On the Fredholm Property of the Stokes Operator in a Layer-Like Domain

S. A. Nazarov and K. Pileckas

Abstract. The Stokes problem is studied in the domain $\Omega \subset \mathbb{R}^3$ coinciding with the layer $\Pi = \{x = (y, z) : y = (y_1, y_2) \in \mathbb{R}^2, z \in (0, 1)\}$ outside some ball. It is shown that the operator of such problem is of Fredholm type; this operator is defined on a certain weighted function space $\mathcal{D}_{\beta}^{l}(\Omega)$ with norm determined by a stepwise anisotropic distribution of weight factors (the direction of z is distinguished). The smoothness exponent l is allowed to be a positive integer, and the weight exponent β is an arbitrary real number except for the integer set \mathbb{Z} where the Fredholm property is lost. Dimensions of the kernel and cokernel of the operator are calculated in dependence of β . It turns out that, at any admissible β , the operator index does not vanish. Based on the generalized Green formula, asymptotic conditions at infinity are imposed to provide the problem with index zero.

Keywords: Stokes equations, layer-like domains, Fredholm property, weighted spaces

AMS subject classification: 35Q30, 76D07

1. Introduction

Let $\Omega \subset \mathbb{R}^3$ be a domain coinciding outside the ball $B_{R_0} = \{x \in \mathbb{R}^3 : |x| < R_0\}$ with the infinite layer

$$\Pi = \left\{ x = (y, z) : y = (y_1, y_2) \in \mathbb{R}^2, z \in (0, 1) \right\}.$$
(1.1)

For simplicity we assume the boundary $\partial\Omega$ to be smooth. Without loss of generality we also fix $R_0 = 1$. The set $\partial\Omega \setminus B_1$ contains infinite parts of two planes

$$S^{(0)} = \{ x : y \in \mathbb{R}^2, z = 0 \}$$
$$S^{(1)} = \{ x : y \in \mathbb{R}^2, z = 1 \}$$

which form the boundary $\partial \Pi$ of the layer Π . We consider the Stokes system

S. A. Nazarov: Inst. Mech. Eng. Prob., V.O. Bol'shoy pr. 61, St. Petersburg 199178, Russia K. Pileckas: Inst. Math. & Inf., Akademijos 4, 2600 Vilnius, Lithuania

with the boundary conditions

$$\mathbf{u} = \mathbf{h} \qquad (\text{on } \partial\Omega) \tag{1.3}$$

where

$$\begin{split} \mathbf{u} &= (u_1, u_2.u_3) \text{ is the velocity field} \\ p \text{ is the pressure in the fluid} \\ \mathbf{f} &= (f_1, f_2, f_3) \text{ is an external force} \\ g \text{ is a given scalar-valued function in } \Omega \\ \mathbf{h} \text{ is a given vector-valued function on } \partial\Omega \\ \nu \text{ is the constant coefficient of viscosity} \\ \nabla &= (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}), \ \Delta = \nabla \cdot \nabla, \text{ div } \mathbf{u} = \nabla \cdot \mathbf{u} \\ \text{"} \cdot \text{" means the scalar product in } \mathbb{R}^3. \end{split}$$

In the previous paper [15] we have studied the properties of solutions (\mathbf{u}, p) to problem (1.2) - (1.3) in a two-parametric scale of weighted function spaces $\mathcal{D}^{l}_{\beta}(\Omega)$ and $\mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega)$ such that the mapping

$$\mathcal{D}^{l}_{\beta}(\Omega) \ni (\mathbf{u}, p) \longmapsto \mathcal{S}^{l}_{\beta}(\mathbf{u}, p) = (\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega),$$
(1.4)

where S^l_{β} is the operator of the Stokes probem (1.2) - (1.3), becomes continuous. In (1.4) l is a regularity index and β a weight index. The exact definitions of these spaces and their properties are presented in Section 2. In terms of these spaces we have proved (see [15]) regularity results and a coercive estimate for the solution $(\mathbf{u}, p) \in L^2_{\beta}(\Omega) \times L^2_{\beta}(\Omega)$ where the latter space consists of functions with finite norm

$$\left\| (\mathbf{u}, p); L^{2}_{\beta}(\Omega) \times L^{2}_{\beta}(\Omega) \right\| = \left(\int_{\Omega} (1 + |y|^{2})^{\beta} (|\mathbf{u}|^{2} + |p|^{2}) \, dx \right)^{\frac{1}{2}}.$$

Moreover, in [15] the asymptotic representation of the solution $(\mathbf{u}, p) \in L^2_{\beta}(\Omega) \times L^2_{\beta}(\Omega)$ is constructed.

In this paper we prove the Fredholm property of mapping (1.4), calculate the dimensions of the kernel and cokernel and therefore the index of the operator S^l_{β} in (1.4). Moreover, we derive integral formulae for the coefficients in the asymptotic representation of the solution, which lead to a generalized Green formula. This formula, in particular, furnishes asymptotic conditions at infinity (in the same way as in the paper [16] where the Stokes operator was studied in domains with cylindrical outlets to infinity). Note also that the Fredholm property of the Neumann problem operator for a second order elliptic equation in a layer-like domain was proved in [13].

Acknowledgement. This work was concluded during the authors' stay in Portugal in April - June, 1999, funded by grants from CMA/IST (Lisbon) and from CIM/Fundação Calouste Gulbenkian (Coimbra) - Thematic Term on Theoretical and Computational Fluid Dynamics. The Portuguese financial support is deeply acknowledged.

2. Weighted function spaces and preliminary results

2.1 Function spaces. Let G be an arbitrary domain in \mathbb{R}^n $(n \ge 2)$. As usual, denote by $C^{\infty}(G)$ the set of all indefinitely differentiable functions in \overline{G} and let $C_0^{\infty}(G)$ be a subset of functions from $C^{\infty}(G)$ with compact supports in G. Further, $W^{l,2}(G)$ $(l \ge 0)$ indicates the Sobolev space and $W^{l-\frac{1}{2},2}(\partial G)$ $(l \ge 1)$ the space of traces on the boundary ∂G of functions from $W^{l,2}(G)$. Besides, $W^{0,2}(G) = L^2(G)$ and $W_{loc}^{l,2}(G)$ consists of functions which belong to $W^{l,2}(K)$ for every compact $K \subset \overline{G}$. The spaces of scalarand vector-valued functions are not distinguished in notations. The norm of an element u in the function space X is denoted by ||u; X||.

Let $\Omega \subset \mathbb{R}^3$ be a layer-like domain. Denote by $C_0^{\infty}(\overline{\Omega})$ the subset of functions from $C^{\infty}(\Omega)$ with compact supports in $\overline{\Omega}$ (functions from $C_0^{\infty}(\overline{\Omega})$ are equal to zero for large |x|, but not necessarily on $\partial\Omega$). We define the norm

$$\|u; V_{\beta}^{l}(\Omega)\| = \left(\int_{\Omega} \sum_{|\mu|=0}^{l} (1+r^{2})^{\beta-l+|\mu|} |\nabla_{x}^{\mu}u(x)|^{2} dx\right)^{\frac{1}{2}}$$
(2.1)

with homogeneous isotropic weight distribution. In (2.1) r = |y| $(y \in \mathbb{R}^2), x = (y, z) \in \mathbb{R}^3, \mu = (\mu_1, \mu_2, \mu_3)$ with $\mu_1, \mu_2, \mu_3 \ge 0$ is a multi-index, and

$$\nabla_x^{\mu} u = \frac{\partial^{|\mu|} u}{\partial x_1^{\mu_1} \partial x_2^{\mu_2} \partial x_3^{\mu_3}} \qquad (|\mu| = \mu_1 + \mu_2 + \mu_3).$$

Analogously,

$$\|u; V^{l}_{\beta}(\mathbb{R}^{2})\| = \left(\int_{\mathbb{R}^{2}} \sum_{|\gamma|=0}^{l} (1+r^{2})^{\beta-l+|\gamma|} |\nabla^{\gamma}_{y}u(y)|^{2} dy\right)^{\frac{1}{2}}$$
(2.2)

for functions u depending on $y \in \mathbb{R}^2$ only where $\gamma = (\gamma_1, \gamma_2)$ with $\gamma_1, \gamma_2 \geq 0$. The spaces $V_{\beta}^l(\Omega)$ and $V_{\beta}^l(\mathbb{R}^2)$ are the closures of $C_0^{\infty}(\overline{\Omega})$ and $C_0^{\infty}(\mathbb{R}^2)$ in norms (2.1) and (2.2), respectively. The spaces $V_{\beta}^l(G)$ with norm (2.1) or (2.2) were first employed by V. A. Kondratiev [1] (Kondratiev spaces) while treating solutions of elliptic boundary value problems in domains $G \subset \mathbb{R}^n$ $(n \geq 2)$ with conical outlets to infinity (in this case the weight in (2.1) should be changed to $(1 + |x|^2)$).

Let $\beta \in \mathbb{R}$ and let l, κ denote integers such that $l \geq 0$ and $0 \leq \kappa \leq l$. We introduce the space $\mathcal{V}_{\beta,\kappa}^{l}(\Omega)$ as the closure of $C_{0}^{\infty}(\overline{\Omega})$ in the norm

$$\|v;\mathcal{V}_{\beta,\kappa}^{l}(\Omega)\| = \left(\sum_{\alpha+|\gamma|\leq l} \int_{\Omega} (1+r^{2})^{\beta+|\gamma|-(|\gamma|-\kappa)+} |\partial_{z}^{\alpha}\partial_{y}^{\gamma}v(y,z)|^{2}dydz\right)^{\frac{1}{2}}$$
(2.3)

where $\alpha \ge 0$, $\gamma = (\gamma_1, \gamma_2)$ with $\gamma_1, \gamma_2 \ge 0$, $|\gamma| = \gamma_1 + \gamma_2$, $\partial_z^{\alpha} = \frac{\partial^{\alpha}}{\partial z^{\alpha}}$, $\partial_y^{\gamma} = \frac{\partial^{|\gamma|}}{\partial y_1^{\gamma_1} \partial y_2^{\gamma_2}}$ and $(t)_+ = \frac{t+|t|}{2}$ is the positive part of $t \in \mathbb{R}$.

As it can be observed in (2.3), differentiation in z does not change the weight multiplier. Differentiation in y of order $|\gamma| \leq \kappa$ increases the weight exponent by $|\gamma|$ (i.e. reflects the Kondratiev distribution of weights [1]). At $|\gamma| = \kappa$ the weight distribution function has a step. Namely, the subtrahend $(|\gamma| - \kappa)_+$ compensates the growth of the weight exponent provided $|\gamma| > \kappa$. In the case of a cone where all directions are equivalent such step-weighted spaces were introduced and investigated in [4, 5].

It is easy to see that

$$V^0_{\beta}(\Omega) = \mathcal{V}^0_{\beta,0}(\Omega) = L^2_{\beta}(\Omega)$$

while

$$||v; L_{\beta}^{2}(\Omega)|| = \left(\int_{\Omega} (1+r^{2})^{\beta} |v(x)|^{2} dx\right)^{\frac{1}{2}}.$$

Finally, for $l \geq 1$ we introduce the trace space $\mathcal{V}_{\beta,\kappa}^{l-\frac{1}{2}}(\partial\Omega)$ of functions $v \in \mathcal{V}_{\beta,\kappa}^{l}(\Omega)$ supplied with the norm

$$\|w; \mathcal{V}_{\beta,\kappa}^{l-\frac{1}{2}}(\partial\Omega)\| = \inf \left\{ \|v; \mathcal{V}_{\beta,\kappa}^{l}(\Omega)\| : v = w \text{ on } \partial\Omega \right\}.$$
 (2.4)

The trace w on $\partial\Omega$ of $v \in \mathcal{V}_{\beta,\kappa}^{l}(\Omega)$ is forgetting the normal direction z and the weight distribution in the norm of $\mathcal{V}_{\beta,\kappa}^{l-\frac{1}{2}}(\partial\Omega)$ turns into an isotropic one while preserving the step property. This becomes evident after using an equivalent norm in $\mathcal{V}_{\beta,\kappa}^{l-\frac{1}{2}}(\partial\Omega)$.

Lemma 2.1 (see [15]). The norm $\|\zeta; \mathcal{V}_{\beta,\kappa}^{l-\frac{1}{2}}(\partial\Omega)\|$ ($\kappa \leq l$) is equivalent to

$$\begin{aligned} ||| \zeta ||| &= \left\{ \left\| \zeta; W^{l - \frac{1}{2}, 2} (\partial \Omega \cap B_2) \right\|^2 \\ &+ \sum_{j=0}^1 \left(\sum_{0 \le |\gamma| \le l-1} \int_{S^{(j)} \setminus B_1} (1 + r^2)^{\beta + |\gamma| - (|\gamma| - \kappa)_+} |\partial_y^{\gamma} \zeta(y)|^2 dy \\ &+ \sum_{|\gamma| = l-1} \int_{S^{(j)} \setminus B_1} \int_{S^{(j)} \setminus B_1} \left| \partial_y^{\gamma} \left((1 + |y|^2)^{\beta + \kappa} \zeta(y) \right) \\ &- \partial_{\tilde{y}}^{\gamma} \left((1 + |\tilde{y}|^2)^{\beta + \kappa} \zeta(\tilde{y}) \right) \Big|^2 |y - \tilde{y}|^{-3} dy d\tilde{y} \right) \right\}^{\frac{1}{2}}. \end{aligned}$$

$$(2.5)$$

In (2.5) integration over S_0 and S_1 is performed separately in order to avoid confusion. The reason is that for large r the boundary $\partial\Omega$ consists of two non-intersecting parts and the distance in \mathbb{R}^3 between two points y and \tilde{y} located one above the other on S_0 and S_1 is equal to 1, while the distance between them on $\partial\Omega$ is O(|y|). Interpretating the symbol $|y - \tilde{y}|$ appropriately one can delete the first sum over j in (2.5) and replace $S_j \setminus B_1$ by $\partial\Omega \setminus B_1$.

2.2 Auxiliary propositions. Below we make use of basic properties of the spaces $\mathcal{V}_{\beta,\kappa}^{l}(\Omega)$ which we collect in this section.

Lemma 2.2 (see [15]). Let $v \in \mathcal{V}_{\beta,\kappa}^{l}(\Omega)$ $(l \geq 1, 0 \leq \kappa \leq l-1, \beta \in \mathbb{R})$. Then $\partial_{y}v \in \mathcal{V}_{\beta+1,\kappa-1}^{l-1}(\Omega)$ and $\partial_{z}v \in \mathcal{V}_{\beta,\kappa}^{l-1}(\Omega)$. There holds the inequality

$$\|\partial_y v; \mathcal{V}_{\beta+1,\kappa-1}^{l-1}(\Omega)\| + \|\partial_z v; \mathcal{V}_{\beta,\kappa}^{l-1}(\Omega)\| \le c \|v; \mathcal{V}_{\beta,\kappa}^{l}(\Omega)\|.$$

Lemma 2.3.

(i) The embeddings

$$\mathcal{V}^{l}_{\beta,\kappa}(\Omega) \hookrightarrow \mathcal{V}^{l-1}_{\beta,\kappa}(\Omega) \qquad (l \ge 1, 0 \le \kappa \le l-1)$$
(2.6)

$$\mathcal{V}^{l}_{\beta_{1},\kappa}(\Omega) \hookrightarrow \mathcal{V}^{l}_{\beta,\kappa}(\Omega) \qquad (l \ge 0, 0 \le \kappa \le l, \beta_{1} > \beta)$$
(2.7)

are continuous.

(ii) If $l \ge 1$, $0 \le \kappa \le l-1$ and $\varepsilon > 0$, then the embedding

$$\mathcal{V}^{l}_{\beta,\kappa}(\Omega) \hookrightarrow \mathcal{V}^{l-1}_{\beta-\varepsilon,\kappa}(\Omega) \tag{2.8}$$

is compact.

Proof. Continuity of the embeddings (2.6) - (2.7) follows from the definition of the norm (2.1). Moreover,

$$\|u; \mathcal{V}_{\beta-\varepsilon,\kappa}^{l-1}(\Omega \setminus B_{2R})\| \leq cR^{-\varepsilon} \|u; \mathcal{V}_{\beta,\kappa}^{l}(\Omega \setminus B_{R})\|.$$

Since $\mathcal{V}_{\beta,\kappa}^{l}(\Omega \cap B_{2R})$ coincides with $W^{l,2}(\Omega \cap B_{2R})$ algebraically and topologically, well known properties of Sobolev spaces show that the embedding operator (2.8) can be represented as sum of a small operator (as $R \to \infty$) and a compact one. Thus (2.8) is compact \blacksquare

Let us prove one simple interpolation result.

Lemma 2.4. Let $v \in [\mathcal{V}^{1}_{\beta,0}(\Omega)]^{*}$, where $[\mathcal{V}^{1}_{\beta,0}(\Omega)]^{*}$ is the dual space to $\mathcal{V}^{1}_{\beta,0}(\Omega)$ with respect to the scalar product in $L^{2}(\Omega)$. Suppose that $\nabla v \in L^{2}_{-\beta}(\Omega)$. Then $v \in L^{2}_{-\beta}(\Omega)$ and

$$\|v; L^{2}_{-\beta}(\Omega)\|^{2} \leq c \Big(\|v; [\mathcal{V}^{1}_{\beta,0}(\Omega)]^{*}\|^{2} + \|\nabla v; L^{2}_{-\beta}(\Omega)\|^{2}\Big).$$

Proof. Let us cover the domain Ω by the infinite union of "cubes"

$$Q_{s,k} = \left\{ x \in \Omega : |x_1 - s|, |x_2 - k| \le \frac{1}{2} \right\} \quad (s, k \in \mathbb{Z}).$$

By [17: Chapter 3/Lemma 7.1], for any function $v \in W^{-1,2}(Q_{s,k})$ with $\nabla v \in L^2(Q_{s,k})$ there holds the inclusion $v \in L^2(Q_{s,k})$ and the estimate

$$\|v; L^{2}(Q_{s,k})\|^{2} \leq c \Big(\|v; W^{-1,2}(Q_{s,k})\|^{2} + \|\nabla v; L^{2}(Q_{s,k})\|^{2}\Big)$$

with constant c independent of $s, k \in \mathbb{Z}$. Let us multiply the last inequalities by $(1 + (s^2 + k^2))^{-\beta}$ and sum them over all $s, k \in \mathbb{Z}$. Taking into account that $(1 + r^2)$ is equivalent to $(1 + (s^2 + k^2))$ in $Q_{s,k}$, we obtain

$$\|v; L^{2}_{-\beta}(\Omega)\|^{2} \leq c \left(\sum_{k,s \in \mathbb{Z}} \left(1 + (s^{2} + k^{2}) \right)^{-\beta} \|v; W^{-1,2}(Q_{s,k})\|^{2} + \|\nabla v; L^{2}_{-\beta}(\Omega)\|^{2} \right).$$

Further, the equivalency of the norms $\|\eta(1+r^2)^{\beta/2}$; $W^{1,2}(\Omega)\|$ and $\|\eta; \mathcal{V}^1_{\beta,0}(\Omega)\|$ gives the inequality

$$\sum_{k,s\in\mathbb{Z}} \left(1 + (s^2 + k^2)\right)^{-\beta} \|v; W^{-1,2}(Q_{s,k})\|^2 \le c \|v; [\mathcal{V}^1_{\beta,0}(\Omega)]^*\|^2$$

which competes the proof of the lemma \blacksquare

2.3 Space $\mathcal{D}^{l}_{\beta}(\Omega)$ - the domain of the Stokes operator. We fix some weight and regularity indeces, i.e. numbers $\beta \in \mathbb{R}$ and $l \in \mathbb{N}_{0}$ and denote by $\mathcal{D}^{l}_{\beta}(\Omega)$ the space of vector functions (\mathbf{u}, p) satisfying the inclusions

$$\mathbf{u}' \in \mathcal{V}_{\beta+1,l}^{l+1}(\Omega) \qquad u_3 \in \mathcal{V}_{\beta+2,l-1}^{l+1}(\Omega)$$
(2.9)

$$p \in \mathcal{V}_{\beta,l}^{l}(\Omega) \qquad \quad \partial_{z} p \in \mathcal{V}_{\beta+2,l-1}^{l-1}(\Omega).$$
(2.10)

The norm in $\mathcal{D}^l_{\beta}(\Omega)$ is given by the formula

$$\| (\mathbf{u}, p); \mathcal{D}_{\beta}^{l}(\Omega) \|$$

= $\| \mathbf{u}'; \mathcal{V}_{\beta+1,l}^{l+1}(\Omega) \| + \| u_{3}; \mathcal{V}_{\beta+2,l-1}^{l+1}(\Omega) \| + \| p; \mathcal{V}_{\beta,l}^{l}(\Omega) \| + \| \partial_{z}p; \mathcal{V}_{\beta+2,l-1}^{l-1}(\Omega) \|.$ (2.11)

Such definition of the space $\mathcal{D}^{l}_{\beta}(\Omega)$ has been used in the paper [15]. For purposes of this paper it is more convenient to employ the following equivalent definition. Let us represent the pressure function p as sum

$$p(x) = p_{\perp}(y, z) + \overline{p}(y) \tag{2.12}$$

where

$$\overline{p}(y) = \int_0^1 p(y, z) \, dz$$

is the mean value of p with respect to $z \in (0, 1)$. The projection p_{\perp} obviously has zero mean value:

$$\overline{p}_{\perp}(y,z) = \overline{p}(y,z) - \overline{\overline{p}}(y) = \overline{p}(y) - \overline{p}(y) = 0.$$

Moreover,

$$\overline{\partial_y p_{\perp}(y,z)} = \overline{\partial_y p(y,z)} - \overline{\partial_y \overline{p}(y)} = \partial_y \overline{p}(y) - \partial_y \overline{p}(y) = 0.$$

Hence by the one-dimensional Poincare inequality we obtain $p_{\perp} \in L^2_{\beta+2}(\Omega)$, $\partial_y p_{\perp} \in L^2_{\beta+3}(\Omega)$ and

$$\begin{aligned} \|p_{\perp}; L^2_{\beta+2}(\Omega)\| &\leq c \, \|\partial_z p_{\perp}; L^2_{\beta+2}(\Omega)\| = c \, \|\partial_z p; \, L^2_{\beta+2}(\Omega)\| \\ \|\partial_y p_{\perp}; \, L^2_{\beta+3}(\Omega)\| &\leq c \, \|\partial_z \partial_y p_{\perp}; \, L^2_{\beta+3}(\Omega)\|. \end{aligned}$$

Thus $p_{\perp} \in \mathcal{V}^{l}_{\beta+2,l}(\Omega)$ and

$$\|p_{\perp}; \mathcal{V}_{\beta+2,l}^{l}(\Omega)\| \leq c \|\partial_{z}p; \mathcal{V}_{\beta+2,l-1}^{l-1}(\Omega)\|.$$

For the mean value \overline{p} we get the inclusion $\overline{p} \in V^l_{\beta+l}(\mathbb{R}^2)$ and the estimate

$$\|\overline{p}; V^l_{\beta+l}(\mathbb{R}^2)\| \le c \|p; \mathcal{V}^l_{\beta,l}(\Omega)\|.$$

Therefore the space $\mathcal{D}_{\beta}^{l}(\Omega)$ may be redefined as space of all vector functions (\mathbf{u}, p) such that \mathbf{u} satisfies inclusions (2.9) and p admits representation (2.12) with

$$\frac{p_{\perp} \in \mathcal{V}_{\beta+2,l}^{l}(\Omega)}{\overline{p} \in V_{\beta+l}^{l}(\mathbb{R}^{2})} \right\}.$$

$$(2.13)$$

An equivalent norm in $\mathcal{D}^l_{\beta}(\Omega)$ is given by the formula

$$\| (\mathbf{u}, p); \mathcal{D}^{l}_{\beta}(\Omega) \|$$

= $\| \mathbf{u}'; \mathcal{V}^{l+1}_{\beta+1,l}(\Omega) \| + \| u_{3}; \mathcal{V}^{l+1}_{\beta+2,l-1}(\Omega) \| + \| p_{\perp}; \mathcal{V}^{l}_{\beta+2,l}(\Omega) \| + \| \overline{p}; V^{l}_{\beta+l}(\mathbb{R}^{2}) \|.$ (2.14)

2.4 Space $\mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega)$ – the range of the Stokes operator. The space $\mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega)$ $(l \geq 1)$ consists of triples $(\mathbf{f}, g, \mathbf{h})$ such that

$$g \in \mathcal{V}_{\beta+2,l-1}^{l}(\Omega)$$

$$\mathbf{h}' \in \mathcal{V}_{\beta+1,l}^{l+\frac{1}{2}}(\partial\Omega)$$

$$h_{3} \in \mathcal{V}_{\beta+2,l-1}^{l+\frac{1}{2}}(\partial\Omega)$$

$$(2.15)$$

while \mathbf{f} admits the representation

$$\mathbf{f} = \mathbf{f}_0 + \partial_z \mathbf{f}_1 + \nabla \psi \tag{2.16}$$

with

$$\left. \begin{array}{l} \mathbf{f}_{0} \in \mathcal{V}_{\beta+2,l-1}^{l-1}(\Omega) \\ \mathbf{f}_{1}^{\prime} \in \mathcal{V}_{\beta+1,l}^{l}(\Omega) \\ f_{13} \in \mathcal{V}_{\beta+2,l-1}^{l}(\Omega) \\ \psi_{\perp} \in \mathcal{V}_{\beta+2,l}^{l}(\Omega) \\ \overline{\psi} \in V_{\beta+l}^{l}(\mathbb{R}^{2}) \end{array} \right\} .$$

$$(2.17)$$

The norm in $\mathcal{R}^l_{\beta}(\Omega;\partial\Omega)$ is given by

$$\begin{aligned} \|(\mathbf{f}, g, \mathbf{h}); \mathcal{R}_{\beta}^{l}(\Omega; \partial \Omega)\| \\ &= \inf \left\{ \|\mathbf{f}_{0}; \mathcal{V}_{\beta+2,l-1}^{l-1}(\Omega)\| + \|\mathbf{f}_{1}'; \mathcal{V}_{\beta+1,l}^{l}(\Omega)\| \\ &+ \|f_{13}; \mathcal{V}_{\beta+2,l-1}^{l}(\Omega)\| + \|\psi_{\perp}; \mathcal{V}_{\beta+2,l}^{l}(\Omega)\| + \|\overline{\psi}; V_{\beta+l}^{l}(\mathbb{R}^{2})\| \right\} \\ &+ \|g; \mathcal{V}_{\beta+2,l-1}^{l}(\Omega)\| + \|\mathbf{h}'; \mathcal{V}_{\beta+1,l}^{l+\frac{1}{2}}(\partial \Omega)\| + \|h_{3}; \mathcal{V}_{\beta+2,l-1}^{l+\frac{1}{2}}(\partial \Omega)\| \end{aligned}$$
(2.18)

where the infimum is taken over all representations (2.16). From Lemmata 2.2 and 2.3 we derive the following assertions.

Lemma 2.5. The embeddings

$$\left. \begin{array}{l} \mathcal{R}^{l}_{\beta}(\Omega;\partial\Omega) \hookrightarrow \mathcal{R}^{l-1}_{\beta}(\Omega;\partial\Omega) \\ \mathcal{R}^{l}_{\beta_{1}}(\Omega;\partial\Omega) \hookrightarrow \mathcal{R}^{l}_{\beta}(\Omega;\partial\Omega) \end{array} \right\} \qquad (l \ge 1, \, \beta_{1} > \beta)$$

are continuous.

Theorem 2.1. The operator S^l_β of problem (1.2) - (1.3),

$$\mathcal{D}^{l}_{\beta}(\Omega) \ni (\mathbf{u}, p) \longmapsto \mathcal{S}^{l}_{\beta}(\mathbf{u}, p) = (\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega)$$
(2.19)

is continuous.

2.5 Coercive estimate for the solution of problem (1.2) - (1.3). The following result is proved in [15].

Theorem 2.2. Let $(\mathbf{u}, p) \in L^2_{\beta}(\Omega) \times L^2_{\beta}(\Omega)$ be the solution of problem (1.2) - (1.3) with right-hand side $(\mathbf{f}, g) \in \mathcal{R}^l_{\beta}(\Omega; \partial \Omega)$ $(l \ge 1, \beta \in \mathbb{R})$. Then $(\mathbf{u}, p) \in \mathcal{D}^l_{\beta}(\Omega)$ and

$$\|(\mathbf{u},p);\mathcal{D}_{\beta}^{l}(\Omega)\| \leq c\Big(\|(\mathbf{f},g,\mathbf{h});\mathcal{R}_{\beta}^{l}(\Omega;\partial\Omega)\| + \|\mathbf{u};L_{\beta}^{2}(\Omega)\| + \|p_{\perp};L_{\beta}^{2}(\Omega)\| + \|\overline{p};L_{\beta}^{2}(\mathbb{R}^{2})\|\Big).$$

$$(2.20)$$

In order to prove the Fredholm property of mapping (2.19) we need to transform estimate (2.20) into

$$\|(\mathbf{u},p);\mathcal{D}^{l}_{\beta}(\Omega)\| \leq c\Big(\|(\mathbf{f},g,\mathbf{h});\mathcal{R}^{l}_{\beta}(\Omega;\partial\Omega)\| + \|K(\mathbf{u},p);\mathcal{D}^{l}_{\beta}(\Omega)\|\Big)$$
(2.21)

where K is a compact operator in $\mathcal{D}^{l}_{\beta}(\Omega)$. As shown in [15], the function $\overline{p} \in L^{2}_{\beta}(\mathbb{R}^{2}) \cap W^{l,2}_{loc}(\mathbb{R}^{2})$ satisfies the Poisson equation

$$-\frac{1}{6}\Delta'_{y}\overline{p}(y) = \mathcal{F}(y) \qquad (y \in \mathbb{R}^{2})$$
(2.22)

where

$$\begin{aligned} \mathcal{F}(y) &= \mathcal{F}^{(1)}(y) + \operatorname{div}'_{y} \mathcal{F}^{(2)}(y) + \Delta'_{y} \mathcal{F}^{(3)}(y) + \Delta'_{y} \mathcal{F}^{(0)}(y) \\ \mathcal{F}^{(0)}(y) &= \int_{0}^{1} \partial_{z} p(y, z) \left(\frac{1}{6}z - \frac{1}{2}z^{2} + \frac{1}{3}z^{3}\right) dz \\ \mathcal{F}^{(1)}(y) &= 2\nu \int_{0}^{1} g(y, z) \, dz \\ \mathcal{F}^{(2)}(y) &= -\int_{0}^{1} \mathbf{f}'(y, z) z(z - 1) \, dz \\ \mathcal{F}^{(3)}(y) &= -\nu \int_{0}^{1} \operatorname{div}'_{y} \mathbf{u}'(y, z) z(z - 1) \, dz. \end{aligned}$$

The inclusion $(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^l_{\beta}(\Omega; \partial \Omega)$ furnishes $\mathbf{f}' \in L^2_{\beta+1}(\Omega)$, $\operatorname{div}'_y \mathbf{f}' \in L^2_{\beta+2}(\Omega)$ and $g \in L^2_{\beta+2}(\Omega)$. Hence, $\mathcal{F}^{(1)} \in L^2_{\beta+2}(\mathbb{R}^2)$, $\operatorname{div}'_y \mathcal{F}^{(2)} \in L^2_{\beta+2}(\mathbb{R}^2)$ and

$$\|\mathcal{F}^{(1)}; L^{2}_{\beta+2}(\mathbb{R}^{2})\| + \|\operatorname{div}'_{y}\mathcal{F}^{(2)}; L^{2}_{\beta+2}(\mathbb{R}^{2})\| \leq c\|(\mathbf{f}, g, \mathbf{h}); \mathcal{R}^{l}_{\beta}(\Omega; \partial\Omega)\|.$$

Further, $(\mathbf{u}, p) \in \mathcal{D}^l_{\beta}(\Omega)$ so that

$$\mathbf{u}' \in \mathcal{V}_{\beta+1,l}^{l+1}(\Omega) \qquad \Delta'_y \operatorname{div}'_y \mathbf{u}' \in L^2_{\beta+3}(\Omega) \subset L^2_{\beta+2}(\Omega) \\ \partial_z p \in L^2_{\beta+2}(\Omega) \qquad \Delta'_y(\partial_z p) \in L^2_{\beta+4}(\Omega) \subset L^2_{\beta+2}(\Omega).$$

This implies $\Delta'_y \mathcal{F}^{(0)} \in L^2_{\beta+2}(\mathbb{R}^2), \, \Delta'_y \mathcal{F}^{(3)} \in L^2_{\beta+2}(\mathbb{R}^2)$ and

$$\begin{aligned} \left\| \Delta'_{y} \mathcal{F}^{(0)}; \, L^{2}_{\beta+2}(\mathbb{R}^{2}) \right\| &+ \left\| \Delta'_{y} \mathcal{F}^{(3)}; \, L^{2}_{\beta+2}(\mathbb{R}^{2}) \right\| \\ &\leq c \Big(\left\| \Delta'_{y} \operatorname{div}'_{y} \mathbf{u}'; \, L^{2}_{\beta+2}(\Omega) \right\| + \left\| \Delta'_{y}(\partial_{z}p); \, L^{2}_{\beta+2}(\Omega) \right\| \Big). \end{aligned}$$

Thus,

$$\mathcal{F} = \mathcal{F}^{(1)} + \operatorname{div}'_{y} \mathcal{F}^{(2)} + \Delta'_{y} \big(\mathcal{F}^{(0)} + \mathcal{F}^{(3)} \big) \in L^{2}_{\beta+2}(\mathbb{R}^{2})$$

and

$$\begin{aligned} \|\mathcal{F}; L^{2}_{\beta+2}(\mathbb{R}^{2})\| \\ &\leq c \Big(\|(\mathbf{f}, g, \mathbf{h}); \mathcal{R}^{l}_{\beta}(\Omega)\| + \|\Delta'_{y} \operatorname{div}'_{y} \mathbf{u}'; L^{2}_{\beta+2}(\Omega)\| + \|\Delta'_{y}(\partial_{z}p); L^{2}_{\beta+2}(\Omega)\| \Big). \end{aligned}$$
(2.23)

The punctured space $\mathbb{R}^2 \setminus \{0\}$ might be interpreted as two-dimensional cone (a complete one) in \mathbb{R}^2 so that \mathbb{R}^2 is a domain with conical outlet to infinity. Therefore general theorems on elliptic problems in such domains can be applied while treating the solution \overline{p} of equation (2.22). It is known (see [1, 2, 12]) that such problems have the Fredholm property in the scale of Kondratie spaces $V_{\gamma}^l(\mathbb{R}^2)$ if and only if every power solution $w(y) = r^{-\lambda}\Psi(\varphi)$ of the corresponding homogeneous problem is trivial, provided that λ lies on the line $\{\lambda \in \mathbb{C} : \operatorname{Re} \lambda = \gamma - l + 1\}$ ((r, φ) are polar coordinates in \mathbb{R}^2). For the Laplace operator (2.22) all power solutions consist of harmonic polynomials of orders $m \in \mathbb{N}_0$ and derivatives of the fundamental solution $\Gamma(y) = -\frac{1}{2\pi} \ln |y|$. This information together with the general results (see [1, 2, 12]) and estimate (2.23) gives

Lemma 2.6. Let $\overline{p} \in L^2_{\beta}(\mathbb{R}^2) \cap W^{l,2}_{loc}(\mathbb{R}^2)$ $(l \ge 2, \beta \notin \pm \mathbb{N}_0)$ be the solution of the Poisson equation (2.22). Then $\overline{p} \in V^2_{\beta+2}(\mathbb{R}^2)$ and there holds the inequality

$$\begin{aligned} \|\overline{p} \ V_{\beta+2}^{2}(\mathbb{R}^{2})\| &\leq c \Big(\|\mathcal{F}; \ L_{\beta+2}^{2}(\mathbb{R}^{2})\| + \|\mathcal{K}_{1}\overline{p}; \ V_{\beta+2}^{2}(\mathbb{R}^{2})\| \Big) \\ &\leq c \Big(\|(\mathbf{f}, g, \mathbf{h}); \mathcal{R}_{\beta}^{l}(\Omega; \partial\Omega)\| + \|\Delta_{y}^{\prime} \operatorname{div}_{y}^{\prime} \mathbf{u}^{\prime}; L_{\beta+2}^{2}(\Omega)\| \\ &+ \|\Delta_{y}^{\prime}(\partial_{z}p); \ L_{\beta+2}^{2}(\Omega)\| + \|\mathcal{K}_{1}\overline{p}; \ V_{\beta+2}^{2}(\mathbb{R}^{2})\| \Big) \end{aligned}$$
(2.24)

where \mathcal{K}_1 is a compact operator in $V^2_{\beta+2}(\mathbb{R}^2)$.

Remark 2.1. Lemma 2.6 remains valid also for l = 1 and l = 0. However, because of the shortage of the regularity in these cases the Poisson equation (2.22) for \overline{p} should be understood in the sence of distributions, i.e. the solution $\overline{p} \in L^2_{\beta}(\mathbb{R}^2)$ satisfies the integral identity

$$-\frac{1}{6}\int_{\mathbb{R}^2}\overline{p}(y)\Delta'_y\eta(y)\,dy$$

$$=\int_{\mathbb{R}^2}\left(\mathcal{F}^{(1)}(y)\eta(y)-\mathcal{F}^{(2)}(y)\cdot\nabla'_y\eta(y)+\left(\mathcal{F}^{(0)}(y)+\mathcal{F}^{(3)}(y)\right)\Delta'_y\eta(y)\right)dy$$
(2.25)

for all $\eta \in C_0^\infty(\mathbb{R}^2)$ where

$$\mathcal{F}^{(0)} \in L^{2}_{\beta+2}(\mathbb{R}^{2}) \subset L^{2}_{\beta+1}(\mathbb{R}^{2})$$

$$\mathcal{F}^{(1)} \in L^{2}_{\beta+2}(\mathbb{R}^{2}) \subset L^{2}_{\beta+1}(\mathbb{R}^{2})$$

$$\mathcal{F}^{(2)} \in L^{2}_{\beta+1}(\mathbb{R}^{2})$$

$$\mathcal{F}^{(3)} \in L^{2}_{\beta+2}(\mathbb{R}^{2}) \subset L^{2}_{\beta+1}(\mathbb{R}^{2}).$$

Since results analogous to Lemma 2.6 are true for the solution $\overline{p} \in L^2_{\beta}(\mathbb{R}^2)$ of the Poisson identity (2.25) (e.g. [2]: Section 6.3] and [12: Theorems 3.5.7 and 4.2.4]), we conclude the estimate

$$\|\overline{p} L_{\beta}^{2}(\mathbb{R}^{2})\| \leq c \Big(\|(\mathbf{f}, g, \mathbf{h}); \mathcal{R}_{\beta}^{l}(\Omega; \partial \Omega)\| + \|\operatorname{div}_{y}^{\prime} \mathbf{u}^{\prime}; L_{\beta+1}^{2}(\Omega)\| \\ + \|\partial_{z} p; L_{\beta+1}^{2}(\Omega)\| + \|\tilde{\mathcal{K}}_{1}\overline{p}; L_{\beta}^{2}(\mathbb{R}^{2})\| \Big)$$

$$(2.26)$$

where $\tilde{\mathcal{K}}_1$ is a compact operator in $L^2_{\beta}(\mathbb{R}^2)$

First, let $l \ge 2$ and $\beta \notin \pm \mathbb{N}_0$. Using inequality (2.24) we can rewrite estimate (2.20) in the form

$$\|(\mathbf{u}, p); \mathcal{D}^{l}_{\beta}(\Omega)\| \leq c \Big(\|(\mathbf{f}, g, \mathbf{h}); \mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega)\| + \|\mathbf{u}; L^{2}_{\beta}(\Omega)\| + \|p_{\perp}; L^{2}_{\beta}(\Omega)\| + \|\Delta'_{y} \operatorname{div}'_{y} \mathbf{u}'; L^{2}_{\beta+2}(\Omega)\| + \|\Delta'_{y}(\partial_{z}p); L^{2}_{\beta+2}(\Omega)\| + \|\mathcal{K}_{1}\overline{p}; V^{2}_{\beta+2}(\mathbb{R}^{2})\| \Big).$$

$$(2.27)$$

By Lemma 2.2, $\Delta'_y \operatorname{div}'_y \mathbf{u}' \in \mathcal{V}^{l-2}_{\beta+4,l-3}(\Omega)$ and $\Delta'_y(\partial_z p) \in \mathcal{V}^{l-3}_{\beta+4,l-3}(\Omega)$. Moreover, by virtue of Lemma 2.3 the embeddings

$$\mathcal{V}_{\beta+4,l-3}^{l-2}(\Omega) \hookrightarrow L_{\beta+2}^{2}(\Omega) \\
\mathcal{V}_{\beta+4,l-3}^{l-3}(\Omega) \hookrightarrow L_{\beta+2}^{2}(\Omega) \\
\mathcal{V}_{\beta+1,l}^{l+1}(\Omega) \hookrightarrow L_{\beta}^{2}(\Omega) \\
\mathcal{V}_{\beta+2,l-2}^{l+1}(\Omega) \hookrightarrow L_{\beta}^{2}(\Omega) \\
\mathcal{V}_{\beta+2,l}^{l}(\Omega) \hookrightarrow L_{\beta}^{2}(\Omega)$$

are compact. Hence, there hold the inequalities

$$\begin{aligned} \|\Delta'_{y}\operatorname{div}'_{y}\mathbf{u}'; L^{2}_{\beta+2}(\Omega)\| &\leq c \,\|\mathcal{K}_{2}\mathbf{u}'; \mathcal{V}^{l+1}_{\beta+1,l}(\Omega)\| \\ \|\Delta'_{y}(\partial_{z}p); \,L^{2}_{\beta+2}(\Omega)\| &\leq c \,\|\mathcal{K}_{3}p_{\perp}; \,\mathcal{V}^{l}_{\beta+2,l}(\Omega)\| \\ \|(\mathbf{u}', u_{3}); \,L^{2}_{\beta}(\Omega) \times L^{2}_{\beta}(\Omega)\| &\leq c \,\|\mathcal{K}_{4}(\mathbf{u}', u_{3}); \,\mathcal{V}^{l+1}_{\beta+1,l}(\Omega) \times \mathcal{V}^{l+1}_{\beta+2,l-1}(\Omega)\| \\ \|p_{\perp}; \,L^{2}_{\beta}(\Omega)\| &\leq c \,\|\mathcal{K}_{5}p_{\perp}; \,\mathcal{V}^{l}_{\beta+2,l}(\Omega)\| \end{aligned}$$

where \mathcal{K}_i (i = 2, 3, 4, 5) are compact operators. Therefore from (2.27) estimate (2.21) follows. In the cases l = 0 and l = 1 we analogously get estimate (2.21) using inequality (2.26) instead of (2.24). Thus, we have proved

Theorem 2.3. Let $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta}(\Omega)$ be the solution of problem (1.2) - (1.3) with right-hand side $(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega)$ $(l \geq 1, \beta \in \mathbb{R} \setminus \{\pm \mathbb{N}_{0}\})$. Then estimate (2.21) holds with \mathcal{K} being a compact operator in $\mathcal{D}^{l}_{\beta}(\Omega)$.

2.6 Asymptotic representation of the solution. Let us formulate a result concerning the asymptotic behavior of the solution (\mathbf{u}, p) of problem (1.2) - (1.3).

Theorem 2.4 (see [15]). Assume that

$$(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta+k}(\Omega; \partial \Omega) \qquad (l \ge 1, \, \beta \notin \pm \mathbb{N}_{0}, \, k \in \mathbb{N}).$$

$$(2.28)$$

Then the solution

$$(\mathbf{u}, p) \in L^2_\beta(\Omega) \times L^2_\beta(\Omega) \tag{2.29}$$

of problem (1.2) - (1.3) admits the asymptotic representation

$$\begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \chi(r) \sum_{-\beta-k-1 < m < -\beta-1} \begin{pmatrix} c_m^+ \mathbf{u}_m^+(y,z) + c_m^- \mathbf{u}_m^-(y,z) \\ c_m^+ p_m^+(y) + c_m^- p_m^-(y) \end{pmatrix} + \begin{pmatrix} \tilde{\mathbf{u}} \\ \tilde{p} \end{pmatrix}$$
(2.30)

where χ is a smooth cut-off function with $\chi(r) = 1$ for $r \geq 2$ and $\chi(r) = 0$ for $r \leq 1$,

$$\mathbf{u}_{m}^{\pm}'(y,z) = \frac{1}{2\nu} z(z-1) \nabla_{y}' p_{m}^{\pm}(y), \quad u_{3m}^{\pm}(y,z) = 0, \quad p_{0}^{+}(y) = 1, \quad p_{0}^{-}(y) = -\frac{1}{2\pi} \ln r$$

$$p_{m}^{+}(y) = (2\pi |m|)^{-\frac{1}{2}} r^{m} \cos(m\varphi)$$

$$p_{m}^{-}(y) = (2\pi |m|)^{-\frac{1}{2}} r^{m} \sin(|m|\varphi)$$

$$(2.31)$$

 c_m^{\pm} $(m \in \pm \mathbb{N}_0)$ are constants and $(\tilde{\mathbf{u}}, \tilde{p}) \in \mathcal{D}_{\beta+k}^l(\Omega)$. There holds the estimate

$$\|(\tilde{\mathbf{u}}, \tilde{p}); \mathcal{D}_{\beta+k}^{l}(\Omega)\| + \sum_{-\beta-k-1 < m < -\beta-1} (|c_{m}^{+}| + |c_{m}^{-}|)$$

$$\leq c \Big(\|(\mathbf{f}, g, \mathbf{h}); \mathcal{R}_{\beta+k}^{l}(\Omega; \partial\Omega)\| + \|\mathbf{u}; L_{\beta}^{2}(\Omega)\| + \|p_{\perp}; L_{\beta}^{2}(\Omega)\| + \|\overline{p}; L_{\beta}^{2}(\mathbb{R}^{2})\| \Big).$$

$$(2.32)$$

Remark 2.2. Analogous asymptotic formulae were obtained also for second order scalar elliptic operators (see [9, 11]) and for the Lame operator (see [6 - 8, 10]).

2.7 Green' formula. Let $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta}(\Omega)$ and $(\mathbf{v}, q) \in C_{0}^{\infty}(\overline{\Omega})$. Then for the Stokes problem (1.2) - (1.3) there holds Green' formula

$$\int_{\Omega} (-\nu\Delta \mathbf{u} + \nabla p) \cdot \mathbf{v} \, dx - \int_{\Omega} q \operatorname{div} \mathbf{u} \, dx + \int_{\partial\Omega} \mathbf{u} \cdot (\mathbf{n}q - \nu\partial_n \mathbf{v}) \, ds$$

$$= \int_{\Omega} (-\nu\Delta \mathbf{v} + \nabla q) \cdot \mathbf{u} \, dx - \int_{\Omega} p \operatorname{div} \mathbf{v} \, dx + \int_{\partial\Omega} \mathbf{v} \cdot (\mathbf{n}p - \nu\partial_n \mathbf{u}) \, ds.$$
(2.33)

Here **n** is the unit vector of the outward normal to $\partial\Omega$ and $\partial_n = \frac{\partial}{\partial \mathbf{n}}$ denotes the derivative with respect to **n**. Note that all integrals in (2.33) are finite since (\mathbf{v}, q) is identically zero for large |x|. It is not difficult to verify that the integrals in (2.33) remain finite if $(\mathbf{v}, q) \in \mathcal{D}^l_{-\beta-2}(\Omega)$. Therefore by continuity we conclude the following assertion.

Lemma 2.7. Green' formula (2.33) holds true for any pairs $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta}(\Omega)$ and $(\mathbf{v}, q) \in \mathcal{D}^{l}_{-\beta-2}(\Omega)$.

3. The Fredholm property

In this section we prove the main result of the paper: the Fredholm property of the Stokes operator S^l_{β} , i.e. we prove that the range $S^l_{\beta} \mathcal{D}^l_{\beta}(\Omega)$ is a closed subspace of $\mathcal{R}^l_{\beta}(\Omega;\partial\Omega)$ and that

$$\dim \ker \mathcal{S}_{\beta}^{l} < \infty$$
$$\dim \operatorname{coker} \mathcal{S}_{\beta}^{l} < \infty.$$

Theorem 3.1. The operator \mathcal{S}^{l}_{β} $(l \geq 1)$ of the Stokes problem (1.2) - (1.3) is of Fredholm type, if $\beta \notin \mathbb{Z}$. If $\beta \in \mathbb{Z}$, then the range of \mathcal{S}^{l}_{β} is not closed.

Proof. The finite-dimensionality of ker S^l_{β} and the closedness of the range $S^l_{\beta} \mathcal{D}^l_{\beta}(\Omega)$ follow from estimate (2.21) (see Theorem 2.3) and a lemma by J. Peetre (see [18] or [3: Lemma 2.5.1]).

Let us prove the finite-dimensionality of coker S^l_β . We show that the subspace $\ker(S^l_\beta)^* = \operatorname{coker} S^l_\beta$ admits the representation

$$\operatorname{coker} \mathcal{S}_{\beta}^{l} = \left\{ \left(\mathbf{v}, q, (\mathbf{n}q - \nu \partial_{n} \mathbf{v}) \big|_{\partial \Omega} \right) : (\mathbf{v}, q) \in \ker \mathcal{S}_{-\beta - 2}^{l} \right\}.$$
(3.1)

Let us consider the bounded linear functional $F_{(\mathbf{v},q)}$ given on $\mathcal{R}^l_{\beta}(\Omega;\partial\Omega)$ by the formula

$$F_{(\mathbf{v},q)}(\mathbf{f},g,\mathbf{h}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dx - \int_{\Omega} g \, q \, dx + \int_{\partial \Omega} \mathbf{h} \cdot (\mathbf{n}q - \nu \partial_n \mathbf{v}) \, ds$$

(\mathbf{v},q) \in \mathcal{D}_{-\beta-2}^l(\Omega). (3.2)

If $(\mathbf{f}, g, \mathbf{h}) \in S^l_{\beta} \mathcal{D}^l_{\beta}(\Omega)$ and $(\mathbf{v}, q) \in \ker S^l_{-\beta-2}$, then from Green's formula (2.33) it follows that $F_{(\mathbf{v},q)}(\mathbf{f}, g, \mathbf{h}) = 0$. Thus $F_{(\mathbf{v},q)}$ is orthogonal to $S^l_{\beta} \mathcal{D}^l_{\beta}(\Omega)$ and therefore $F_{(\mathbf{v},q)} \in \ker (S^l_{\beta})^*$. Hence we have proved the inclusion

$$\left\{ \left(\mathbf{v}, q, (\mathbf{n}q - \nu \partial_n \mathbf{v})|_{\partial \Omega} \right) : (\mathbf{v}, q) \in \ker \mathcal{S}^l_{-\beta - 2} \right\} \subset \ker (\mathcal{S}^l_{\beta})^*.$$
(3.3)

In order to prove the inverse inclusion we first consider the case l = 1 and introduce the operator \mathcal{S}^*_{β} adjoint to \mathcal{S}_{β} (with respect to the scalar product in $L^2(\Omega)^4 \times L^2(\partial\Omega)^3$). For brevity we write \mathcal{S}_{β} , $\mathcal{D}_{\beta}(\Omega)$ etc., omitting the regularity index l = 1. We mention as well known fact (see, e.g., [3, 19]) that the operator \mathcal{S}^*_{β} acts on the space of distributions by the formula

$$\mathcal{R}_{\beta}(\Omega;\partial\Omega)^* \ni (\mathbf{v},q,\mathbf{w}) \longmapsto \mathcal{S}^*_{\beta}(\mathbf{v},q,\mathbf{w}) = S(\pi_{\Omega}\mathbf{v},\pi_{\Omega}q) + \mathbf{w} \otimes \delta_{\partial\Omega}.$$

Here $\pi_{\Omega} \mathbf{v}$ and $\pi_{\Omega} q$ are the extensions of \mathbf{v} and q, respectively, by zero from Ω to the entire \mathbb{R}^3 , $\delta_{\partial\Omega}$ is the Dirac function concentrated on $\partial\Omega$ so that $\mathbf{w} \otimes \delta_{\partial\Omega}$ is the distribution defined by the formula

$$(\mathbf{w} \otimes \delta_{\partial\Omega}, \varphi)_{\mathbb{R}^3} = (\mathbf{w}, \varphi)_{\partial\Omega} \qquad \left(\varphi \in C_0^\infty(\mathbb{R}^3)\right)$$

where $(\cdot, \cdot)_{\partial\Omega}$ denotes the scalar product in $L^2(\partial\Omega)$, and

$$S(\pi_{\Omega}\mathbf{v},\pi_{\Omega}q) = \left(-\nu\Delta\pi_{\Omega}\mathbf{v} + \nabla\pi_{\Omega}q; -\mathrm{div}\pi_{\Omega}\mathbf{v}\right)$$

is the Stokes operator (1.2). Note that due to Green's formula (2.33) this operator is formally self-adjoint.

Let $\omega, \widehat{\omega}$ be two neighbourhoods of a point in $\overline{\Omega}$ and $\overline{\omega} \subset \widehat{\omega}$. If the right-hand side $\mathbf{U} = (U_1, U_2, U_3, U_4)$ of the equation

$$\mathcal{S}^*_{\beta}(\mathbf{v}, q, \mathbf{w}) = \mathbf{U} \in \mathcal{D}_{\beta}(\Omega)^*$$
(3.4)

belongs to $H^s(\Omega \cap \widehat{\omega})^3 \times H^{s+1}(\Omega \cap \widehat{\omega})$, then first (\mathbf{v}, q) belongs to $H^{s+2}(\Omega \cap \omega)^3 \times H^{s+1}(\Omega \cap \omega)$, second it satisfies the relations $S(\mathbf{v}, q) = \mathbf{U}$ in $\Omega \cap \omega$ and $\mathbf{v} = 0$ on $\partial \Omega \cap \omega$, and third \mathbf{w} coincides with the trace of $(\mathbf{n}q - \nu \partial_n \mathbf{v})$ on $\partial \Omega \cap \omega$ (see [19] and [3: Chapter 2.5.3]). Since ker \mathcal{S}^*_{β} contains the solutions $(\mathbf{v}, q, \mathbf{w}) \in \mathcal{R}_{\beta}(\Omega; \partial \Omega)^*$ of the homogeneous equation (3.4) (i.e. $\mathbf{U} = 0$), we conclude that $(\mathbf{v}, q) \in C^{\infty}_{loc}(\overline{\Omega})$ solves the homogeneous Stokes problem (1.2) - (1.3) and \mathbf{w} is the trace of $(\mathbf{n}q - \nu \partial_n \mathbf{v})$ on $\partial \Omega$. Further, by definition $\mathcal{R}_{\beta}(\Omega; \partial \Omega)$ contains the subspace

$$\mathbf{R} = L^2_{\beta+2}(\Omega)^3 \times \mathcal{V}^1_{\beta+2,0}(\Omega) \times \mathcal{V}^{\frac{3}{2}}_{\beta+1,1}(\partial\Omega)^2 \times \mathcal{V}^{\frac{3}{2}}_{\beta+2,0}(\partial\Omega)$$

(we assume that $\mathbf{f}_1 = 0$ and $\psi = 0$ in representation (2.16) for \mathbf{f} , i.e. $\mathbf{f} = \mathbf{f}_0$). Consequently, $\mathcal{R}_{\beta}(\Omega; \partial \Omega)^* \subset \mathbf{R}^*$. The first two factors in \mathbf{R}^* coinside with $L^2_{-\beta-2}(\Omega)^3 \times [\mathcal{V}^1_{\beta+2,0}(\Omega)]^*$ and hence we have $\mathbf{v} \in L^2_{-\beta-2}(\Omega)^3$ and $q \in [\mathcal{V}^1_{\beta+2,0}(\Omega)]^*$.

Let us show that q belongs to $L^2_{-\beta-2}(\Omega)$. Denote by ζ_{ρ} the smooth cut-off function with $\zeta_{\rho}(r) = 1$ for $r \leq \rho$, $\zeta_{\rho}(r) = 0$ for $r \geq 2\rho$ and

$$|\nabla \zeta_{\rho}(r)| \le c \, (1+r^2)^{-\frac{1}{2}} \\ |\nabla \nabla \zeta_{\rho}(r)| \le c \, (1+r^2)^{-1}$$

$$(3.5)$$

with constant c independent of ρ and r. We multiply the homogeneous Stokes equations (1.2) by $\zeta_{\rho}(r)^2(1+r^2)^{-\beta-1}\mathbf{v}(x)$ and integrate by parts in Ω :

$$\nu \int_{\Omega} \zeta_{\rho}(r)^{2} (1+r^{2})^{-\beta-1} |\nabla \mathbf{v}(x)|^{2} dx
= \int_{\Omega} q \, \mathbf{v}(x) \cdot \nabla [\zeta_{\rho}(r)^{2} (1+r^{2})^{-\beta-1}] dx
- \nu \int_{\Omega} \nabla \mathbf{v}(x) \cdot \mathbf{v}(x) \nabla [\zeta_{\rho}(r)^{2} (1+r^{2})^{-\beta-1}] dx
= I_{1} + I_{2}.$$
(3.6)

Using (3.5) it is easy to show that

$$|I_2| \le \frac{\nu}{4} \int_{\Omega} \zeta_{\rho}(r)^2 (1+r^2)^{-\beta-1} |\nabla \mathbf{v}(x)|^2 dx + c(\nu) \int_{\Omega} (1+r^2)^{-\beta-2} |\mathbf{v}(x)|^2 dx.$$
(3.7)

For the first summand I_1 we get

$$\begin{aligned} |I_{1}| &\leq \left\| q; \left[\mathcal{V}_{\beta+2,0}^{1}(\Omega) \right]^{*} \right\| \left\| \mathbf{v} \nabla [\zeta_{\rho}(r)^{2} (1+r^{2})^{-\beta-1}]; \mathcal{V}_{\beta+2,0}^{1}(\Omega) \right\| \\ &\leq c \left\| q; \left[\mathcal{V}_{\beta+2,0}^{1}(\Omega) \right]^{*} \right\| \\ &\qquad \times \left(\int_{\Omega} (1+r^{2})^{-\beta-2} |\mathbf{v}|^{2} dx + \nu \int_{\Omega} \zeta_{\rho}^{2} (1+r^{2})^{-\beta-1} |\nabla \mathbf{v}|^{2} dx \right)^{\frac{1}{2}} \\ &\leq \frac{\nu}{4} \int_{\Omega} \zeta_{\rho}^{2} (1+r^{2})^{-\beta-1} |\nabla \mathbf{v}|^{2} dx \\ &\qquad + c(\nu) \left(\left\| q; \left[\mathcal{V}_{\beta+2,0}^{1}(\Omega) \right]^{*} \right\|^{2} + \int_{\Omega} (1+r^{2})^{-\beta-2} |\mathbf{v}|^{2} dx \right). \end{aligned}$$
(3.8)

Substituting (3.7), (3.8) into (3.6) we derive the estimate

$$\int_{\Omega} \zeta_{\rho}^{2} (1+r^{2})^{-\beta-1} |\nabla \mathbf{v}|^{2} dx \leq c \bigg(\|q; \, [\mathcal{V}_{\beta+2,0}^{1}(\Omega)]^{*} \|^{2} + \int_{\Omega} (1+r^{2})^{-\beta-2} |\mathbf{v}|^{2} dx \bigg)$$

$$< \infty$$
(3.9)

with constant c independent of ρ . Passing in (3.9) $\rho \to \infty$, we get $\nabla \mathbf{v} \in L^2_{-\beta-1}(\Omega)$. Since the solution (\mathbf{v}, p) is smooth, from local estimates it follows (see [15: Proof of Lemma 3.1]) that $\nabla q \in L^2_{-\beta-1}(\Omega) \subset L^2_{-\beta-2}(\Omega)$ and

$$\|\nabla q; L^2_{-\beta-1}(\Omega)\| \le c \|\nabla \mathbf{v}; L^2_{-\beta-1}(\Omega)\|.$$

By Lemma 2.4 we conclude that $q \in L^2_{-\beta-2}(\Omega)$ and

$$\|q; L^{2}_{-\beta-2}(\Omega)\| \le c \Big(\|q; [\mathcal{V}^{1}_{\beta+2,0}(\Omega)]^{*}\| + \|\nabla q; L^{2}_{-\beta-2}(\Omega)\| \Big) < \infty.$$

Thus the solution (\mathbf{v}, p) of the homogeneous Stokes problem (1.2) - (1.3) belongs to $L^2_{-\beta-2}(\Omega)^3 \times L^2_{-\beta-2}(\Omega)$. By Theorem 2.2, (\mathbf{v}, p) belongs to $\mathcal{D}_{-\beta-2}(\Omega)$ and hence

$$\ker \mathcal{S}_{\beta}^{*} \subset \Big\{ \big(\mathbf{v}, q, (\mathbf{n}q - \nu \partial_{n} \mathbf{v})|_{\partial \Omega} \big) : (\mathbf{v}, q) \in \ker \mathcal{S}_{-\beta - 2} \Big\}.$$
(3.10)

Formulae (3.3) and (3.10) prove representation (3.1) of coker S_{β} . Since the numbers β and $-\beta - 2$ belong to the prohibited set \mathbb{Z} simultaneously, dim ker $S_{-\beta-2} < \infty$ and the finite-dimensionality of coker S_{β} is proved. Moreover, from (3.2) and Green's formula (2.33) we derive the following compatibility conditions for the Stokes problem (1.2) - (1.3):

$$\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dx - \int_{\Omega} g \, q \, dx + \int_{\partial \Omega} \mathbf{h} \cdot (\mathbf{n} q - \nu \partial_n \mathbf{v}) \, ds = 0 \tag{3.11}$$

for all $(\mathbf{v}, p) \in \ker \mathcal{S}_{-\beta-2}$.

Let us consider the case l > 1. Assume that $(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta}(\Omega; \partial\Omega) \subset \mathcal{R}^{1}_{\beta}(\Omega; \partial\Omega)$ with $\beta \notin \mathbb{Z}$. If the right-hand side $(\mathbf{f}, g, \mathbf{h})$ satisfies the compatibility conditions (3.11), then there exists a solution $(\mathbf{u}, p) \in \mathcal{D}^{1}_{\beta}(\Omega)$ of problem (1.2) - (1.3). By virtue of Theorem 2.2 we get $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta}(\Omega)$. This means that $(\mathbf{f}, g, \mathbf{h})$ is orthogonal to ker $[\mathcal{S}^{l}_{\beta}]^{*}$. By the Hahn-Banach theorem this gives

$$\ker [\mathcal{S}^{l}_{\beta}]^{*} \subset \Big\{ \big(\mathbf{v}, q, (\mathbf{n}q - \nu \partial_{n} \mathbf{v}) |_{\partial \Omega} \big) : (\mathbf{v}, q) \in \ker \mathcal{S}^{1}_{-\beta - 2} \Big\}.$$

Since by Theorem 2.2 $\ker S^1_{-\beta-2} = \ker S^l_{-\beta-2}$, the last relation together with (3.3) furnishes

$$\ker \left[\mathcal{S}_{\beta}^{l}\right]^{*} = \left\{ \left(\mathbf{v}, q, (\mathbf{n}q - \nu\partial_{n}\mathbf{v})|_{\partial\Omega}\right) : (\mathbf{v}, q) \in \ker \mathcal{S}_{-\beta-2}^{l} \right\}.$$
(3.12)

Thus in the case $\beta \notin \mathbb{Z}$

$$\dim \ker [\mathcal{S}^l_{\beta}]^* = \dim \ker \mathcal{S}^l_{-\beta-2} < \infty.$$

This proves the Fredholm property for \mathcal{S}^l_{β} with l > 1 and $\beta \notin \mathbb{Z}$.

Consider now the case $\beta \in \mathbb{Z}$. Since $\mathcal{D}^{l}_{\beta}(\Omega) \subset \mathcal{D}^{l}_{\beta-\varepsilon}(\Omega)$ and $\mathcal{R}^{l}_{\beta}(\Omega;\partial\Omega) \subset \mathcal{R}^{l}_{\beta-\varepsilon}(\Omega;\partial\Omega)$ for all $\varepsilon > 0$, it follows that

$$\ker \mathcal{S}_{\beta}^{l} \subset \ker \mathcal{S}_{\beta-\varepsilon}^{l}$$
$$\operatorname{coker} \mathcal{S}_{\beta}^{l} \subset \operatorname{coker} \mathcal{S}_{\beta+\varepsilon}^{l}.$$

Consequently, the subspaces ker S^l_{β} and coker S^l_{β} are finite-dimensional for all $\beta \in \mathbb{R}$. We shall show that for $\beta \in \mathbb{Z}$ the range $\operatorname{Im} S^l_{\beta}$ is not closed and hence S^l_{β} looses the Fredholm property.

Let $\beta = -m - 1$ $(m \in \mathbb{Z})$. Denote by χ the smooth cut-off function with $\chi(r) = 1$ for r < 1 and $\chi(r) = 0$ for r > 2 and let $\chi_R(r) = \chi(\frac{r}{R})$ $(R \ge 2)$. We take

$$p_0(y) = -(2\pi)^{-1} \ln r$$
$$p_m(y) = (2\pi|m|)^{-\frac{1}{2}} r^m \cos(m\varphi) \quad (m \neq 0)$$
$$\mathbf{u}_m(y,z) = \frac{1}{2\nu} z(z-1) \nabla p_m(y)$$

and put

$$\widehat{\mathbf{u}}_m, \widehat{p}_m) = (1 - \chi(r))\chi_R(r)(\mathbf{u}_m, p_m)$$

It is easy to compute that

$$\begin{aligned} \left\| (\widehat{\mathbf{u}}_{m}, \widehat{p}_{m}); \ \mathcal{D}_{-m-1}^{l}(\Omega) \right\|^{2} \\ &\geq \left\| (\widehat{\mathbf{u}}_{m}, \widehat{p}_{m}); \ L_{-m}^{2}(\Omega)^{3} \times L_{-m-1}^{2}(\Omega) \right\|^{2} \\ &\geq c \left(1 + \int_{2}^{R} \left(r^{-2m} r^{2(m-1)} + r^{-2(m+1)} r^{2m} \right) r \, dr \right) \\ &\geq c \left(1 + \ln \frac{R}{2} \right). \end{aligned}$$
(3.13)

On the other hand, (\mathbf{u}_m, p_m) satisfies the homogeneous Stokes problem (1.2) - (1.3) in $\Omega \setminus \{x : r = 0\}$. Therefore

$$-\nu \Delta \widehat{\mathbf{u}}_m + \nabla \widehat{p}_m = [-\nu \Delta + \nabla, (1 - \chi) \chi_R] (\mathbf{u}_m, p_m) \equiv \mathbf{f}_m \qquad (x \in \Omega)$$

div $\widehat{\mathbf{u}}_m = [\text{div}, (1 - \chi) \chi_R] \mathbf{u}_m \equiv g_m \qquad (x \in \Omega)$
 $\widehat{\mathbf{u}}_m = 0 \qquad (x \in \partial \Omega)$

where [A, B] stands for the commutator of the operators A and B. The right-hand side (\mathbf{f}_m, g_m) has a compact support lying in the union of the annuli $\{x \in \Omega : 1 < r < 2\}$ and $\{x \in \Omega : R < r < 2R\}$. Calculating the norm $\|(\mathbf{f}_m, g_m); \mathcal{R}^l_{-m-1}(\Omega; \partial\Omega)\|^2$, we find that it is bounded by the expression

$$c\left(1+\int_{R}^{2R}R^{-2}r^{-2m}r^{2m}r\,dr\right) \le \text{const}$$
(3.14)

where c is independent of $R \in (2, \infty)$. The range $\operatorname{Im} \mathcal{S}_{-m-1}^{l}$ is closed if and only if for every $(\mathbf{v}, q) \in \mathcal{D}_{-m-1}^{l}(\Omega) \ominus \ker \mathcal{S}_{-m-1}^{l}$ the estimate

$$\left\| (\mathbf{v}, q); \mathcal{D}_{-m-1}^{l}(\Omega) \right\| \leq c_{*} \left\| \mathcal{S}_{-m-1}^{l}(\mathbf{v}, q); \mathcal{R}_{-m-1}^{l}(\Omega; \partial \Omega) \right\|$$

holds true with constant c_* independent of (\mathbf{v}, q) . Letting $R \to \infty$ in formulae (3.14) and (3.13) we see that for $(\widehat{\mathbf{u}}_m, \widehat{p}_m)$ the last estimate fails, i.e. Im \mathcal{S}_{-m-1}^l is not closed. The theorem is proved \blacksquare

Lemma 3.1. If $\beta \geq -1$, then S^l_{β} is a monomorphism, and if $\beta < -1$, then S^l_{β} is an epimorphism.

Proof. Let $\beta \geq -1$ and $(\mathbf{u}, p) \in \ker S^l_{\beta}$. Multiplying the homogeneous equations (1.2) by \mathbf{u} and integrating by parts in Ω , we derive

$$\nu \int_{\Omega} |\nabla \mathbf{u}(x)|^2 dx = 0. \tag{3.15}$$

(Note that by definition of the space $\mathcal{D}_{\beta}^{l}(\Omega)$ all the integrals involved converge for $\beta \geq -1$.) From (3.15) it follows $|\nabla \mathbf{u}(x)| = 0$ and hence $\mathbf{u}(x) = 0$. The Stokes equations (1.2) imply $\nabla p = 0$ in Ω , i.e. p(x) = c. If $c \neq 0$, then the integral $\int_{\Omega} (1 + r^2)^{\beta} |c|^2 dx$ diverges (recall that $\beta \geq -1$) what contradicts with the condition $p \in L_{\beta}^2(\Omega)$. Thus c = 0 and ker $\mathcal{S}_{\beta}^{l} = \emptyset$ for $\beta \geq -1$. For $\beta < -1$ the relation dim coker $\mathcal{S}_{\beta}^{l} = 0$ follows from (3.12), since in this case $-2 - \beta > -1$ and ker $\mathcal{S}_{-2-\beta}^{l} = \emptyset$

4. Coefficients in the asymptotics and computation of the index

Let $(\mathbf{u}, p) \in \mathcal{D}_{\beta}^{l}(\Omega)$ $(\beta > -1)$ be a solution of the Stokes problem (1.2) - (1.3) with right-hand side $(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}_{\beta+k}^{l}(\Omega; \partial \Omega)$ $(k \in \mathbb{N})$. From Theorem 2.4 it follows that the solution (\mathbf{u}, p) admits the asymptotic representation (2.30) - (2.31). On the other hand, by Lemma 3.1 we know that the operator \mathcal{S}_{β}^{l} with $\beta > -1$ is a monomorphism, i.e. the solution is unique. Therefore, the coefficients c_{-m}^{\pm} $(m \in \mathbb{N})$ in the asymptotic formulae (2.30) - (2.31) are uniquely determined by the right-hand side $(\mathbf{f}, g, \mathbf{h})$. In this section we find integral formulae for the coefficients c_{0}^{-} and c_{-m}^{\pm} $(m \in \mathbb{N})$.

We start with the computation of c_0^- .

Lemma 4.1. Let $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta}(\Omega), \beta \in (-2, -1)$, be a solution of problem (1.2)-(1.3) with right-hand side $(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta+1}(\Omega; \partial \Omega)$. Then the coefficient c_{0}^{-} in the asymptotic formula

$$\begin{pmatrix} \mathbf{u}(x) \\ p(x) \end{pmatrix} = \chi(r) \begin{pmatrix} c_0^+ \mathbf{u}_0^+(y,z) + c_0^- \mathbf{u}_0^-(y,z) \\ c_0^+ p_0^+(y) + c_0^- p_0^-(y) \end{pmatrix} + \begin{pmatrix} \tilde{\mathbf{u}}(x) \\ \tilde{p}(x) \end{pmatrix}$$
(4.1)

where $(\tilde{\mathbf{u}}, \tilde{p}) \in \mathcal{D}_{\beta+1}^{l}(\Omega)$ (see (2.30)) admits the integral representations

$$c_0^- = -12\nu \bigg(\int_{\partial\Omega} \mathbf{h} \cdot \mathbf{n} \, ds - \int_{\Omega} g \, dx \bigg). \tag{4.2}$$

Proof. Let us apply to the solutions (\mathbf{u}, p) and $(\mathbf{u}_0^+, p_0^+) = (\mathbf{0}, 1)$ Green's formula in the domain $\Omega_R = \{x \in \Omega : r < R \ (R > 2)\}$:

$$\int_{\Omega_R} (-\nu \Delta \mathbf{u} + \nabla p) \cdot \mathbf{0} \, dx - \int_{\Omega_R} \operatorname{div} \mathbf{u} \, dx + \int_{\partial \Omega_R \cup S_R} \mathbf{u} \cdot \mathbf{n} \, ds = 0$$

= $\partial \Omega \cap \Omega_R$ and $S_R = \{x \in \Omega : x = R\}$. This furnishes

where $\partial \Omega_R = \partial \Omega \cap \Omega_R$ and $S_R = \{x \in \Omega : r = R\}$. This furnishes

$$-\int_{\Omega_R} g \, dx + \int_{\partial\Omega_R} \mathbf{h} \cdot \mathbf{n} \, ds + \int_{S_R} \mathbf{u} \cdot \mathbf{n} \, ds = 0.$$
(4.3)

Taking into account representation (4.1) for **u**, we compute

$$\begin{split} \int_{S_R} \mathbf{u} \cdot \mathbf{n} \, ds &= c_0^- \int_{S_R} \mathbf{u}_0^- \cdot \mathbf{n} \, ds + \int_{S_R} \tilde{\mathbf{u}} \cdot \mathbf{n} \, ds \\ &= -\frac{c_0^-}{4\nu\pi} \int_{S_R} z(z-1) \nabla \ln r \cdot \nabla r \, ds + \int_{S_R} \tilde{\mathbf{u}} \cdot \mathbf{n} \, ds \\ &= \frac{c_0^-}{12\nu} + \int_{S_R} \tilde{\mathbf{u}} \cdot \mathbf{n} \, ds. \end{split}$$

Since $\tilde{\mathbf{u}} \in L^2_{\beta+2}(\Omega), \beta \in (-2, -1)$, we get

$$\left| \int_{S_R} \tilde{\mathbf{u}} \cdot \mathbf{n} \, ds \right| \le c \left(R^{-2(\beta+2)+1} \int_{S_R} (1+r)^{2(\beta+2)} |\tilde{\mathbf{u}}|^2 ds \right)^{\frac{1}{2}}$$
$$\le c \left(R \int_{S_R} (1+r)^{2(\beta+2)} |\tilde{\mathbf{u}}|^2 ds \right)^{\frac{1}{2}}$$
$$= o(R^{-1}) \to 0 \quad \text{as } R \to \infty$$

(at least for some subsequence R_l). Substituting the last two formulae into (4.3) and passing to the limit as $R_l \to \infty$, we derive (4.2)

In the previous lemma we have already used a special solution of the homogeneous Stokes problem $\boldsymbol{\zeta}_0^+(x) = \left(\mathbf{u}_0^+(y,z), p_0^+(y)\right)^T = (\mathbf{0},1)^T$. Let us construct special solutions $\boldsymbol{\zeta}_m^{\pm} = (\boldsymbol{\xi}_m^{\pm}, \eta_m^{\pm})^T$ for $m \in \mathbb{N}$.

Lemma 4.2. For every $m \in \mathbb{N}$ there exist solutions ζ_m^{\pm} of the homogeneous Stokes problem (1.2) - (1.3) which admit the asymptotic forms

$$\boldsymbol{\zeta}_{m}^{\pm} = \begin{pmatrix} \boldsymbol{\xi}_{m}^{\pm}(x) \\ \boldsymbol{\eta}_{m}^{\pm}(x) \end{pmatrix} = \begin{pmatrix} \mathbf{u}_{m}^{\pm}(y,z) \\ \boldsymbol{p}_{m}^{\pm}(y) \end{pmatrix} + \begin{pmatrix} \tilde{\boldsymbol{\xi}}_{m}^{\pm}(x) \\ \tilde{\boldsymbol{\eta}}_{m}^{\pm}(x) \end{pmatrix} \qquad (m \in \mathbb{N})$$
(4.4)

where $\left(\mathbf{u}_{m}^{\pm}(y,z), p_{m}^{\pm}(y)\right)^{(1)}$ are given by (2.31) and $(\tilde{\boldsymbol{\xi}}_{m}^{\pm}, \tilde{\eta}_{m}^{\pm}) \in \mathcal{D}_{\gamma}^{l}(\Omega)$ with arbitrary γ satisfying the relation

$$-1 < \gamma < 0. \tag{4.5}$$

Proof. We shall look for the solution $(\boldsymbol{\xi}_m^{\pm}, \eta_m^{\pm})$ in form (4.4). Since $(\mathbf{u}_m^{\pm}, p_m^{\pm})$ solve the homogeneous Stokes problem (1.2) - (1.3) in the layer II, we obtain for $(\tilde{\boldsymbol{\xi}}_m^{\pm}, \tilde{\eta}_m^{\pm})$ the non-homogeneous problem (1.2) - (1.3) with right-hand side $(\mathbf{0}, 0, \mathbf{h}_m^{\pm})$ where $\mathbf{h}_m^{\pm} = -\mathbf{u}_m^{\pm}|_{\partial\Omega}$ has compact support contained in $\{x \in \partial\Omega : |x| < 1\}$. Thus, $(\mathbf{0}, 0, \mathbf{h}_m^{\pm}) \in \mathcal{R}_{\gamma}^l(\Omega; \partial\Omega) \subset \mathcal{R}_{\gamma-1}^l(\Omega; \partial\Omega)$. Since $(\gamma - 1) \in (-2, -1)$, the operator $\mathcal{S}_{\gamma-1}^l$ is of Fredholm type (Theorem 3.1) and dim coker $\mathcal{S}_{\gamma-1}^l = 0$ (Lemma 3.1). Therefore, problem (1.2) - (1.3) is solvable in $\mathcal{D}_{\gamma-1}^l(\Omega)$ for all right-hand sides from $\mathcal{R}_{\gamma-1}^l(\Omega; \partial\Omega)$ and we find the remainder $(\tilde{\boldsymbol{\xi}}_m^{\pm}, \tilde{\eta}_m^{\pm}) \in \mathcal{D}_{\gamma-1}^l(\Omega)$. Moreover, $(\tilde{\boldsymbol{\xi}}_m^{\pm}, \tilde{\eta}_m^{\pm})$ admits the asymptotic representation (4.1):

$$\begin{pmatrix} \tilde{\boldsymbol{\xi}}_{m}^{\pm}(x) \\ \tilde{\eta}_{m}^{\pm}(x) \end{pmatrix} = \chi(r) \begin{pmatrix} c_{0}^{+} \mathbf{u}_{0}^{+}(y,z) + c_{0}^{-} \mathbf{u}_{0}^{-}(y,z) \\ c_{0}^{+} p_{0}^{+}(y) + c_{0}^{-} p_{0}^{-}(y) \end{pmatrix} + \begin{pmatrix} \widehat{\boldsymbol{\xi}}_{m}^{\pm}(x) \\ \widehat{\eta}_{m}^{\pm}(x) \end{pmatrix}$$

with $(\widehat{\boldsymbol{\xi}}_{m}^{\pm}, \widehat{\eta}_{m}^{\pm}) \in \mathcal{D}_{\gamma}^{l}(\Omega)$. We normalize $(\widetilde{\boldsymbol{\xi}}_{m}^{\pm}, \widetilde{\eta}_{m}^{\pm})$ by the condition $\lim_{|x|\to\infty} \widetilde{\eta}_{m}^{\pm}(x) = 0$ so that $c_{0}^{+} = 0$. Since $\widetilde{\boldsymbol{\xi}}_{m}^{\pm}|_{\partial\Omega} = -\mathbf{u}_{m}^{\pm}|_{\partial\Omega}$ on $\partial\Omega$, from (4.2) we get

$$c_0^- = 12\nu \int_{\partial\Omega} \mathbf{h}_m^{\pm} \cdot \mathbf{n} \, ds = 12\nu \int_{\Omega} \operatorname{div} \mathbf{u}_m^{\pm}(y, z) \, dx = 0 \qquad (m \in \mathbb{N}).$$

Thus we obtain $(\hat{\boldsymbol{\xi}}_m^{\pm}, \hat{\eta}_m^{\pm}) = (\tilde{\boldsymbol{\xi}}_m^{\pm}, \tilde{\eta}_m^{\pm}) \in \mathcal{D}_{\gamma}^l(\Omega)$ and this concludes the proof of the lemma \blacksquare

Let us compute now the coefficients c_{-m}^{\pm} $(m \in \mathbb{N})$.

Lemma 4.3. Let $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta}(\Omega)$ $(\beta > -1)$ be a solution of problem (1.2) - (1.3)with right-hand side $(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta+k}(\Omega; \partial \Omega)$ $(k \in \mathbb{N})$. Then the coefficients c^{\pm}_{-m} in the asymptotic formulae (2.30) - (2.31) admit the integral representations

$$c_{-m}^{\pm} = -12\nu \left(\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\xi}_{m}^{\pm} dx - \int_{\Omega} g \, \eta_{m}^{\pm} dx + \int_{\partial\Omega} \mathbf{h} \cdot (\eta_{m}^{\pm} \mathbf{n} - \nu \partial_{n} \boldsymbol{\xi}_{m}^{\pm}) ds \right)$$

$$\left(-\beta - k - 1 < -m < -\beta - 1 \right)$$

$$(4.6)$$

¹⁾ Note that for $m \in \mathbb{N}$ the functions p_m^{\pm} are harmonic polynomials and therefore $(\mathbf{u}_m^{\pm}, p_m^{\pm}) \in C^{\infty}(\bar{\Omega})$.

where $(\boldsymbol{\xi}_m^{\pm}, \eta_m^{\pm})$ are the solutions of the homogeneous problem (1.2) – (1.3) constructed in Lemma 4.2.

Proof. Let us apply to (\mathbf{u}, p) and $(\boldsymbol{\xi}_m^{\pm}, \eta_m^{\pm})$ Green's formula in the domain $\Omega_R = \{x \in \Omega : r < R \ (R > 2)\}$:

$$\int_{\Omega_R} (-\nu \Delta \mathbf{u} + \nabla p) \cdot \boldsymbol{\xi}_m^{\pm} dx - \int_{\Omega_R} \operatorname{div} \mathbf{u} \, \eta_m^{\pm} dx + \int_{\partial \Omega_R \cup S_R} \mathbf{u} \cdot (\mathbf{n} \eta_m^{\pm} - \nu \partial_n \boldsymbol{\xi}_m^{\pm}) \, ds \quad (4.7)$$
$$= \int_{\Omega_R} (-\nu \Delta \boldsymbol{\xi}_m^{\pm} + \nabla \eta_m^{\pm}) \cdot \mathbf{u} \, dx - \int_{\Omega_R} \operatorname{div} \boldsymbol{\xi}_m^{\pm} \, p \, dx + \int_{\partial \Omega_R \cup S_R} \boldsymbol{\xi}_m^{\pm} \cdot (\mathbf{n} p - \nu \partial_n \mathbf{u}) \, ds.$$

Since $(\boldsymbol{\xi}_m^{\pm}, \eta_m^{\pm})$ fulfils the homogeneous equations (1.2) - (1.3), from (4.7) we derive

$$\int_{\Omega_R} \mathbf{f} \cdot \boldsymbol{\xi}_m^{\pm} dx - \int_{\Omega_R} g \, \eta_m^{\pm} dx + \int_{\partial \Omega_R} \mathbf{h} \cdot (\mathbf{n} \eta_m^{\pm} - \nu \partial_n \boldsymbol{\xi}_m^{\pm}) \, ds + \int_{S_R} \mathbf{u} \cdot (\mathbf{n} \eta_m^{\pm} - \nu \partial_n \boldsymbol{\xi}_m^{\pm}) \, ds = \int_{S_R} \boldsymbol{\xi}_m^{\pm} \cdot (\mathbf{n} p - \nu \partial_n \mathbf{u}) \, ds.$$
(4.8)

Let us calculate the right-hand side of (4.8). Taking account of the asymptotic representations (2.30) - (2.31) and (4.4) for (\mathbf{u}, p) and $(\boldsymbol{\xi}_m^{\pm}, \eta_m^{\pm})$, respectively, we get

$$\int_{S_R} \boldsymbol{\xi}_m^{\pm} \cdot (\mathbf{n}p - \nu \partial_n \mathbf{u}) \, ds = \int_{S_R} \tilde{\boldsymbol{\xi}}_m^{\pm} \cdot (\mathbf{n}p - \nu \partial_n \mathbf{u}) \, ds \qquad (4.9)$$

$$+ \int_{S_R} \mathbf{u}_m^{\pm} \cdot \sum_{-\beta - k - 1 < -l < -\beta - 1} \left[\mathbf{n} \left(c_{-l}^+ p_{-l}^+ + c_{-l}^- p_{-l}^- \right) - \nu \left(c_{-l}^+ \partial_n \mathbf{u}_{-l}^+ + c_{-l}^- \partial_n \mathbf{u}_{-l}^- \right) \right] ds.$$

The first integral in the right-hand side here can be majorated by

$$\left(R \int_{S_R} |\tilde{\boldsymbol{\xi}}_m^{\pm}|^2 (1+r^2)^{\gamma+1} ds \right)^{\frac{1}{2}} \left(R \int_{S_R} |p|^2 (1+r^2)^{\beta} R^{-2(\beta+\gamma+1)-2} ds + R \int_{S_R} |\mathbf{u}|^2 (1+r^2)^{\beta+1} R^{-2(\beta+\gamma+1)-4} ds \right)^{\frac{1}{2}} \le c \left(R \int_{S_R} |\tilde{\boldsymbol{\xi}}_m^{\pm}|^2 (1+r^2)^{\gamma+1} ds \right)^{\frac{1}{2}} \qquad (4.10)$$
$$\times \left(R \int_{S_R} |p|^2 (1+r^2)^{\beta} ds + R^{-1} \int_{S_R} |\mathbf{u}|^2 (1+r^2)^{\beta+1} ds \right)^{\frac{1}{2}}.$$

Since $\tilde{\boldsymbol{\xi}}_{m}^{\pm} \in L^{2}_{\gamma+1}(\Omega)$, $\mathbf{u} \in L^{2}_{\beta+1}(\Omega)$, $p \in L^{2}_{\beta}(\Omega)$ (see the definition of the space $\mathcal{D}_{\beta}^{l}(\Omega)$), expression (4.10) vanishes as $R \to \infty$ (at least, for some subsequence $R_{j} \to \infty$). Further, using the relations

$$\int_{0}^{2\pi} \cos(m\varphi) \sin(|l|\varphi) \, d\varphi = 0$$
$$\int_{0}^{2\pi} \sin(|m|\varphi) \sin(|l|\varphi) \, d\varphi = \int_{0}^{2\pi} \cos(m\varphi) \cos(l\varphi) \, d\varphi = \pi \delta_{m,l}$$

we find that

$$\int_{S_{R}} \mathbf{u}_{m}^{\pm} \cdot \sum_{-\beta-k<-l<-\beta-1} \left[\mathbf{n} (c_{-l}^{+} p_{-l}^{+} + c_{-l}^{-} p_{-l}^{-}) - \nu (c_{-l}^{+} \partial_{n} \mathbf{u}_{-l}^{+} + c_{-l}^{-} \partial_{n} \mathbf{u}_{-l}^{-}) \right] ds
= \int_{S_{R}} \mathbf{u}_{m}^{\pm} \cdot \mathbf{n} (c_{-m}^{+} p_{-m}^{+} + c_{-m}^{-} p_{-m}^{-}) ds
- \nu \int_{S_{R}} \mathbf{u}_{m}^{\pm} \cdot (c_{-m}^{+} \partial_{n} \mathbf{u}_{-m}^{+} + c_{-m}^{-} \partial_{n} \mathbf{u}_{-m}^{-}) ds
= c_{-m}^{\pm} \int_{S_{R}} (2\nu)^{-1} z(z-1) \partial_{n} p_{m}^{\pm} p_{-m}^{\pm} ds + R^{-2} c(m)
= -\frac{1}{24\nu} c_{-m}^{\pm} + o(R^{-1}).$$
(4.11)

Analogously one can compute the integral

$$\int_{S_R} \mathbf{u} \cdot (\mathbf{n}\eta_m^{\pm} - \nu \partial_n \boldsymbol{\xi}_m^{\pm}) \, ds = \frac{1}{24\nu} c_{-m}^{\pm} + o(R^{-1}). \tag{4.12}$$

Substituting formulae (4.9) - (4.12) into (4.8) and passing $R \to \infty$, we derive formula (4.6)

Now we are in a position to compute the dimensions of ker \mathcal{S}^l_β and coker \mathcal{S}^l_β .

Theorem 4.1.

- (i) If $\beta \in (k-1,k)$ $(0 \le k \in \mathbb{Z})$, then dim coker $\mathcal{S}_{\beta}^{l} = 2k+1$.
- (ii) If $\beta \in (q-1,q) \ (\mathbb{Z} \ni q \le -1)$, then dim ker $\mathcal{S}^l_{\beta} = -2q 1$.
- (iii) If $\beta \in (p, p+1)$ $(p \in \mathbb{Z})$, then $\operatorname{Ind} S^l_{\beta} = -2p 1$.

Proof. Let $(\mathbf{f}, g, \mathbf{h}) \in \mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega)$ $(\beta \in (k - 1, k), k \geq 0)$. Then there exists a solution $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta_{1}}(\Omega)$ $(\beta_{1} = \beta - k - 1 \in (-2, -1))$ of problem (1.2) - (1.3). (Note that $\mathcal{R}^{l}_{\beta}(\Omega; \partial \Omega) \subset \mathcal{R}^{l}_{\beta_{1}}(\Omega; \partial \Omega)$ and by Lemma 3.1 the operator $\mathcal{S}^{l}_{\beta_{1}}$ $(\beta_{1} \in (-2, -1))$ is an epimorphism.) For (\mathbf{u}, p) there holds the asymptotic formula (2.30) where the constants c_{0}^{-} and c_{-m}^{\pm} $(m = 1, \ldots, k)$ admit the integral representations (4.2) and (4.6), respectively. Hence under 2k + 1 compatibility conditions

$$\int_{\partial\Omega} \mathbf{h} \cdot \mathbf{n} \, ds - \int_{\Omega} g \, dx = 0$$
$$\int_{\Omega} \mathbf{f} \cdot \boldsymbol{\xi}_m^{\pm} dx - \int_{\Omega} g \, \eta_m^{\pm} dx + \int_{\partial\Omega} \mathbf{h} \cdot (\eta_m^{\pm} \mathbf{n} - \nu \partial_n \boldsymbol{\xi}_m^{\pm}) \, ds = 0 \quad (m = 1, \dots, k)$$

we obtain

$$\begin{pmatrix} \mathbf{u}(x) \\ p(x) \end{pmatrix} = c_0^+ \begin{pmatrix} \mathbf{0} \\ 1 \end{pmatrix} + \begin{pmatrix} \tilde{\mathbf{u}}(x) \\ \tilde{p}(x) \end{pmatrix}$$

where $(\tilde{\mathbf{u}}, \tilde{p}) \in \mathcal{D}^{l}_{\beta}(\Omega)$. Normalizing this solution by the condition $\lim_{|x|\to\infty} p(x) = 0$ we get $(\mathbf{u}, p) = (\tilde{\mathbf{u}}, \tilde{p}) \in \mathcal{D}^{l}_{\beta}(\Omega)$. Thus assuming 2k + 1 compatibility conditions to be valid, we have proved the existence of the solution $(\mathbf{u}, p) \in \mathcal{D}^{l}_{\beta}(\Omega)$. Since for $\beta \in$ (k-1,k) $(k \ge 0)$ the operator S^l_β is a Fredholm monomorphism (see Lemma 3.1), these conditions are necessary. Therefore, we conclude

dim coker
$$\mathcal{S}^l_{\beta} = 2k + 1.$$

Statement (ii) follows now from the fact that

$$\dim \ker \mathcal{S}^l_{\beta} = \dim \operatorname{coker} \mathcal{S}^l_{-\beta-2}$$

Statement (iii) has become evident

5. Asymptotic conditions at infinity

As follows from Lemma 3.1, there is no admissible β such that the operator S_{β}^{l} is of index zero. In order to compensate this lack we introduce function spaces with detached asymptotics and impose conditions at infinity. For $\beta < -1$ the operator S_{β}^{l} is an epimorphism, and for $\beta > -1$, S_{β}^{l} is a monomorphism (see Lemma 3.1). Let us take

$$\beta_{\pm} = -1 \pm N \pm \delta \qquad \left(N \in \mathbb{N}_0, \delta \in (0, 1)\right). \tag{5.1}$$

For simplicity we fix the regularity index l and omit it in notations. Moreover, we denote

$$\mathcal{S}_{\beta_{\pm}}^{l} = \mathcal{S}_{\pm}, \qquad \mathcal{D}_{\beta_{\pm}}^{l}(\Omega) = \mathcal{D}_{\pm}(\Omega), \qquad \mathcal{R}_{\beta_{\pm}}^{l}(\Omega;\partial\Omega) = \mathcal{R}_{\pm}(\Omega;\partial\Omega).$$

Let us consider the mapping $\mathcal{S}_{-} : \mathcal{D}_{-}(\Omega) \longmapsto \mathcal{R}_{-}(\Omega; \partial \Omega)$ and its preimage $\mathbb{D}_{\pm}(\Omega)$ of the lineal $\mathcal{R}_{+}(\Omega; \partial \Omega) \subset \mathcal{R}_{-}(\Omega; \partial \Omega)$ (since the preimage is related both to the indices "+" and "-", we mark it by "±"). Due to Theorem 2.4, $\mathbb{D}_{\pm}(\Omega)$ consists of vector functions $\mathbf{U} = (\mathbf{u}, p)$ taking the asymptotic form

$$\mathbf{U} = \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \sum_{-N \le m \le N} \chi \left[c_m^+ \begin{pmatrix} \mathbf{u}_m^+ \\ p_m^+ \end{pmatrix} + c_m^- \begin{pmatrix} \mathbf{u}_m^- \\ p_m^- \end{pmatrix} \right] + \begin{pmatrix} \tilde{\mathbf{u}} \\ \tilde{p} \end{pmatrix}$$
(5.2)

where $\tilde{\mathbf{U}} = (\tilde{\mathbf{u}}, \tilde{p}) \in \mathcal{D}_{+}(\Omega)$ and $(\mathbf{u}_{m}^{\pm}, p_{m}^{\pm})$ are given by (2.31). This means that $\mathbb{D}_{\pm}(\Omega)$ is formed by the sum of linear combinations of the special solutions $(\mathbf{u}_{m}^{\pm}, p_{m}^{\pm})$ and the "rapidly" decaying remainder $\tilde{\mathbf{U}} = (\tilde{\mathbf{u}}, \tilde{p}) \in \mathcal{D}_{+}(\Omega)$. Furthermore, the quotient space $\mathbb{D}_{\pm}(\Omega)/\mathcal{D}_{+}(\Omega)$ can be identified with \mathbb{R}^{4N+2} and we introduce in $\mathbb{D}_{\pm}(\Omega)$ the norm induced by the asymptotic representation (5.2)

$$\|\mathbf{U}; \mathbb{D}_{\pm}(\Omega)\| = \left(\|\tilde{\mathbf{U}}; \mathcal{D}_{+}(\Omega)\|^{2} + \|\mathbf{a}; \mathbb{R}^{2N+1}\|^{2} + \|\mathbf{b}; \mathbb{R}^{2N+1}\|^{2}\right)^{\frac{1}{2}}$$

where **a** and **b** are columns of height 2N + 1,

$$\mathbf{a} = (c_0^-, c_{-1}^+, c_{-1}^-, \dots, c_{-N}^+, c_{-N}^-)^T$$

$$\mathbf{b} = (c_0^+, c_1^+, c_1^-, \dots, c_N^+, c_N^-)^T.$$

(5.3)

Let \mathfrak{S}_{\pm} be the restriction of \mathcal{S}_{-} on $\mathbb{D}_{\pm}(\Omega)$. Due to estimate (2.32),

$$\|\mathbf{a};\mathbb{R}^{2N+1}\| + \|\mathbf{b};\mathbb{R}^{2N+1}\| \le c\Big(\|\mathfrak{S}_{\pm}\mathbf{U};\mathcal{R}_{+}(\Omega;\partial\Omega)\| + \|(\mathbf{u},p);L^{2}_{\beta_{-}}(\Omega)\|\Big).$$

Therefore the operator

$$\mathfrak{S}_{\pm}: \mathbb{D}_{\pm}(\Omega) \longmapsto \mathcal{R}_{+}(\Omega; \partial \Omega) \tag{5.4}$$

of problem (1.2) - (1.3) is continuous. Moreover, in view of Theorems 3.1 and 4.1, it inherits properties of S_{-} and the following assertion is valid.

Theorem 5.1. The mapping (5.4) is a Fredholm epimorphism and

$$\dim \ker \mathfrak{S}_{\pm} = \dim \ker \mathfrak{S}_{-} = 2N + 1. \tag{5.5}$$

There appear the continuous projections

$$\mathbb{D}_{\pm}(\Omega) \ni \mathbf{U} \longmapsto \pi_1 \mathbf{U} = \mathbf{a} \in \mathbb{R}^{2N+1}$$
$$\mathbb{D}_{\pm}(\Omega) \ni \mathbf{U} \longmapsto \pi_0 \mathbf{U} = \mathbf{b} \in \mathbb{R}^{2N+1}.$$
(5.6)

We also determine

$$\pi = \begin{pmatrix} \pi_1 \\ \pi_0 \end{pmatrix} \colon \mathbb{D}_{\pm}(\Omega) \longmapsto \mathbb{R}^{4N+2}.$$

We treat $\pi_0 \mathbf{U}$, $\pi_1 \mathbf{U}$ and $\pi \mathbf{U}$ as columns in \mathbb{R}^{2N+1} , \mathbb{R}^{2N+1} and \mathbb{R}^{4N+2} , respectively.

Let us connect with Green's formula (2.33) the linear form

$$Q_{\Omega}(\mathbf{U},\mathbf{V}) = Q_{\Omega}(\mathbf{u},p;\,\mathbf{v},q)$$

defined by

$$Q_{\Omega}(\mathbf{U};\mathbf{V}) \equiv (-\nu\Delta\mathbf{u} + \nabla p, \mathbf{v})_{\Omega} + (-\operatorname{div}\mathbf{u}, q)_{\Omega} + (\mathbf{u}, q\mathbf{n} - \nu\partial_{n}\mathbf{v})_{\partial\Omega} - (\mathbf{u}, -\nu\Delta\mathbf{v} + \nabla q)_{\Omega} - (p, -\operatorname{div}\mathbf{v})_{\Omega} - (p\mathbf{n} - \nu\partial_{n}\mathbf{u}, \mathbf{v})_{\partial\Omega}$$
(5.7)

where $(\cdot, \cdot)_{\Omega}$ and $(\cdot, \cdot)_{\partial\Omega}$ stand for extensions of the scalar products in $L^2(\Omega)$ and $L^2(\partial\Omega)$, respectively. Since $(\mathbf{u}_m^{\pm}, p_m^{\pm})$ satisfy the homogeneous equations (1.2) - (1.3) in $\Pi \setminus \{x \in \mathbb{R}^3 : r = 0\}$, for any $\mathbf{U}, \mathbf{V} \in \mathbb{D}_{\pm}(\Omega)$ we get the inclusions (see (5.2))

$$\left(\begin{array}{c} -\nu\Delta\mathbf{u} + \nabla p, -\operatorname{div}\mathbf{u}, \mathbf{u}|_{\partial\Omega} \end{array} \right) \\ \left(-\nu\Delta\mathbf{v} + \nabla q, -\operatorname{div}\mathbf{v}, \mathbf{v}|_{\partial\Omega} \right) \end{array} \right\} \in \mathcal{R}_{+}(\Omega, \partial\Omega)$$

and therefore all integrals in the left-hand side of (5.7) converge. Hence Q_{Ω} is a continuous antisymmetric form on $\mathbb{D}_{\pm}(\Omega)^2$,

$$Q_{\Omega}(\mathbf{V};\mathbf{U}) = -Q_{\Omega}(\mathbf{U};\mathbf{V}).$$
(5.8)

Due to Lemma 2.7,

$$Q_{\Omega}(\mathbf{V};\mathbf{U}) = Q_{\Omega}(\mathbf{U};\mathbf{V}) = 0$$
(5.9)

for all $\mathbf{V} \in \mathbb{D}_+(\Omega) \subset \mathbb{D}_{\pm}(\Omega)$ and all $\mathbf{U} \in \mathbb{D}_{\pm}(\Omega)$. Thus Q_{Ω} can be naturally treated as a form defined on the quotient space

$$\left(\mathbb{D}_{\pm}(\Omega)/\mathcal{D}_{+}(\Omega)\right)^{2} \approx \mathbb{R}^{4N+2} \times \mathbb{R}^{4N+2}$$

Lemma 5.1. If $\mathbf{U}, \mathbf{V} \in \mathbb{D}_{\pm}(\Omega)$, then

$$Q_{\Omega}(\mathbf{U};\mathbf{V}) = \langle \pi_0 \mathbf{U}, \pi_1 \mathbf{V} \rangle_{2N+1} - \langle \pi_1 \mathbf{U}, \pi_0 \mathbf{V} \rangle_{2N+1}$$
(5.10)

where $\langle \cdot, \cdot \rangle_K = 12\nu [\cdot, \cdot]_K$ with $[\cdot, \cdot]_K$ being the scalar product in \mathbb{R}^K .

Proof. According to the asymptotic form (5.2), we can represent U as sum

$$\mathbf{U} = \begin{pmatrix} \mathbf{u} \\ p \end{pmatrix} = \sum_{1 \le m \le N} \chi \left[c_0^+ \begin{pmatrix} \mathbf{u}_0^+ \\ p_0^+ \end{pmatrix} + c_m^+ \begin{pmatrix} \mathbf{u}_m^+ \\ p_m^+ \end{pmatrix} + c_m^- \begin{pmatrix} \mathbf{u}_m^- \\ p_m^- \end{pmatrix} \right] \\ + \sum_{-N \le m \le -1} \chi \left[c_0^- \begin{pmatrix} \mathbf{u}_0^- \\ p_0^- \end{pmatrix} + c_m^+ \begin{pmatrix} \mathbf{u}_m^+ \\ p_m^+ \end{pmatrix} + c_m^- \begin{pmatrix} \mathbf{u}_m^- \\ p_m^- \end{pmatrix} \right] + \begin{pmatrix} \tilde{\mathbf{u}} \\ \tilde{p} \end{pmatrix} \\ = \mathbf{U}_N + \mathbf{U}_{-N} + \tilde{\mathbf{U}} \quad (\tilde{\mathbf{U}} \in \mathcal{D}_+(\Omega)).$$

Analogously,

$$\mathbf{V} = \mathbf{V}_N + \mathbf{V}_{-N} + \widetilde{\mathbf{V}} \qquad \left(\widetilde{\mathbf{V}} \in \mathcal{D}_+(\Omega)\right)$$

By virtue of (5.9), $Q_{\Omega}(\mathbf{U}, \widetilde{\mathbf{V}}) = Q_{\Omega}(\widetilde{\mathbf{U}}, \mathbf{V}) = 0$ so that

$$Q_{\Omega}(\mathbf{U}, \mathbf{V}) - Q_{\Omega}(\mathbf{U}_{-N}, \mathbf{V}_{N}) - Q_{\Omega}(\mathbf{U}_{N}, \mathbf{V}_{-N}) - Q_{\Omega}(\mathbf{U}_{-N}, \mathbf{V}_{-N})$$

= $Q_{\Omega}(\mathbf{U}_{N}, \mathbf{V}_{N}).$ (5.11)

Arguing as in the proof of Lemmata 4.1 and 4.3 and applying Green's formula in the truncated domain Ω_R , we find that

$$\lim_{R \to \infty} \left(Q_{\Omega_R}(\mathbf{U}_{-N}, \mathbf{V}_N) + Q_{\Omega_R}(\mathbf{U}_N, \mathbf{V}_{-N}) \right) = \langle \pi_1 \mathbf{U}, \pi_0 \mathbf{V} \rangle_{2N+1} - \langle \pi_0 \mathbf{U}, \pi_1 \mathbf{V} \rangle_{2N+1}$$
$$\lim_{R \to \infty} Q_{\Omega_R}(\mathbf{U}_{-N}, \mathbf{V}_{-N}) = 0.$$
(5.12)

Thus, the left-hand side of equality (5.11) is finite. The term $Q_{\Omega_R}(\mathbf{U}_N, \mathbf{V}_N)$ is equal to the sum $\sum_{j=1}^{2N} \alpha_j R^j$ where α_j are constants. Therefore, its limit as $R \to \infty$ can be finite only if $\alpha_j = 0$ (j = 1, ..., 2N; arguing as in the proof of Lemma 4.3, one can compute directly that $\alpha_j = 0$). Thus, we have got the equality $Q_{\Omega}(\mathbf{U}_N, \mathbf{V}_N) = 0$ which together with (5.11) - (5.12) implies (5.10)

• We call (5.10) the generalized Green's formula.

Lemma 5.2. Let

$$\mathbb{X} = \begin{pmatrix} \mathbb{B} \\ \mathbb{S} \end{pmatrix}$$
 and $\mathbb{Y} = \begin{pmatrix} -\mathbb{T} \\ \mathbb{Q} \end{pmatrix}$ (5.13)

where \mathbb{B} , \mathbb{T} , \mathbb{S} , \mathbb{Q} are $(2N+1) \times (4N+2)$ -matrices. Suppose that \mathbb{X} and \mathbb{Y} satisfy the relation

$$\mathbb{Y}^* \mathbb{X} = \mathbb{J} \equiv \begin{pmatrix} \mathbb{O} & \mathbb{I} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix}.$$
 (5.14)

Then the generalized Green's formula (5.10) may be rewritten as

$$(-\nu\Delta\mathbf{u} + \nabla p, \mathbf{v})_{\Omega} + (-\operatorname{div}\mathbf{u}, q)_{\Omega} + (\mathbf{u}, T\mathbf{V})_{\partial\Omega} + \langle \mathbb{B}\pi\mathbf{U}, \mathbb{T}\pi\mathbf{V}\rangle_{2N+1}$$

= $(\mathbf{u}, -\nu\Delta\mathbf{v} + \nabla q)_{\Omega} + (p, -\operatorname{div}\mathbf{v})_{\Omega} + (T\mathbf{U}, \mathbf{v})_{\partial\Omega} + \langle \mathbb{S}\pi\mathbf{U}, \mathbb{Q}\pi\mathbf{V}\rangle_{2N+1}$ (5.15)

where $T\mathbf{U} = (p\mathbf{n} - \nu\partial_n \mathbf{u})|_{\partial\Omega}$.

Proof. Simple algebraic manipulations with matrices turn (5.10) into (5.15) (cf. [12: Section 6.2.2] and [16: Lemma 6.2]) \blacksquare

Remark 5.1.

1) From (5.14) it follows that det $\mathbb{X} \neq 0$ and $\mathbb{Y} = (\mathbb{J}\mathbb{X}^{-1})^*$. Therefore, for any $(2N+1) \times (4N+2)$ -matrix \mathbb{B} , the rank of which is equal to 2N+1, there exist matrices \mathbb{S} , \mathbb{T} , \mathbb{Q} such that (5.13) - (5.15) are fulfilled. If \mathbb{S} is also fixed and det $\binom{\mathbb{B}}{\mathbb{S}} \neq 0$, then \mathbb{T} and \mathbb{Q} are uniquely defined.

2) If $\mathbb{S} = \mathbb{T}$ and $\mathbb{Q} = \mathbb{B}$, Green's formula (5.15) takes the form

$$(-\nu\Delta\mathbf{u} + \nabla p, \mathbf{v})_{\Omega} + (-\operatorname{div}\mathbf{u}, q)_{\Omega} + (\mathbf{u}, T\mathbf{V})_{\partial\Omega} + \langle \mathbb{B}\pi\mathbf{U}, \mathbb{T}\pi\mathbf{V}\rangle_{2N+1}$$

= $(\mathbf{u}, -\nu\Delta\mathbf{v} + \nabla q)_{\Omega} + (p, -\operatorname{div}\mathbf{v})_{\Omega} + (T\mathbf{U}, \mathbf{v})_{\partial\Omega} + \langle \mathbb{T}\pi\mathbf{U}, \mathbb{B}\pi\mathbf{V}\rangle_{2N+1}.$ (5.16)

• We call (5.16) the symmetric generalized Green's formula.

Based on the generalized Green's formulae (5.15) and (5.16) and arguing in the same way as in [12, 16], we provide problem (1.2) - (1.3) with the additional conditions

$$\mathbb{B}\pi \mathbf{U} = \mathbf{H} \in \mathbb{R}^{2N+1}.$$
(5.17)

• We call (5.17) the asymptotic conditions at infinity.

We connect problem (1.2) - (1.3), (5.17) with the mapping

$$\mathbb{D}_{\pm}(\Omega) \ni \mathbf{U} \longmapsto \mathbb{A}\mathbf{U} = (\mathfrak{S}_{\pm}\mathbf{U}, \mathbb{B}\pi\mathbf{U}) \in \mathbb{R}_{\pm}(\Omega; \partial\Omega)$$
(5.18)

where $\mathbb{R}_{\pm}(\Omega; \partial \Omega) = \mathcal{R}_{+}(\Omega; \partial \Omega) \times \mathbb{R}^{2N+1}$. It is clear that \mathbb{A} inherits the Fredholm property from \mathfrak{S}_{\pm} . Furthermore, in (5.18) we observe 2N + 1 additional conditions and therefore the difference of the indices of \mathfrak{S}_{\pm} and \mathbb{A} is equal to 2N + 1, i.e. Ind $\mathbb{A} = 0$. Precisely, this equality follows from

$$\operatorname{Ind} \mathbb{A} = \operatorname{Ind} \left(\mathfrak{S}_{\pm} \Big|_{\{ \mathbf{U} \in \mathbb{D}_{\pm}(\Omega) \colon \mathbb{B}\pi \mathbf{U} = 0 \}} \right) = \operatorname{Ind} \mathfrak{S}_{\pm} - (2N+1) = 0.$$

Theorem 5.2.

- 1) ker $\mathbb{A} = \{ \mathbf{V} \in \ker \mathfrak{S}_{\pm} : \mathbb{B}\pi \mathbf{V} = 0 \}.$
- 2) If the generalized Green's formula (5.15) is valid, then

$$\operatorname{coker} \mathbb{A} = \Big\{ \big(\mathbf{V}, T\mathbf{V} \big|_{\partial\Omega}, \mathbb{T}\pi\mathbf{V} \big) : \, \mathbf{V} \in \ker \mathfrak{S}_{\pm}, \, \mathbb{Q}\pi\mathbf{V} = 0 \Big\}.$$
(5.19)

Proof. The first assertion follows from the inclusion ker $\mathbb{A} \subset \ker \mathfrak{S}_{\pm}$, the second one has been proved in [12: Proposition 6.2.5] (see also [16: Theorem 6.5])

The subspace dim ker \mathfrak{S}_{\pm} contains the solution $\boldsymbol{\zeta}_{0}^{+} = (\mathbf{0}, 1)$ and the solutions $\boldsymbol{\zeta}_{m}^{\pm} = (\boldsymbol{\xi}_{m}^{\pm}, \eta_{m}^{\pm})$ $(m = 1, \ldots, N)$ of the homogeneous problem (1.2) - (1.3) (see Lemma 4.2). Since the dimension of ker \mathfrak{S}_{\pm} coincides with the number of linear independent solutions we have found that ker \mathfrak{S}_{\pm} becomes the linear hull of them:

$$\ker \mathfrak{S}_{\pm} = \mathcal{L}\left\{\boldsymbol{\zeta}_{0}^{+}, \boldsymbol{\zeta}_{1}^{+}, \boldsymbol{\zeta}_{1}^{-}, \dots, \boldsymbol{\zeta}_{N}^{+}, \boldsymbol{\zeta}_{N}^{-}\right\} \equiv \left\{\boldsymbol{\zeta} = \mathfrak{Z}\mathbf{c} : \mathbf{c} \in \mathbb{R}^{2N+1}\right\}$$
(5.20)

where $\mathfrak{Z} = (\boldsymbol{\zeta}_0^+, \boldsymbol{\zeta}_1^+, \boldsymbol{\zeta}_1^-, \dots, \boldsymbol{\zeta}_N^+, \boldsymbol{\zeta}_N^-)$ is a $4 \times (2N+1)$ -matrix-function or, what is the same, a row of solutions. Due to Lemma 4.2, each element $\boldsymbol{\zeta} \in \ker \mathfrak{S}_{\pm}$ can be represented in the form

$$\boldsymbol{\zeta} = \boldsymbol{\mathfrak{Z}}\mathbf{c} = \boldsymbol{\mathfrak{X}}\mathbf{c} - \boldsymbol{\chi}\boldsymbol{\mathfrak{Y}}\boldsymbol{\mathfrak{M}}\mathbf{c} + \boldsymbol{\mathfrak{U}}\mathbf{c} \tag{5.21}$$

where the solution rows \mathfrak{X} and \mathfrak{Y} are defined by

$$\mathfrak{X} = \left(\begin{pmatrix} \mathbf{u}_0^+ \\ p_0^+ \end{pmatrix}, \begin{pmatrix} \mathbf{u}_1^+ \\ p_1^+ \end{pmatrix}, \begin{pmatrix} \mathbf{u}_1^- \\ p_1^- \end{pmatrix}, \dots, \begin{pmatrix} \mathbf{u}_N^+ \\ p_N^+ \end{pmatrix}, \begin{pmatrix} \mathbf{u}_N^- \\ p_N^- \end{pmatrix} \right)$$
$$\mathfrak{Y} = \left(\begin{pmatrix} \mathbf{u}_0^- \\ p_0^- \end{pmatrix}, \begin{pmatrix} \mathbf{u}_{-1}^+ \\ p_{-1}^+ \end{pmatrix}, \begin{pmatrix} \mathbf{u}_{-1}^- \\ p_{-1}^- \end{pmatrix}, \dots, \begin{pmatrix} \mathbf{u}_{-N}^+ \\ p_{-N}^+ \end{pmatrix}, \begin{pmatrix} \mathbf{u}_{-N}^- \\ p_{-N}^- \end{pmatrix} \right),$$

 \mathfrak{M} is a constant $(2N+1) \times (2N+1)$ -matrix and $\widetilde{\mathfrak{U}} \in \mathcal{D}_+(\Omega)^{2N+1}$. Note that

$$\pi_0 \mathfrak{Z} \mathbf{c} = \mathbf{c} \pi_1 \mathfrak{Z} \mathbf{c} = -\mathfrak{M} \mathbf{c}$$

$$(5.22)$$

• We call the matrix \mathfrak{M} the *augmented flow polarization matrix*.

Theorem 5.3. \mathfrak{M} is a symmetric matrix.

Proof. Let \mathbf{c}, \mathbf{C} be arbitrary constant vectors in \mathbb{R}^{2N+1} . Since \mathbf{c}, \mathbf{C} and \mathbf{c}, \mathbf{C} are solutions of the homogeneous problem (1.2) - (1.3) we get $Q_{\Omega}(\mathbf{c}; \mathbf{c}; \mathbf{C}) = 0$. On the other hand, from the generalized Green's formula (5.10) there follows that

$$Q_{\Omega}(\mathbf{3c};\mathbf{3C}) = \langle \pi_0 \mathbf{3c}, \pi_1 \mathbf{3C} \rangle_{2N+1} - \langle \pi_1 \mathbf{3c}, \pi_0 \mathbf{3C} \rangle_{2N+1} \\ = \langle \mathfrak{Mc}, \mathbf{C} \rangle_{2N+1} - \langle \mathbf{c}, \mathfrak{MC} \rangle_{2N+1} \\ = \langle \mathbf{c}, (\mathfrak{M}^* - \mathfrak{M}) \mathbf{C} \rangle_{2N+1} \\ = 0.$$

Thus, $\mathfrak{M} = \mathfrak{M}^* \blacksquare$

Remark 5.2. The matrix \mathfrak{M} has the form $\mathfrak{M} = \begin{pmatrix} 0 & \mathbf{0} \\ \mathbf{0}^T & \mathbb{M} \end{pmatrix}$ where $\mathbf{0} = (0, \dots, 0)$ and \mathbb{M} is a symmetric $2N \times 2N$ -matrix. This follows from the fact that the solution $\boldsymbol{\zeta}_0^+$ has the form $\boldsymbol{\zeta}_0^+ = (\mathbf{0}, 1)^T$ and from the symmetry of \mathfrak{M} .

• We call the matrix \mathbb{M} the flow polarization matrix.

Theorem 5.4. Let $\mathfrak{B} = \mathbb{B} (-\mathfrak{M}, \mathbb{I})^T$ where \mathbb{I} is the unit $(2N+1) \times (2N+1)$ -matrix. Then

$$\dim \ker \mathbb{A} = 2N + 1 - \operatorname{rank} \mathfrak{B}. \tag{5.23}$$

Proof. The elements $\boldsymbol{\zeta} \in \ker \mathfrak{S}_{\pm}$ admit the representation $\boldsymbol{\zeta} = \mathfrak{Z} \mathbf{c}$ ($\mathbf{c} \in \mathbb{R}^{2N+1}$; see (5.21)). Since $\pi_1 \boldsymbol{\zeta} = \mathbf{c}$, $\pi_0 \boldsymbol{\zeta} = -\mathfrak{M} \mathbf{c}$ and due to the symmetry of \mathfrak{M} , $\mathbb{B} \pi \boldsymbol{\zeta} = 0$ if and only if $\mathbb{B} (-\mathfrak{M}, \mathbb{I})^T \mathbf{c} = 0$. Therefore, owing to Theorem 5.2/(1) we conclude (5.23)

Remark 5.3. In view of (5.19) the compatibility conditions for problem (1.2) - (1.3), (5.17) take the form

$$(\mathbf{f}, \mathbf{v})_{\Omega} + (g, q)_{\Omega} + (\mathbf{h}, T\mathbf{U})_{\partial\Omega} + \langle \mathbf{H}, \mathbb{T}\pi\mathbf{V} \rangle_{2N+1} = 0$$
(5.24)

for all $\mathbf{V} = (\mathbf{v}, q) \in \ker \mathfrak{S}_{\pm}$ with $\mathbb{Q}\pi \mathbf{V} = 0$.

In accordance with (5.19), (5.24) it is very natural to say that problems (1.2) - (1.3), (5.17) and (1.2) - (1.3) with additional conditions

$$\mathbb{Q}\pi\mathbf{V} = \mathbf{K} \in \mathbb{R}^{2N+1} \tag{5.25}$$

are adjoint with respect to the generalized Green's formula (5.15). In the case when the symmetric generalized Green's formula (5.16) takes place, problem (1.2) - (1.3), (5.17) becomes formally self-adjoint.

Theorem 5.5.

- 1) If $\Omega = \Pi$, then $\mathbb{M} = \mathbb{O}$.
- **2)** If $\Omega \neq \Pi$ and $\Omega \subset \Pi$, then the matrix \mathbb{M} is positive definite.

Proof. Let $\mathbf{c} = (0, \mathbf{c}')$ with $\mathbf{c}' \in \mathbb{R}^{2N} \setminus \{0\}$ be arbitrary. We take

$$\mathbf{V} = (\mathbf{v}, q) = \mathbf{\mathfrak{Z}}\mathbf{c} = \mathbf{V}^0 + \mathbf{V}^\# \in \ker \mathfrak{S}_\pm$$

where

$$\mathbf{V}^{0} = (\mathbf{v}^{0}, q^{0}) = \mathfrak{X}\mathbf{c}$$
$$\mathbf{V}^{\#} = (\mathbf{v}^{\#}, q^{\#}) = -\chi \mathfrak{Y}\mathfrak{M}\mathbf{c} + \tilde{\mathfrak{U}}\mathbf{c} \in \mathcal{D}_{\gamma}^{l}(\Omega) \quad (\gamma \in (-1, 0))$$

(see (5.21) and Lemma 4.2). By formula (4.6) and the definition of \mathbb{M} we get

$$\langle \mathbb{M}\mathbf{c}',\mathbf{c}' \rangle_{2N} = \int_{\partial\Omega} \mathbf{v}^{\#} \cdot T(\mathbf{V}) \, ds.$$
 (5.26)

(Note that $-\nu\Delta \mathbf{v}^{\#} + \nabla q^{\#} = 0$ and div $\mathbf{v}^{\#} = 0$.) If $\Omega = \Pi$, then \mathbf{V}^{0} is the exact solution of the homogeneous problem (1.2) - (1.3). Hence $\mathbf{V}^{\#} = 0$ and $\mathbb{M} = \mathbb{O}$.

Since $\mathbf{v}^{\#} = -\mathbf{v}^0$ on $\partial\Omega$,

$$\int_{\partial\Omega} \mathbf{v}^{\#} \cdot T(\mathbf{V}) \, ds = \int_{\partial\Omega} \mathbf{v}^{\#} \cdot T(\mathbf{V}^{\#}) \, ds - \int_{\partial\Omega} \mathbf{v}^{0} \cdot T(\mathbf{V}^{0}) \, ds.$$
(5.27)

Integrating by parts in Ω and $\Pi \setminus \Omega$, we derive

$$\int_{\partial\Omega} \mathbf{v}^{\#} \cdot T(\mathbf{V}^{\#}) \, ds = \int_{\Omega} |\nabla \mathbf{v}^{\#}|^2 dx$$

$$\int_{\partial\Omega} \mathbf{v}^0 \cdot T(\mathbf{V}^0) \, ds = -\int_{\Pi \setminus \Omega} |\nabla \mathbf{v}^0|^2 dx.$$
(5.28)

The sign "-" in the second equality of (5.28) appears because of the oposite direction of the outward normal **n**. The Dirichlet integral of $\mathbf{v}^{\#}$ is finite since $\mathbf{V}^{\#} \in \mathcal{D}^{l}_{\gamma}(\Omega)$ for $\gamma \in (-1,0)$. The formula

$$\langle \mathbb{M}\mathbf{c}',\mathbf{c}' \rangle_{2N} = \int_{\Omega} |\nabla \mathbf{v}^{\#}|^2 dx + \int_{\Pi \setminus \Omega} |\nabla \mathbf{v}^0|^2 dx > 0$$

follows from (5.26) - (5.28) and completes the proof

Example 5.1. Let N = 0 and $\mathbb{B} = (1,0)$ is a matrix of size 1×2 . Then the condition $\mathbb{B}\pi \mathbf{U} = \pi_1 \mathbf{U} = c_0^-$ prescribes the total flux of the fluid over the surface S_R . The matrix \mathfrak{Z} consists of one solution $\boldsymbol{\zeta}_0^+$. Hence dim ker $\mathfrak{S}_{\pm} = 1, \pi_1 \mathfrak{Z} = 0$ for all \mathbf{c} and $\mathfrak{M} = \mathbb{O}$ (see (5.22)). We have $\mathfrak{B} = \mathbb{B}(-\mathfrak{M}, \mathbb{I})^T = \mathbb{O}$ and, by Theorem 5.4, dim ker $\mathbb{A} = 1 - \operatorname{rank} \mathfrak{B} = 1$. Therefore the operator \mathbb{A} is an epimorphism with one-dimentional kernel (constant pressure).

If $\mathbb{B} = (0, 1)$, then $\mathbb{B}\pi \mathbf{U} = \pi_0 \mathbf{U} = c_0^+$ prescribes the limit of the pressure component as $r \to \infty$. We get $\pi_0 \Im \mathbf{c} = 1$, $\mathbb{M} = \mathbb{I}$ and $\mathfrak{B} = \mathbb{B}(-\mathfrak{M}, \mathbb{I})^T = \mathbb{I}$. By Theorem 5.4, dim ker $\mathbb{A} = 1 - \operatorname{rank} \mathfrak{B} = 0$ and the operator \mathbb{A} is an isomorphism.

Example 5.2. Let N = 1 and

$$\mathbb{B} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos \alpha & \sin \alpha \\ 0 & 0 & 0 & -\sin \alpha & \cos \alpha \end{pmatrix}.$$

We consider the condition $\mathbb{B}\pi \mathbf{U} = (H_1, H_2, 0)^T$ which prescribes the total flux H_1 over S_R and the linear flux H_2 of \mathbf{u} in the direction $\mathbf{e}^{\alpha} = (\cos \alpha, \sin \alpha)$ (cf. [14]). We obtain $\mathfrak{Z} = \{\boldsymbol{\zeta}_0^+, \boldsymbol{\zeta}_1^+, \boldsymbol{\zeta}_1^-\}$, dim ker $\mathfrak{S}_{\pm} = \mathfrak{Z}$ and

$$\mathfrak{B} = \mathbb{B} \left(-\mathfrak{M}, \mathbb{I} \right)^T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix}.$$

Hence dim ker $\mathbb{A} = 3 - \operatorname{rank} \mathfrak{B} = 1$ and the operator \mathbb{A} is an epimorphism.

If we prescribe instead of the total flux the limit H_1 of the pressure component as $r \to \infty$, we shall take

$$\mathbb{B} = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos \alpha & \sin \alpha \\ 0 & 0 & 0 & 0 & -\sin \alpha & \cos \alpha \end{pmatrix}$$

and consider the condition $\mathbb{B}\pi \mathbf{U} = (H_1, H_2, 0)^T$. In this case we get the unitary matrix

$$\mathfrak{B} = \mathbb{B} \left(-\mathfrak{M}, \mathbb{I} \right)^T = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \alpha & \sin \alpha\\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix},$$

dim ker $\mathbb{A} = 3 - \operatorname{rank} \mathfrak{B} = 0$ and the operator \mathbb{A} is an isomorphism.

References

- Kondratjev, V. A.: Boundary value problems for elliptic equations in domains with conical or angular points (in Russian). Trudy Moskov. Mat. Obshch. 16 (1967), 209 – 292; English transl. in: Trans. Moscow Math. Soc. 16 (1967).
- [2] Kozlov, V. A., Mazja, V. G. and J. Rossmann: *Elliptic Boundary Value Problems in Domains with Point Singularities* (Math. Surv. & Mon.: Vol. 52). Providence (R.I., USA): Amer. Math. Soc. 1997.
- [3] Lions, J. L. and E. Magenes: Nonhomogeneous Boundary Value Problems, Vol. I. Berlin: Springer-Verlag 1972.
- [4] Nazarov, S. A.: Vishik-Lyusternik method for elliptic boundary value problems in regions with conical points. Part I: The problem in a cone (in Russian). Sibirsk. Mat. Zh. 22 (1981)4, 142 - 163; Engl. transl. in: Siberian Math. J. 22 (1982), 594 - 611.

- [5] Nazarov, S. A.: Vishik-Lyusternik method for elliptic boundary value problems in regions with conical points. Part II: The problem in a bounded region (in Russian). Sibirsk. Mat. Zh. 22 (1981)5, 132 - 152; Engl. transl. in: Siberian Math. J. 22 (1982), 753 - 769.
- [6] Nazarov, S. A.: Behavior at infinity of the solutions of Lame and Stokes systems in a sector of a layer (in Russian). Dokl. Akad. Nauk Armenian SSR 87 (1988)4, 156 – 159.
- [7] Nazarov, S. A.: Elastic capacity and polarization of a defect in an elastic layer (in Russian). Mekhanika tverd. tela 5 (1990), 57 65.
- [8] Nazarov, S. A.: The spatial structure of the stress field in the neighbourhood of the corner point of a thin plate (in Russian). Prikl. Mat. & Mech. 55 (1991)4, 523 - 530; Engl. transl. in: J. Appl. Math. & Mech. 55 (1991)4, 523 - 530.
- [9] Nazarov, S. A.: Asymptotics of the solution to a boundary value problem in a thin cylinder with nonsmooth lateral surface (in Russian). Izv. Ross. Akad. Nauk., Ser. Mat. 57 (1993)1, 202 - 239; Engl. transl. in: Math. Izvestiya 42 (1994)1, 183 - 217.
- [10] Nazarov, N. A.: Asymptotic expansions at infinity of solutions to theory elasticity problem in a layer (in Russian). Trudy Moskov. Mat. Obschch. 60 (1998), 3 – 97.
- [11] Nazarov, S. A. and B. A. Plamenevskii: Asymptotics of the spectrum of the Neumann problem in singularly perturbed thin domains (in Russian). Algebra i Analiz 2 (1990)2, 85 111; Engl. transl. in: Leningrad Math. J. 2 (1991)2, 287 311.
- [12] Nazarov, S. A. and B. A. Plamenevskii: Elliptic Boundary Value Problems in Domains with Piecewise Smooth Boundaries. Berlin: Walter de Gruyter & Co 1994.
- [13] Nazarov, S. A. and K. Pileckas: The Fredholm property of the Neumann problem operator in the domains that are layer-like at infinity (in Russian). Algebra i Analiz8 (1996)6, 57 - 104; Engl. transl. in: St. Petersburg Math. J. 8 (1997)6, 951 - 983.
- [14] Nazarov, S. A. and K. Pileckas: On the solvability of the Stokes and Navier-Stokes problems in the domains that are layer-like at infinity. J. Math. Fluid Mech. 1 (1999)1, 78 – 116.
- [15] Nazarov, S. A. and K. Pileckas: The asymptotic properties of the solutions to the Stokes problem in domains that are layer-like at infinity. J. Math. Fluid. Mech. 1 (1999)2, 131 - 167.
- [16] Nazarov, S. A. and K. Pileckas: Asymptotic conditions at infinity for the Stokes and Navier-Stokes problems in domains with cylindric outlets to infinity. Quaderni di Matematica, Adv. in Fluid Dyn. 4 (1999), 141 – 243.
- [17] Nečas, J.: Les mèthodes directes en thèorie des èquations elliptiques. Prague: Academia 1967.
- [18] Peetre, J.: Another approach to elliptic boundary problems. Comm. Pure Appl. Math. 14 (1961), 711 731.
- [19] Roitberg, Ya. A. and Z. G. Sheftel: A theorem on homeomorphism for elliptic systems and its application (in Russian). Mat. Sb. 78 (1969), 446 – 472; Engl. transl. in: Math. USSR Sb. 7 (1969), 439 – 465.

Received 10.03.2000