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A Discretised Nonlinear Eigenvalue Problem
with

Many Spurious Branches of Solutions

C. A. Stuart and G. Vuillaume

Abstract. We treat an example of a nonlinear eigenvalue problem in L2(0, 1) which can
be solved explicitly. It has a single branch of non-trivial solutions. Discretisation reduces
the problem to a finite-dimensional one having many branches of non-trivial solutions. We
investigate the convergence of these approximate solutions.
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1. Introduction

In this paper we consider an example in the theory of equations of the type

Su−N(u) = λu for u ∈ H \ {0} (1)

where S : H → H is a positive self-adjoint operator acting on a real Hilbert space
H and N : H → H is a nonlinear operator with N(0) = 0. Our goal is to expose,
through a particular example of (1), a problem which can occur when we consider finite-
dimensional approximations of (1). In fact this example shows us that the approximation
has many branches of solutions which have no relevence for the initial problem (1). We
show moreover why these branches of solutions do not converge to solutions of the initial
problem.

In Section 2 we introduce our basic example of equation (1). Then, in Section 3, we
make a discretisation to reduce the initial problem to a finite-dimensional problem. In
Sections 4 and 5 we show that only one branch of solutions of the approximate problem
converges to a branch of solutions of the initial problem and that the solutions on the
other branches do not converge to solutions of the initial problem. Finally, in Section
6, we consider the same problem as above in relation to the spectrum of S.

General results concerning the existence and bifurcation of solutions for equation
(1) are given in [1 - 4] and variants of the example discussed below are used to illus-
trate the sharpness of the conclusions in [1, 4]. Our observations concerning discrete
approximations apply to such variants too but we feel it is sufficient to exhibit them in
the simplest context. More general situations are treated in [5].
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2. Example

Let H be the real Hilbert space L2(0, 1) with the usual scalar product 〈·, ·〉 and norm
‖ · ‖. A bounded, positive, self-adjoint operator, S : H → H, is defined by

Su = fu for u ∈ H (2)

where f : [0, 1] → R is the function defined by f(x) = x2. If σ(S) denotes the spectrum
of S (and ρ(S) = R \ σ(S) denotes the resolvent set of S), it is easy to check that
σ(S) = Im f = [0, 1] and that S has no eigenvalues. For σ > 0, we define N : H → H
by

N(u)(x) = |I(u)|σI(u) for x ∈ [0, 1] (3)

where I(u) =
∫ 1

0
u(x) dx. Since |I(u)| ≤ ‖u‖, it follows that N(u) ∈ H. With the

operators defined by (2) and (3), equation (1) becomes

x2u(x)− |I(u)|σI(u) = λu(x) a.e. on [0, 1] for (λ, u) ∈ R× [H \ {0}] (4)

and as we now show, it can be solved explicitly.

Since I(u) is constant on [0, 1], any solution of (4) must have the form

u(x) = cdλ(x) a.e. on [0, 1] (5)

where c 6= 0 is a constant and dλ(x) = (x2 − λ)−1. Furthermore, a function satisfying
(5) belongs to H if and only if λ ∈ ρ(S). Returning to (4), we find that c must be
chosen so that

1 = |c|σ|I(dλ)|σI(dλ) (6)

which means that λ ∈ ρ(S) must be chosen so that I(dλ) > 0. In this case, it is clear
that {

λ ∈ ρ(S) : I(dλ) > 0
}

= (−∞, 0).

Let
C =

{
(λ,±uλ) : λ ∈ (−∞, 0)

}

where uλ(x) = I(dλ)−(σ+1)/σdλ(x) a.e. on [0, 1]. It follows from (6) that

{
(λ, u) ∈ R×H \ {0} : (4) is satisfied

}
= C. (7)

From (7) we see that the only possible bifurcation point for (4) is 0. To determine
whether or not 0 is a bifurcation point we must study lim ‖uλ‖ as λ → 0−. We have

‖uλ‖ =
{ ∫ 1

0

1
x2 − λ

dx

}−(σ+1)/σ{ ∫ 1

0

1
(x2 − λ)2

dx

} 1
2

=
{ |λ|1/σ

2(1 + |λ|) arctan(1/
√
|λ|)2(σ+1)/σ

+
|λ|(2−σ)/2σ

2 arctan(1/
√
|λ|)2(σ+1)/σ−1

} 1
2

(8)
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from which it follows that

lim
λ→0−

‖uλ‖ = 0 ⇐⇒ σ < 2. (9)

Thus 0 is a bifurcation point of (4) if and only if σ < 2. The different bifurcation
diagrams for equation (4) with different values of σ are shown in Figure 1.

Figure 1: ‖uλ‖ with different values of σ

3. Approximation of the example

Let n ∈ N = {1, 2, . . .}. We define fn : [0, 1] → R by

fn(x) =
{

( k
n )2 if k

n ≤ x < k+1
n (k = 0, 1, . . . , n− 1)

(n−1
n )2 if x = 1.

Next we define a subspace of H by

Yn =
{

ϕ ∈ H : ϕ is constant a.e. on
(k

n
,
k + 1

n

)
for k = 0, 1, . . . , n− 1

}
.

Clearly, dim Yn = n. We observe that fn ∈ Yn and that fn → f uniformly on [0, 1] as
n →∞.
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Now we can define the approximate problem in dimension n, or n-approximate
problem, by

Snu−N(u) = µu with (µ, u) ∈ R× [Yn \ {0}] (10)

where Sn : Yn → Yn is the positive, self-adjoint operator defined by

Snϕ = fnϕ for ϕ ∈ Yn. (11)

Clearly, we have

σ(Sn) = Im fn =
{(k

n

)2

: 0 ≤ k ≤ n− 1
}

,

each point ( k
n )2 is a simple eigenvalue of Sn and the bifurcation points of (10) are all

the elements of σ(Sn). With the operator defined by (11), equation (10) becomes

fn(x)ϕ(x)− |I(ϕ)|σI(ϕ) = µϕ(x) a.e. on [0, 1] for (µ, ϕ) ∈ R× [Yn \ {0}]. (12)

Once again it is possible to solve this equation explicitly. Following the same way as
above, we find that µ must be chosen so that µ ∈ ρ(Sn) and I([fn−µ]−1) > 0. We note
that

I([fn − µ]−1) =
1
n

n−1∑

j=0

[( j

n

)2

− µ
]−1

and so one can check that, for each given k = 1, . . . , n − 1 and for µ ∈ (
(k−1

n )2, ( k
n )2

)
,

I([fn − µ]−1) increases from the limit −∞ (as µ → (k−1
n )2+) to +∞ (as µ → ( k

n )2−).
Therefore, for each k = 1, . . . , n − 1, there exists ξn

k ∈](k−1
n )2, ( k

n )2[ such that, for
µ ∈](k−1

n )2, ( k
n )2[, we have

I([fn − µ]−1)





> 0 if µ > ξn
k

= 0 if µ = ξn
k

< 0 if µ < ξn
k .

Then we have
{
µ ∈ ρ(Sn) : I([fn − µ]−1) > 0

}
= (−∞, 0)

⋃
∪n−1

k=1

(
ξn
k , ( k

n )2
)
.

Let Jn
0 = (−∞, 0) and Jn

k =
(
ξn
k , ( k

n )2
)

for k = 1, 2, . . . , n − 1. Then, for µ ∈ ∪n−1
k=0Jn

k ,
we set

un
µ(x) = I([fn − µ]−1)−(σ+1)/σ(fn(x)− µ)−1 (13)

for x ∈ [0, 1]. Then, for k = 0, 1, . . . , n− 1,

Cn
k =

{
(µ,±un

µ) : µ ∈ Jn
k

}

is the branch of solutions of the n-approximate problem (10) which bifurcates from the
point

(
( k

n )2, 0
)

in R× Yn. Furthermore,

n−1⋃

k=0

Cn
k =

{
(µ, ϕ) ∈ R× [Yn \ {0}] : (12) is satisfied

}
. (14)



A Discretised Nonlinear Eigenvalue Problem 187

Note that µ → ‖un
µ‖ is continuous on Jn

k for k = 0, 1, . . . , n− 1. In fact,

‖un
µ‖ =

(
1
n

∑n−1
j=0

[
( j

n )2 − µ
]−2

)1/2

(
1
n

∑n−1
j=0

[
( j

n )2 − µ
]−1

)(σ+1)/σ
.

As µ approches ξn
k from above, it is clear that ‖un

µ‖ → ∞ since the denominator tends
to zero by the definition of ξn

k , whereas the numerator remains bounded away from zero.

As µ approches ( k
n )2 from below, we claim that ‖un

µ‖ → 0. To see this, let t =
( k

n )2 − µ and observe that

‖un
µ‖ =

(
1
n t−2 + α(µ)

)1/2

(
1
n t−1 + β(µ)

)(σ+1)/σ

where

α(µ) =
1
n

n−1∑

j=0,j 6=k

[( j

n

)2

− µ
]−2

and β(µ) =
1
n

n−1∑

j=0,j 6=k

[( j

n

)2

− µ
]−1

.

Thus

‖un
µ‖ =

(
1
n t2/σ + t2(σ+1)/σα(µ)

)1/2

(
1
n + tβ(µ)

)(σ+1)/σ

where t2(σ+1)/σα(µ) → 0 and tβ(µ) → 0 as t → 0+. It follows that ‖un
µ‖ → 0 as µ

approches ( k
n )2 from below.

Remark. If we solve equation (12) in the set H instead of Yn we verify that the
solutions belong to Yn and are exactly the same as those obtained by solving the n-
approximate problem and the bifurcation points are also the same. Thus we can directly
consider the n-approximate problem in H.The bifurcation diagram of the n-approximate
problem is drawn in Figure 2.

Figure 2: Bifurcation diagram of Snu−N(u) = µu
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Observing Figures 1 and 2 we want to show the two following results when n → +∞:

1. The branches Cn
0 bifurcating from µ = 0 converge to the branch C of exact solutions

of (4) as n →∞. However, C bifurcates from 0 if and only if 0 < σ < 2.
2. Solutions on the other branches do not converge.

4. The first result

We begin by studying the behaviour of the branches Cn
0 as n →∞. We fix µ ∈ (−∞, 0).

By (14) we know that un
µ is a solution of (12) for all n ≥ 1. We check that, in the

notation of (7),

lim
n→∞

un
µ(x) = I(dµ)−(σ+1)/σdµ(x) = uµ(x) a.e. on [0, 1] (15)

and the convergence is uniform on [0, 1] since (fn − µ)−1 → dµ uniformly on [0, 1] and
I([fn − µ]−1) → I(dµ). Thus (µ, un

µ) ∈ Cn
0 converges to the solution (µ, uµ) ∈ C of (4)

for all µ ∈ (−∞, 0). Now we have already shown that

lim
µ→0−

‖uµ‖ = 0 ⇐⇒ σ < 2.

Figure 3: Cn
0 with n = 5, 10, 15 and σ = 1

5 (a), 1 (b), 2 (c) 6 (d)
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Note however that, for each n ∈ N, ‖un
µ‖ → 0 as µ → 0− for all σ > 0. Figure 3 shows

the form of Cn
0 for n = 5, 10, 15 and σ = 1

5 , 1, 2, 6 (in fact we represent in these figures{
(µ, ‖un

µ‖) : (µ,±un
µ) ∈ Cn

0

}
and the thick curve represents

{
(µ, ‖uµ‖) : (µ,±uµ) ∈ C}

for the respective σ).

5. The second result

The second phenomenon we want to understand is why the other branches of solutions
for the n-approximate problem do not converge to a branch of solutions for the initial
problem as n →∞. To do that we consider the sequence of the 2n-approximate problems
since the point 1

4 = ( n
2n )2 is the bifurcation point for all the branches C2n

n and we consider
the limit when n → ∞. It is clear that the following reasoning can be applied for any
bifurcation point except 0 of an approximate problem of any dimension n.

For all R > 0 we can define a sequence

(λn, vn) ∈ C2n
n with ‖vn‖ = R. (16)

Thus we want to show that the limit of the branches of solutions does not exist when
n →∞. To do this we show that (vn)n≥1 converges weakly to 0 when n →∞. By (13)
we have

vn(x) =

(
1
2n

2n−1∑

k=0

[( k

2n

)2

− λn

]−1
)−(σ+1)/σ(

f2n(x)− λn

)−1 a.e. on [0, 1]. (17)

Lemma 5.1. For any δ ∈ (0, 1
2 ) and any R > 0, the sequence {(λn, vn)} defined by

(16) has the properties that λn → 1
4 and vn(x) → 0 uniformly on [0, 1

2 − δ] ∪ [ 12 + δ, 1].

Proof. Let

an =
1
2n

2n−1∑

k=0

[( k

2n

)2

− λn

]−2

and bn =
1
2n

2n−1∑

k=0

[( k

2n

)2

− λn

]−1

.

Since λn ∈ J2n
n we know that bn = I([f2n − λn]−1) > 0 and that λn ∈ (

(n−1
2n )2, 1

4

)
.

Hence λn → 1
4 . Furthermore, from (17) it follows that ‖vn‖ = a

1/2
n /b

(σ+1)/σ
n and so

a1/2
n = R b(σ+1)/σ

n for all n ∈ N. (18)

Let us show that an →∞ as n →∞. In fact, for 0 ≤ k ≤ n− 1,

[( k

2n

)2

− λn

]2

≤
( k

2n
−

√
λn

)2( k

2n
+

√
λn

)2

≤
(√

λn − k

2n

)2

since n−1
2n <

√
λn < 1

2 . But
(√

λn − k
2n

)2 ≤ (
1
2 − k

2n )1
2 for 0 ≤ k ≤ n− 1 and so

an ≥ 1
2n

n−1∑

k=0

4
1− k

n

= 2
n−1∑

k=0

1
n− k

= 2
n∑

i=1

1
i
→∞ as n →∞.
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From (18) we see that b
(σ+1)/σ
n →∞ as n →∞. For δ ∈ (0, 1

2 ) there exists nδ > 0 such
that

√
λn ∈ [ 12 − δ

2 , 1
2 ) for all n ≥ nδ and so

|f(x)− λn| = |x2 − λn|
= |x−

√
λn|(x +

√
λn)

≥ δ

2
(x +

√
λn)

≥ δ

2

(1
2
− δ

2

)

=
δ(1− δ)

4

for all x ∈ [0, 1
2 − δ] ∪ [ 12 + δ, 1].

Furthermore, since f2n → f uniformly on [0, 1], there exists N(δ) ≥ nδ such that

|f2n(x)− f(x)| ≤ δ(1− δ)
8

for all x ∈ [0, 1] and all n ≥ N(δ).

Hence for n ≥ N(δ) and x ∈ [0, 1
2 − δ] ∪ [ 12 + δ, 1],

δ(1− δ)
4

≤ |f(x)− λn|
≤ |f(x)− f2n(x)|+ |f2n(x)− λn|

≤ δ(1− δ)
8

+ |f2n(x)− λn|

and consequently

|f2n(x)− λn| ≥ δ(1− δ)
8

.

Finally, for n ≥ N(δ) and x ∈ [0, 1
2 − δ] ∪ [ 12 + δ, 1], we have shown that

|vn(x)| ≤ b−(σ+1)/σ
n

8
δ(1− δ)

=
R√
an

8
δ(1− δ)

where an →∞ as n →∞. Thus vn → 0 uniformly on [0, 1
2 − δ] ∪ [ 12 + δ, 1]

We can now show that (vn)n≥1 converges weakly to 0 which implies that (vn)n≥1

does not converge in H.

Lemma 5.2. For any R > 0, the sequence (vn)n≥1 defined by (16) converges weakly
to 0 in H but contains no strongly convergent subsequence.

Proof. Fix ϕ ∈ H and ε > 0. To show that vn ⇀ 0 weakly in H it is enough to
show

lim sup
n→∞

|〈vn, ϕ〉| ≤ ε.
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For this we choose δ ∈ (0, 1
2 ) small enough so that

∫ 1
2+δ

1
2−δ

ϕ2(x) dx ≤
( ε

R

)2

.

Then

|〈vn, ϕ〉| ≤
∫

|x− 1
2 |≤δ

|vn(x)| |ϕ(x)| dx + max
|x− 1

2 |≥δ
|vn(x)|

∫

|x− 1
2 |≥δ

|ϕ(x)| dx

≤
{ ∫

|x− 1
2 |≤δ

v2
ndx

} 1
2
{ ∫

|x− 1
2 |≤δ

ϕ2dx

} 1
2

+ max
|x− 1

2 |≥δ
|vn(x)|

∫ 1

0

|ϕ| dx

≤ R
ε

R
+ ‖ϕ‖ max

|x− 1
2 |≥δ

|vn(x)|

and Lemma 5.1 shows that lim supn→∞ |〈vn, ϕ〉| ≤ ε as required.

If {vni} is a subsequence of {vn} such that ‖vni − v‖ → 0 as i → ∞ for some
v ∈ H, then vni ⇀ v as i → ∞ and so v = 0, showing that ‖vni‖ → 0 as i → ∞. But
‖vn‖ = R > 0 for all n ∈ N and so there is no such subsequence

Remark. With an analogous reasoning it is possible to extend these results to a
function f which is more general.

6. The linear problem

In this section we consider the linearization of (1)

Su = λu with (λ, u) ∈ R× [H \ {0}]. (19)

Since S has no eigenvalues it is clear that this equation has no solution (λ, u) with u 6= 0.
We also consider the n-approximate problem of (19)

Snu = µu with (µ, u) ∈ R× [Yn \ {0}] (20)

where Sn and Yn are defined as above. In this case Sn has the n eigenvalues

{
µn

k =
(k

n

)2

: 0 ≤ k ≤ n− 1
}

.

Each eigenvalue is simple and the eigenspace of µn
k is

En
k = span {Xn

k }
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where Xn
k is the characteristic function of [ k

n , k+1
n ). The bifurcation diagram is then

represented in Figure 4.

Figure 4: Bifurcation diagram of Snu = µu

Let us consider what happens to the branches of solutions as n →∞. To do that we
consider once again the sequence of the 2n-approximate problems. As before, 1

4 = µ2n
n is

an eigenvalue for all these problems. Once again we fix R > 0 and we define a sequence
(vn)n≥1 where vn ∈ E2n

n is such that ‖vn‖ = R. It is easy to show that this sequence
(vn)n≥1 converges weakly to 0 and thus does not contain a subsequence converging
strongly in H. Finally, let us observe that for the linear problem this reasoning is also
valid for the point 0.
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