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Conditional Stability of a Real Inverse Formula
for the Laplace Transform

S. Saitoh, Vu Kim Tuan and M. Yamamoto

Abstract. We establish a conditional stability estimate of a real inverse formula for the Laplace
transform of functions under the assumption that the Bergman-Selberg norms of the Laplace
transform of those functions are uniformly bounded. The rate of the stability estimate is shown
to be of logarithmic order.
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1. Introduction and main results

We are concerned with the Laplace transform

(LF)(x) = /OOO F(t)e ™dt (x > 0).

Our main purpose is to get some estimates of F'(t) (¢ > 0) by means of sup,~ |(LF)(x)|.
In particular, we are interested in estimates of F' that are small when sup,~, |(LF)(x)]| is
small. This kind of estimates is called stability estimate for the inverse Laplace transform
and, in general, we cannot expect such stability estimates because the Laplace transform
L advances the regularity of F' very much. For example, consider F,,(t) = sinnt (n € N).

Then (LF,)(z) = zim (2 > 0) and sup,. [(LF,)(2)] = 1 — 0asn — oo, but
lim,, HFnHLC’o(O,oo) 7& 0.

The lack of stability implies the ill-posedness in taking the inverse of the Laplace
transform if we choose L°°-norms for functions under consideration. However, it is
possible to obtain some stability estimates provided that we restrict ourselves to some
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reasonable set of functions. They are called conditional stability estimates, and there
are many such estimates depending on the choice of norms and ”reasonable” functions
classes. In this paper, we establish such a conditional stability estimate in L°°-norm for
a subclass of Holder continuous functions. The image of this space under the Laplace
transform turns out to be a Bergman-Selberg space.

For ¢ > 0, we can define a norm equivalent to the Bergman-Selberg norm || - HHq (R+)
by

0o 1 0o ~
ey = 2w sesy (Gl @) e (1)
n=0

It is known (see, e.g., Saitoh [4: Chapter 5]) that

1
Pl = ([ 1F@P20at) = 12F e (1.2)

Equality (1.2) means that the Laplace transform is an isometry between the norms
|- Iz and || - ||, &+ for any fixed ¢ > 0. The norm || - [[#,r+) specifies our choice of
an admissible set.

We state our main results.
Theorem 1. Let i <qg<1,M >0, and
1
max{§,2q—1} < a <min{l,2q}. (1.3)

Set
U={F @ <M and 22 F()m, @) < M}, (1.4)

Then for 0 <ty <t; <oo and 0 <y < 20‘4_1 there exists a constant C = C(U,tg,t1,7)
> 0 such that

1 K
o e 1.5
IE Loe (10.00) < (kgHEPwmeaﬂ> .

if L elU.
The right-hand side of (1.5) tends to 0 as ||[LF ||z (0,00) — 0, but with the logarith-
mic rate. So the conditional stability estimate is worse than any Hoélder continuity.

The subset U is defined on the set of images of the Laplace transform with the
Bergman-Selberg norm. Sometimes it is more desirable to have a characterization based
on the original functions.

Theorem 2. Let a,7,q,to,t1, M,C be defined as in Theorem 1 and set

MT (2 —a
V= {F € C'0,50)s FO) =0, [Fll <M, [Fll; < %} (16)

Then estimate (1.5) holds for all F € V.

In the next section Preliminaries we shall show that the condition a@ < 1 in (1.3) is
sharp. That is, this assumption is needed essentially in the paper [2], which is the base
of Theorems 1 and 2.
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2. Preliminaries and sharp condition for «

The keys to the proofs of Theorems 1 and 2 are the real inversion formula of the Laplace
transform (Byun and Saitoh [3], Saitoh [4]) and the error estimate of this real inversion
formula (Amano, Saitoh and Yamamoto [2]):

Proposition 1 (see (3, 4]). Let ¢ > 0 be fized, ||F|[r2 < oo and f = LF. Then the
1nversion formula

F(t)y=s— ]\;Enoo i f(z)e ™" Py (xt) dx (t >0)

1 valid where the limit is taken in the space L§ and the polynomials Py 4 are given by
the formulas

Png(§) = Z ()™ I(2n 1 29) gntvt2g—1
! 0<v<n<N v (7’1,— V)'F(”+2q+ 1)F(7’L—|—V—}—2q)

x{ 2(n+q) 52_( 2(n+q)

3 2 2 .
PR n+1/—|—2q+ n+ q)£+n(n+l/+ q)}

Moreover, the series

oo

1 = n / 2, .2n+2q—1
Zn!F(n+2q+1)/0 |0, (x f'(2)) [ dx

n=0

converges and the inequality

2

2
Lq

HF(t) - /O " Fw)e "t Py o (at) da

<Y gy | G @)

o n!T'(n+2q+1)

holds.

Proposition 2 (see [2]). Let (1.3) hold. Then for f € Hy(R") there exists a
constant My = M (q, o) > 0 such that

ta—1+5

< My|lz®f ()| (RT) " 2a—1 - (2.1)
N 2

Ft) - /0 " F@)e "t Py o (at) da

Theorem 1 in [2] only asserts that for N — oo

<t171t3, (N%__) : (2.2)

4

e
4= 3

‘F(t) - /O " fle)e "t Py o (at) da

However, from the proof given in [2] we easily specify the dependency of the coefficient
at the right-hand side of (2.2) to obtain inequality (2.1).

In order to see the necessity of the restriction o < 1 in condition (1.3), recall
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Proposition 3 (see [2: Lemmal). If f € C*°(0,00) and

G 1
loalt) = nz:% n!T'(n+2q¢+1)

[ s <o (23)
0

for a fixed o > max (%,2(] — 1), then

> T ), e @ s

Mo n+2q+1)

as N — o0.

Proposition 2 was proved with the use of Proposition 3. We will analyze the relation
of the restriction o < 1 with condition (2.3). Set

= /OO f(z)e " Py 4(xt) dx
0

for any ¢ > 0 and F € L?. Then, as shown in [3, 4],

N

FN(t) = Z $+2q4—1 / an l’f 8”(908 (e—ta:)) 22nt29-1 g,
n!T(n+2q¢+1) *

and, by Proposition 1, s — limy_.o, Fn = F.

We examine now properties of functions f satisfying (2.3). For the Mellin transform
= fooo f(z)x*~Ldz of f recall the identity

< (M —it)|?
27 ( |p](2(3 it)®|2)| dt = Hf”%rqa@ﬂ

— 00

and notice that

/Oo (M f)(a—it)*(¢* +t)*{(g + 1) + £} - {(g +n — 1) + t*}dt

— 00

—2r [ (0raf ()P
0

(see [4: Page 207/Formula (28)]). Hence,
om [ o (@) Pt
0

- [ loun(e =) (=5

o0

X {(q+%+1)2+t2}--~{<q+%+n—1>2+t2}dt
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and so

[&.9]

1
Ia(f) =L
galf) 2”;nlf(n+2q+1)

[ orn (oS- {(ar 2) e )

><{(q+%+1>2+t2}---{(q+%+n—1)2+t2}dt (24)

= m/ ‘(Mﬂ(“%_it>‘2{(q+%>2+t2}

(2¢ + 1), n!

dt
n=0

where (a), =a(a+1)---(a+n—-1) = F(F“(:)") Applying the famous Gauss summation
formula (see [1: Page 556/Formulas (15.1.20) and (15.1.1)])

) <(z)n7fi>'n _ ?E?E(;);(i - 2 (Re(c —a—b) > 0,¢ & —Ny) (2.5)

n=0

and using the property I'(Z) = I'(z) we obtain

i g+§+it), (¢+5—it), T(2¢+1)I(1—a)
(2¢+ 1),n! CT(g+1— 2 +it)?

when o < 1. Hence

o] a2 2
_ Nl—a) ‘ g q+ ) +1
o) = 252 [ o (a+ § - ) [t

Iuﬂ@/m|wﬁwq+%—nn<q+5>+ﬂ
B B Y R R PRy P

 [(Mf)(g+ 2 —it)]?
Scﬁw TS )P

dt

dt.

Note that

(Mf) (q + % — z't) = /OOO fx)xdte i 1gy = M(f(x)xo‘)<q - = — it).

Hence,

@ﬂg>go/f\mﬂ¢v@»mq—“-n)|Fq_f_n”dt
= C||$af(x>||%lq_%(R+)'
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We see that if 2% f(x) € Hy—a (RT), then the function f satisfies condition (2.3). Thus
we get Proposition 2 under the condition a < 1.

The condition o < 1 is sharp. In the case e > 1 we shall show that (2.3), that is
(2.4) does not converge for f # 0. Indeed, from (2.4)

lga(f) = %;n!F(n—:Zq—i—l)
[ Jorn(en i) {(ar5) )
X {<q+%+1)2+t2}---{(q+%+n—1>2+t2}dt

> m/_Z‘(Mf)@Jr%—it)rdt

)2 i (a+ 5)nla+5)n

(2¢ + 1), n!

x(—l—a
175

n=0

Since (2¢+1) — (¢+ §) — (¢ + §) < 0, the last series is divergent, and I, o (f) is finite

only if
/_0; ‘(Mf)<q+ % — it)’th _0,

that is, if f =0.
3. Proof of Theorem 1

We divide the proof into two steps.
First Step. We set f = LF and

Fy(t) = /OOO f(z)e ™" Py 4(xt) dx (t >0).

In this step, we will estimate |Fn(t)| (¢ € [to,t1]). We have

[Fn(8)] < HfllLoo(o,oo>/O €™ Py g (at)| dz

1 oo
= 71 lemom) [ e Pua(©)lde (3.)

IN

1
e 0,00)S (N, ).
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Here we set

I'(2n +29)
S Naq =
( ) OSV;SN viin—v)!IT(n+2¢+1)T(n+ v+ 2q)

X/oo{ 2(n+q) gt 2a+1,—¢
0 n+v+2q

( 2(n+q)
n+v+2q

+ 3n + Qq) gntvt2ap—¢

+n(n+v+2q) £"+”+2q_16_€}d§.
It is sufficient to estimate S(NN, ¢). Noting that
Fn+v—+2¢+2)=Mn+v+2¢+1)(n+v+29)T(n+v+2q)

and

I'n+v+2¢+1)=n+rv+29)T(n+v+2q)
we obtain

I'2n 4+ 2q)(4(n+q) + (6n +4q)(n+v + 2
S(N,q) = ( 9)(4(n+4q) +( q)( q))

0<iTneN viin—v)IT'(n+2¢+1)

N
: nz_:o ;ﬁ) 7”1L' % (4(n +q) + (6n + 49)(2n + 2¢9))

I'(2n + 2q)
n!I'(n+2q+1)

N
= Z 2"(An+4q)(3n+29 + 1)

N
ey I'(2n + 2q)

; .
— n!T'(n+2¢+1)

IN

Here and henceforth C' > 0 denotes a generic constant dependent only on M, q, o, 3, tg, t1
and we note that (4n +4¢)(3n +2¢+1) < C2N for 0 <n < N.

Moreover, we have

1
['(2n +2q) = #22"“‘1—%1“@ + q)F(n +q+ 5)

(see, e.g., Abramowitz and Stegun [1: p. 256]) and so

N
Z ['(2n + 2q) 222n+2q 1F (n+q¢)T(n+q+1)
n'F(n—|—2q+1 n!I'(n+2q+1)

F(n+q)T(n+q+3)
Z n!T'(n+2¢+1)

L(n+¢)(n+q+ %)
Z n!I'(n+2¢+1)

N F(2q + 1)I‘(§)
Clg+1)T(g+35)
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At the last equality, we use the Gauss summation formula (2.5). Therefore we obtain
S(N,q) < C16", so that inequality (3.1) yields

C
[Fn(t)] < n 16™ || £ 1l o< (0,00 (t>0).

Second Step. It is sufficient to prove (1.5) for sufficiently small || f|| 1o (0,00). Let
0 <ty <t<ty. We have

|[F(t)] < |Fn(t)| + |F(t) — Fn(t)]
C ta—1+3
< =16V -~ My ||z f(- h—
< 16Vl 0,000 + Mille® O,y ()~ (32)

-3

1
<C <16Nl|f||L°°(0,oo) + @)

for all N € N. Here we note that f € U implies ||[2*f()[|n,_o.@+) < M. We set

-5
N = || fllzo(0,00) for simplicity. Let 0 < v < 20‘4—_1 be chosen arbitrarily. We fix N € N
such that

4y

1 2a0—1 1 %
(log —) < N<1+ (log —) .
U] n

1 1\ "
T < (log—) . (3.3)
n

Then we can see that

Moreover, we have

4y
1 2a—1
16™ | £l o< (0.00) = nexp((log 16)N) < mexp ((log 16) + (log 16) <10g 5) ) :

Since =2~ < 1, we can easily verify

2a—1
Ay
) 1\ 2o—1 1\”
limnexp | (log16) | log — log—| =0.
nl0 Ui n

Consequently, we see that
C
—’Y .
1
(10g 5)

Application of (3.3) and (3.4) in (3.2) yields conclusion (1.5). Thus the proof of Theorem
1 is complete.

16™ | f1l o (0,00) < (3.4)
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4. Proof of Theorem 2

It is sufficient to show that £V C U. Let

)a—l

R

be the fractional integral of order a. Recall the Hardy inequality for the fractional
integral (see [5: Formula (5.467)])

F(r)dr (o> 0)

/ t‘2“_27|18‘t7F(t)]2dt§ﬁ/ |F(t)|?dt.
QT35 0

0

By replacing

a by 1—«
o 3
by — _2
v by 2+q 2

F(t) by t2- 5 9F/(¢)

we obtain

/ t1—2(q—%)|jé—aF/<t)|2dt < m / $1_(a+2q_2)|F/(x)|2d:E
0 0

/
- F2(3—Oc) ||F HL2%+

Hence, if F € V, then F' € L% __, and
5 +q—1

1™ F' 2, <

-5 %_0‘)

11| 2

5 +a—

<M,

so the corresponding Bergman-Selberg norm of its Laplace transform is also bounded
by M,
115~ aF’HH2 5 (B) <M.
We have (see [5: Formula (7.14)])
(LI} “F")(z) = 2 Y (LF')(x).
Since F'(0) = 0, it is clear that
(LF")(z) = z(LF)(x).

Hence,

(LIZ=°F")(z) = 2°(LF)(x).

Thus
|z (LF)(@)|| g2, )y < M.
-3

As F € V, we also have ||[LF||p2r+) = [|[F[|r2 < M. Consequently, LV C U.
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