) - (1.3). Hence V# = 0 and M = Q.

Since v#* = —v? on 99,

V#' S = V#' #S— VO' 08. .
/8Q T(V)d /m T(V#)d /89 T(V®)d (5.27)

Integrating by parts in Q and II \ 2, we derive

/ v#~T(V#)ds:/ Vv |?da
oN Q

/VO-T(VO)ds:—/ VO 2da.
o0

m\Q

(5.28)

The sign ” —” in the second equality of (5.28) appears because of the oposite direction

of the outward normal n. The Dirichlet integral of v# is finite since V# € D! (Q) for
~v € (=1,0). The formula

(Mc', c)an :/ |Vv#|2dx+/ |VvY|?dz > 0
Q m\Q

follows from (5.26) - (5.28) and completes the proof i

Example 5.1. Let N = 0 and B = (1,0) is a matrix of size 1 x 2. Then the
condition BrU = mU = ¢, prescribes the total flux of the fluid over the surface
Sgr. The matrix 3 consists of one solution ¢g. Hence dimker&y = 1, m3c = 0
for all ¢ and M = O (see (5.22)). We have B = B(—9, )7 = O and, by Theorem
5.4, dimker A = 1 — rank®B = 1. Therefore the operator A is an epimorphism with
one-dimentional kernel (constant pressure).
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If B = (0,1), then BrU = moU = ¢ prescribes the limit of the pressure component
as r — o0o. We get mp3c = 1, M =T and B = B(-9,)7 = I. By Theorem 5.4,
dimker A =1 — rank B = 0 and the operator A is an isomorphism.

Example 5.2. Let N =1 and

0O 0 O 0 0
0 0 0 cosa sin«a
0 0 0 —sina cos«

B =

O O =

We consider the condition BrU = (H;y, H2,0)T which prescribes the total flux H; over
Sr and the linear flux Hy of u in the direction e* = (cos «, sina) (cf. [14]). We obtain
3=1{¢. ¢ ¢}, dimker 64 =3 and

0 0 0
B=B(-MD =0 cosa sina
0 —sina cosa

Hence dimker A = 3 — rank B = 1 and the operator A is an epimorphism.

If we prescribe instead of the total flux the limit H; of the pressure component as
r — oo, we shall take

0 0 1 0 0
0 0 0 cosa sina
0 0 0 —sina cos«

B =

o O O

and consider the condition BrU = (Hj, Ho,0)T. In this case we get the unitary matrix

1 0 0
B=B(-MD'=[0 cosa sina |,
0 —sina cosa

dimker A = 3 — rank B = 0 and the operator A is an isomorphism.
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