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On C1-Regularity of Functions
that Define G-Closure

M. Miettinen and U. Raitums

Abstract. In this paper we show that the functions which are used in the characterization
of the G-closure or the Gθ-closure of sets of matrices are continuously differentiable. These
regularity results are based on the observation by Ball, Kirchheim and Kristensen [1] that
separate convexity and upper semidifferentiability imply continuous differentiability.
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1. Introduction

Recently Ball, Kirchheim and Kristensen [1] established a remarkable result that a great
deal of quasiconvex envelopes are continuously differentiable provided that the original
function is upper semidifferentiable and satisfies some rather mild growth conditions.
This result is based on the facts that upper semidifferentiablity is preserved under the
procedure of taking the infimum over families of uniformly upper semidifferentiable
functions and upper semidifferentiablity and separate convexity imply continuous dif-
ferentiablity.

In this paper we use the results from Ball, Kirchheim and Kristensen [1] to show that
various functionals, which arise from an optimal material layout problem governed by a
system of elliptic equations, are continuously differentiable. Especially, we concentrate
on the functions which are used in the evaluation of G-closure or Gθ-closure of sets of
matrices.

Let us first recall the formulation of the problem. By an optimal material layout
problem we mean the following one:

I(u) → min

div
(A(x)∇u(x)

)
= f(x) in Ω

u = (u1, ..., um) ∈ H1
0 (Ω,Rm), A ∈M





(1)

where Ω is an open subset of Rn, I is weakly continuous (with respect to H1
0 -topology)

and f ∈ L2(Ω,Rm) is given. The control set M is defined as

M =
{
A measurable : A(x) ∈ M for a.e. x ∈ Ω

}
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in which M is a bounded set of constant uniformly positive definite symmetric mn×mn-
matrices. The matrices A ∈ M represent different material properties like conductivities
of given phases. If we, moreover, have volume restrictions for phases, the control set M
is replaced by

Mθ(Ω) =

{
A measurable

∣∣∣∣
meas

{
x ∈ Ω : A(x) ∈ Ms

}
= θs

s = 1, ..., s0; θ1 + ... + θs0 = |Ω|

}

where Ms are given bounded pairwise disjoint sets of constant uniformly positive definite
symmetric mn ×mn-matrices. In literature problems of type (1) are often treated as
optimal design problems (see, e.g., [4, 13]).

It is well-known that the problem (1) has no, in general, a solution (see, e.g., [6]).
Therefore, we have to find a proper extension of (1). To do that we replaceM orMθ(Ω)
by its G-closure or Gθ-closure, respectively. Then the solvability of (1) follows.

Recall that the G-closure of the setM is defined as a larger set GM of all measurable
symmetric mn×mn-matrices B such that for a chosen B ∈ GM there exists a sequence
{Ak} ⊂ M with the following property: For every fixed f ∈ L2(Ω,Rnm) from

div
(Ak(x)∇uk(x)

)
= f(x) in Ω

(
uk ∈ H1

0 (Ω,Rm), k ∈ N)

div
(B(x)∇u0(x)

)
= f(x) in Ω

(
u0 ∈ H1

0 (Ω,Rm)
)

it follows
uk ⇀ u0

Ak∇uk ⇀ B∇u0

weakly in H1
0 (Ω,Rm)

weakly in L2(Ω,Rnm)

}
(k →∞).

The set GM has the following description (see, e.g., [8 - 10]). Let K ⊂ Rn be the unit
cube and let

V # =
{

v ∈ L2(K,Rnm)
∣∣∣∣ v = ∇u, u ∈ H1

loc(Rn,Rm), u is K-periodic
}

N# = cl





η ∈ L2(K,Rnm)

∣∣∣∣∣∣∣∣

η = (η1, ..., ηm), ηi =
(∑n

j=1
∂

∂xj
ui

1j , ...,
∑n

j=1
∂

∂xj
ui

nj

)

ui
rj = −ui

jr, ui
rj ∈ H1

loc(Rn), ui
rj is K-periodic

(
r, j = 1, ..., n; i = 1, ..., m

)





V 0 =
{

v ∈ L2(K,Rnm) : v = ∇u, u ∈ H1
0 (K,Rm)

}

N0 = cl





η ∈ L2(K,Rnm)

∣∣∣∣∣∣∣∣

η = (η1, ..., ηm), ηi =
(∑n

j=1
∂

∂xj
ui

1j , ...,
∑n

j=1
∂

∂xj
ui

nj

)

ui
rj = −ui

jr, u
i
rj ∈ H1

0 (K)
(
r, j = 1, ..., n; i = 1, ..., m

)





.

In these notations (without loss of generality we can assume that K ⊂ Ω)

GM =
{
B measurable : B(x) ∈ GM for a.e. x ∈ Ω

}
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where

GM =

{
B ∈ Rnm×nm

∣∣∣∣∣
B symmetric and for all ξ, ζ ∈ Rnm×nm

∑nm
i=1

[
(Bξi, ξi) + (B−1ζi, ζi)

] ≥ F0(ξ, ζ)

}

ξ = (ξ1, ..., ξnm), ζ = (ζ1, ..., ζnm)
(
ξi, ζi ∈ Rnm (i = 1, ..., nm)

)
(2)

F0(ξ, ζ) = inf
A∈M

nm∑

i=1

inf
vi∈V #

ηi∈N#

∫

K

{(A(x)(vi + ξi), vi + ξi

)
+

(A−1(x)(ηi + ζi), ηi + ζi

)}
dx.

In turn, Gθ-closure of the set Mθ(Ω) is the set GMθ(Ω) defined by

GMθ(Ω) = cl




B measurable

∣∣∣∣∣∣∣

B(x) ∈ Gα(x)M for a.e. x ∈ Ω, α measurable

α(x) =
(
α1(x), ..., αs0(x)

)
, α piecewise constant

0 ≤ αs(x) ≤ 1,
∫
Ω
αs(x) dx = θs|Ω|, s = 1, ..., s0





where for a given θ = (θ1, ..., θs0) with θs ≥ 0 (s = 1, ..., s0) and θ1 + ... + θs0 = 1

GθM =

{
B ∈ Rnm×nm

∣∣∣∣∣
B symmetric and for all ξ, ζ ∈ Rnm×nm

∑nm
i=1

[
(Bξi, ξi) + (B−1ζi, ζi)

] ≥ Fθ(ξ, ζ)

}

Mθ =

{
A

∣∣∣∣∣
K → Rmn×mn measurable

meas
{
x ∈ K : A(x) ∈ Ms

}
= θs (s = 1, ..., s0)

}
(3)

Fθ(ξ, ζ) = inf
A∈Mθ

nm∑

i=1

inf
vi∈V #

ηi∈N#

∫

K

{(A(x)(vi + ξi), vi + ξi

)
+

(A−1(x)(ηi + ζi), ηi + ζi

)}
dx

and cl stands for the strong closure in the topology of L2(Ω,Rnm×nm).
The aim of this paper is to show that F0 and Fθ are continuously differentiable.

From this it follows that also F0(·, 0), F0(0, ·) and Fθ(·, 0), Fθ(0, ·), which are often used
for the estimates of G-closed sets (see, e.g., [5]), are continuously differentiable.

2. Sufficient conditions for upper semidifferentiability

In this section we describe some sufficient conditions on a family of functions {f(α, ·)},
α being a parameter, which ensure that the function

F (z) = inf
α

f(α, z) (z ∈ RN ) (4)

is upper semidifferentiable provided that the functions f(α, ·) are upper semidifferen-
tiable uniformly with respect to α.

Definition 1. A function F : RN → R is upper semidifferentiable at a point z0 if
there exists an element a ∈ RN such that

lim sup
z→0

F (z0 + z)− F (z0)− (a, z)
|z| ≤ 0.
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If F is upper semidifferentiable at every point z0 of an open subset Q of RN , we say F
is upper semidifferentiable on Q.

Definition 2. A function F : RN → R is locally separately convex on an open
subset Q ⊂ RN if for every z0 ∈ Q there exists a ball B(z0) ⊂ Q with the center at z0

such that for every canonical basis vector ei ∈ RN the function

ϕ(t) = F (z0 + tei)

is convex for z0 + tei ∈ B(z0).

Let S be a set of parameters α of general nature, N ≥ 2 an integer, Q ⊂ RN an
open subset and

f : S ×Q → R, f = f(α, z).

We introduce the following hypotheses on the family {f(α, ·)}:
(H1) For every α ∈ S and every z0 ∈ Q there exists an element a(α, z0) ∈ RN such

that

lim sup
z→0

f(z0 + z)− f(z0)− (a(α, z0), z)
|z| ≤ 0.

(H2) For every z0 ∈ Q the set {f(α, z0) : α ∈ S} is bounded from below.
(H3) For every fixed z0 ∈ Q the set

A(z0) =
{

a(α, z0) : α ∈ S, f(α, z0) ≤ inf
α′∈S

f(α′, z0) + 1
}

is bounded.
(H4) For every fixed z0 ∈ Q there exists a continuous function γ(z0, ·) : R→ R with

γ(z0, 0) = 0 such that

f(α, z0 + z)− f(α, z0)− (a(α, zo), z) ≤ γ(z0, |z|)|z|

for all α ∈ A(z0) and all z0 + z ∈ Q with |z| < 1.

Lemma 1. Let the family of functions {f(α, ·) : α ∈ S} satisfy hypotheses (H1) -
(H4). Then the function F : Q → R given by

F (z) = inf
α∈S

f(α, z)

is upper semidifferentiable at every point z0 ∈ Q, and for every z0 ∈ Q there exists an
element a(z0) ∈ RN such that

F (z0 + z)− F (z0)− (a(z0), z) ≤ γ(z0, |z|)|z|

for all z0 + z ∈ Q with |z| < 1 where the function γ(z0, ·) is the same as in hypothesis
(H4).

Proof. Let z0 ∈ Q be fixed and {αk} ⊂ S be a minimizing sequence for f(·, z0),
i.e.

F (z0) = lim
k→∞

f(αk, z0).
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Then αk ∈ A(z0) for k large enough, and by virtue of hypothesis (H3) we can assume
that the sequence {a(αk, z0)} converges to some element a(z0) ∈ RN . Denote by δk the
difference

δk = f(αk, z0)− F (z0) (k ∈ N).

Obviously, δk → 0 as k →∞. Because of hypothesis (H4) we have that for z0 + z ∈ Q
with |z| < 1

F (z0 + z)− F (z0)− (a(z0), z)

= inf
α∈S

f(α, z0 + z)− inf
α∈A(z0)

f(α, z0)− (a(z0), z)

≤ f(αk, z0 + z)− f(αk, z0) + δk − (a(αk, z0), z) +
(
a(αk, z0)− a(z0), z

)

≤ γ(z0, |z|)|z|+ |δk|+
∣∣a(αk, z0)− a(z0)

∣∣ |z|.

Since this estimate is valid for all k large enough and

δk → 0

|a(αk, zo)− a(z0)| → 0

}
(k →∞),

then
F (z0 + z)− F (z0)− (a(z0), z) ≤ γ(z0, |z|)|z|

for all z0 + z ∈ Q with |z| < 1

From Lemma 1 and the results by Ball, Kirchheim and Kristensen [1] one can easily
obtain the following

Corollary 1. Let the family {f(α, ·) : α ∈ S} satisfy hypotheses (H1) - (H4) and
let the function

F : Q → R, F (z) = inf
α∈S

f(α, z)

be locally separately convex on Q. Then F is continuously differentiable on Q.

Before proving the corollary, for the convenience of the readers we first recall the
needed results from Ball, Kirchheim and Kristensen [1].

Theorem 1 (see [1: Corollary 2.3]). Let B ⊂ RN be an open ball and F : B → R
be separately convex. Denote by D ⊆ B the set where F is differentiable. Then F is
continuously differentiable on D.

Theorem 2 (see [1: Corollary 2.5]). Let B(z0) ⊂ RN be an open ball with the
center at a point z0. Suppose that G : B(z0) → R is separately convex, F : B(z0) → R
is upper semidifferentiable at z0, G ≤ F and G(z0) = F (z0). Then F and G are
differentiable at z0 and F ′(z0) = G′(z0).

Proof of Corollary 1. Due to Lemma 1 the function F is upper semidifferentiable
at every point z0 ∈ Q. Since F is also locally separately convex, then Theorems 1 and
2 immediately give the continuously differentiablity of F on Q
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Remark 1. Under the assumptions of Corollary 1 the element a(z0) from the proof
of Lemma 1 is equal to the derivative F ′(z0) of F at z0.

If one considers the upper semidifferentiability of functions of the kind (2) or (3),
then (A, v1, ..., vnm, η1, ..., ηnm) play the role of the parameters α ∈ S. For this case
the upper semidifferentiability of f(α, ·) is rather obvious. The validity of hypotheses
(H3) and (H4) is not so evident. Therefore, some growth conditions on integrands with
respect to vi ∈ V # and ηi ∈ N# must be imposed (for (2) and (3) they are given by
uniform boundedness and positive definiteness of matrices A).

In order to remain within the framework of G-closure and Gθ-closure problems we
only consider integrands of the type

g : RN ′ ×K × RN → R, g = g(y, x, z)

where K is the unit cube of Rn, N = (2nm)nm and N ′ is an integer. Let B ⊂ L1(K,RN ′
)

be the set of admissible parameters β and let the following hypotheses be satisfied:

(H5) The function g is measurable in x, continuous in (y, z), and there exist constants
c1, c2 > 0 and functions h1, h2 ∈ L1(K) such that

−h1(x) + c1|z|2 ≤ g(β(x), x, z) ≤ h2(x) + c2|z|2
for all β ∈ B, all x ∈ K and all z ∈ RN .

(H6) For every (y, x) ∈ RN ′ ×K the function g(y, x, ·) is differentiable on RN , and
the derivative g′z is measurable in x ∈ K and continuous in (y, z) ∈ RN ′ × RN .

(H7) There exist a constant c3, a function h3 ∈ L2(K) and a continuous function
γ : R→ R with γ(0) = 0 such that

|g′z(β(x), x, z)| ≤ h3(x) + c3|z|
|g′z(β(x), x, z0 + z)− g′z(β(x), x, z0)| ≤ (|h3(x)|+ c3|z0|)γ(|z|)

for all β ∈ B, all x ∈ K and all z0, z ∈ RN .

Lemma 2. Let the function g satisfy hypotheses (H5) - (H7). Then the function

f(α, z) =
∫

K

g
(
β(x), x, z + w(x)

)
dx

with α ∈ S = B×V , α = (β, w), Q = RN and V being a subspace of L2(K,RN ) satisfies
hypotheses (H1) - (H4).

Proof. From the representation

g
(
β(x), x, z0 +z+w(x)

)−g
(
β(x), x, z0 +w(x)

)
=

∫ 1

0

(
g′z

(
β(x), x, z0 +w(x)+λz

)
, z

)
dλ

it follows immediately that f satisfies hypotheses (H1) and (H4) with

a(α, z0) =
∫

K

g′z
(
β(x), x, z0 + w(x)

)
dx.

Hypothesis (H5) gives the lower bound for f(·, z0) and hypothesis (H7) gives the bound-
edness of the sets A(z0)

Remark 2. We do not impose here the most general conditions on the integrands
g. For instance, one can consider the spaces Lp(K,RN ) with 1 < p < ∞ instead of
p = 2 or the weaker growth conditions.
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3. Continuous differentiability of functions F0 and Fθ

We first recall the following definition of A-quasiconvexity from Fonseca and Müller (see
[3]):

Definition 3. A function f : RN → R is said to be A-quasiconvex if

f(z) ≤
∫

K

f(z + w(x)) dx

for all z ∈ RN and all K-periodic w ∈ C∞(K,RN ) such that Aw = 0 and
∫

K
w(x) dx =

0.

By A we denote a vectorial linear partial differential operator with constant coeffi-
cients (cf. the notion of compensated compactness [7, 12]). Typically A is a first order
differential operator like curl or div.

Definition 4. Let f be a Borel function from RN to R. Its A-quasiconvex envelope
is defined by

QAf(z) = inf

{∫

K

f(z + w(x)) dx

∣∣∣∣∣
w ∈ C∞(K,RN ) ∩ kerA
w is K-periodic,

∫
K

w(x) dx = 0

}
.

The following result holds.

Proposition 1 [3: Propsition 3.4]. If A has constant rank and if f : RN → R is
upper semicontinuous, then QAf is A-quasiconvex and upper semicontinuous. Moreover,
the restriction of QAf to each cone z + Λ (z ∈ RN ) is convex, i.e.

QAf
(
ty + (1− t)z

) ≤ tQAf(y) + (1− t)QAf(z)

for all t ∈ (0, 1) and y, z ∈ RN such that y − z ∈ Λ where Λ = ∪w∈Rn,|w|=1kerA(w).

Let us return to our problem. First we justify that F0 is a A- quasiconvex envelope
of the function

f0

(
ξ1, ..., ξnm, ζ1, ..., ζnm

)
= inf

A∈M

nm∑

i=1

{
(Aξi, ξi) + (A−1ζi, ζi)

}

which is the infimum over A ∈ M of the integrand in (2). For this case the differential
operator A is (curl,div)m×nm and A has constant rank. For the sake of simplicity of
expressions only, we assume that N = 2nm and ξ, ζ ∈ Rnm. Then A = (curl, div)m and

F0 = F0(ξ, ζ)

= inf
A∈M

inf
v∈V #

η∈N#

∫

K

{(A(x)(v + ξ), v + ξ
)

+
(A−1(x)(η + ζ), η + ζ

)}
dx

f0 = f0(ξ, ζ) = inf
A∈M

{
(Aξ, ξ) + (A−1ζ, ζ)

}
.

(5)
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The matrices A ∈ M are uniformly positive definite and the set M is bounded,
hence the function f0 is continuous with quadratic growth. In its turn, the set M is
decomposable, i.e. if A1,A2 ∈ M, then for every measurable E ⊂ Ω (E ⊂ K) the
matrix A0 defined by

A0(x) = χE(x)A1(x) + (1− χE(x))A2(x)

belongs to M, too (here χE is the characteristic function of E).These properties are
sufficient for the equalities

inf
A∈M

∫

K

{(A(x)(v(x) + ξ), v(x) + ξ
)

+
(A−1(x)(η(x) + ζ), η(x) + ζ

)}
dx

=
∫

K

inf
A∈M

{(A(x)(v(x) + ξ), v(x) + ξ
)

+
(A−1(x)(η(x) + ζ), η(x) + ζ

)}
dx

=
∫

K

f0

(
v(x) + ξ, η(x) + ζ

)
dx ∀v ∈ V #, ∀η ∈ N#

F0(ξ, ζ) = inf
v∈V #

η∈N#

∫

K

f0

(
v + ξ, η + ζ

)
dx.

Indeed, the first equality is obvious for piecewise constant (v, η) ∈ V # × N#. Since
piecewise constant elements are dense in V # ×N#, then a simple continuity argument
gives that this equality holds for all (v, η) ∈ V # ×N#. From this the second equality
also follows.

The characteristic cone Λ for A is (see, e.g., Dagorogna [2] or Fonseca and Müller
[3])

Λ =
⋃

w∈Rn

|w|=1

{
z = (ξ, ζ) ∈ RN

∣∣∣∣∣
ξ = (ξ1, ..., ξm), ζ = (ζ1, ..., ζm)

ξi = αiw, (ζj , w) = 0, αi ∈ R (i, j = 1, ..., m)

}
.

From [14] it follows that

L2(K,Rnm) = V # ⊕N# ⊕ Rnm

and that
(V # ⊕ Rnm)× (N# ⊕ Rnm) = kerA

in the sense of distributions. Then by Definition 4 the function F0 is the A-quasiconvex
envelope of f0 and by Proposition 1 it is A-quasiconvex and Λ-convex. Because Λ
contains all canonical basis vectors e of Rnm, the function F0 is also separately convex.

Next we show that F0 is upper semidifferentiable. Indeed, using the notations of
Lemma 2 we have B = M, α = (A, v, η), V = V # ×N# and

g = g
(A(·), (ξ, ζ)

)
= (A(·)ξ, ξ) + (A−1(·)ζ, ζ).

Then, because obviously g satisfies hypotheses (H5) - (H7), Lemmas 1 and 2 imply
that F0 is upper semidifferentiable. Finally, due to Corollary 1 the functional F0 is
continuously differentiable on RN .
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For the function Fθ the corresponding procedure is not so straightforward, because
now it is not possible (by virtue of the integral restrictions in (3)) to bring the infimum
over A ∈ Mθ inside the integral. Again, for the sake of simplicity of expressions only,
we suppose that N = 2nm and

Fθ = Fθ(ξ, ζ)

= inf
A∈Mθ

inf
v∈V #

η∈N#

∫

K

{(A(x)(v + ξ), v + ξ
)

+
(A−1(x)(η + ζ), η + ζ

)}
dx. (6)

The upper semidifferentiability of Fθ follows in a similar way as for F0. The only
difference is that now B = Mθ. But for the separate convexity (or the A-quasiconvexity)
we can not apply Proposition 1. Below we present a direct proof for the separate
convexity.

Let e be a given basis vector in RN . There are two cases: The first one where the
non-zero entry of e corresponds to some entry of ξ, the second one where the non-zero
entry of e corresponds to some entry of ζ. Both cases can be treated analogously, hence
we will consider only one of them, say the case where the non-zero entry corresponds
to the first entry of ζ.

Let ζ0 = (1, 0, ..., 0) ∈ Rnm. We must show that

Fθ(ξ, ζ + λζ0) + Fθ(ξ, ζ − λζ0) ≥ 2θ(ξ, ζ)

for every fixed pair (ξ, ζ) ∈ RN and λ ∈ R, which is equal to the convexity of Fθ in the
direction e. It is clear that the element η0,

η0(x) =
{

λζ0 if 0 < x2 < 1
2

−λζ0 if 1
2 ≤ x2 < 1

belongs to N# (here x = (x1, ..., xn) ∈ Rn). Indeed, since

L2(K,Rnm) = V # ⊕N# ⊕ Rnm

then it is sufficient to show that
∫

K

(η0, v) dx = 0 ∀v ∈ V #.

By the construction of η0 and by definition of V #

(η0, v)(x) =
{

λu1x1(x) if 0 < x2 < 1
2

−λu1x1(x) if 1
2 ≤ x2 < 1

with some u1 ∈ H1
loc(Rn), u1 K-periodic, which gives the needed relationship.

Let ε > 0 be given and let A± ∈Mθ, v± ∈ V # and η± ∈ N# be such that

Fθ(ξ, ζ ± λξ0) ≥∫

K

{(A±(x)(v± + ξ), v± + ξ
)

+
(A−1

± (x)(η± + ζ ± λζ0), η± + ζ ± λζ0

)}− ε.
(7)
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In the first step we will show that estimates (7) hold for some v± ∈ V 0 and η± ∈ N0,
too. Extend the functions A±, v± and η± via K-periodicity to the whole Rn and define

As
+(x) = A+(sx) (s ∈ N),

and in a similar way As
−, vs

± and ηs
±. By construction, A±s ∈ Mθ, vs

± ∈ V #, ηs
± ∈ N#

and

Fθ(ξ, ζ ± λξ0) ≥∫

K

{(As
±(x)(vs

± + ξ), vs
± + ξ

)
+

(
(As

±)−1(x)(ηs
± + ζ ± λζ0), ηs

± + ζ ± λζ0

)}− ε.

(8)
From the definition of the space V # we see that the element v+ ∈ V # has the repre-
sentation v+(x) = ∇u+(x) for some u+ ∈ H1

loc(Rn,Rm), u+ K-periodic. We have

vs
+(x) = ∇

(1
s
u+(s·)

)
(x)

and by using standard cut-off functions ϕ ∈ H1
0 (K) with |∇ϕ| ≤ √

s we obtain that
there exists an element ṽs

+ ∈ V 0 such that

‖vs
+ − ṽs

+‖L2(K,Rnm) ≤ c s−
1
4

where c does not depend on s. Analogous reasoning is valid for vs
− and ηs

±. Since the
integrals in (8) are continuous with respect to v, η ∈ L2(K,Rnm), then estimates (7)
are valid for some A± ∈Mθ, v± ∈ V 0 and η± ∈ N0.

Extend again the functions A±, v± and η± via K-periodicity to the whole Rn (now
v± ∈ V 0 and η± ∈ N0). Define on

2K =
{
x ∈ Rn

∣∣∣ x = (x1, ..., xn) with 0 < xi < 2 (i = 1, ..., n)
}

the matrix Ã and elements ṽ, η̃, η̃0 as

Ã(x) = A∗(2x), A∗(x) =
{A+(x) if 0 < x2 < 1
A−(x) if 1 ≤ x2 < 2

ṽ(x) = v∗(2x), v∗(x) =
{

v+(x) if 0 < x2 < 1
v−(x) if 1 ≤ x2 < 2

η̃(x) = η∗(2x), η∗(x) =
{

η+(x) if 0 < x2 < 1
η−(x) if 1 ≤ x2 < 2

η̃0(x) = η0(x), η0∗(x) = η0

(x

2

)
.

By construction, Ã ∈ Mθ, ṽ ∈ V #, η̃, η̃0 ∈ N# and

Fθ(ξ, ζ + λζ0) + Fθ(ξ, ζ − λζ0)

≥ 2
2n

∫

2K

{(A∗(x)(v∗ + ξ), v∗ + ξ
)

+
(A−1

∗ (x)(η∗ + ζ + η0∗), η∗ + ζ + η0∗
)}

dx− 2ε

= 2
∫

K

{(Ã(x)(ṽ + ξ), ṽ + ξ
)

+
(Ã−1(x)(η̃ + η̃0 + ξ), η̃ + η̃0 + ζ

)}
dx− 2ε

≥ 2Fθ(ξ, ζ)− 2ε.
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Since ε > 0 is arbitrary, then

Fθ(ξ, ζ + λζ0) + Fθ(ξ, ζ − λζ0) ≥ 2Fθ(ξ, ζ) ∀λ ∈ R.

Thus, the function Fθ is separately convex and from Corollary 1 it follows that Fθ is
continuously differentiable.

It is clear that the same reasoning is valid for the functions F0 and Fθ defined by
(2) and (3), respectively. Therefore, we have proved the following main result of this
paper:

Theorem 3. The functions F0 and Fθ defined by (2) and (3) are continuously
differentiable.

Remark 3. Instead of integrands of the type (Aξ, ξ)+ (A−1ξ, ξ) in (2) and (3) one
can consider more general integrands g : RN ′ ×RN → R which satisfy hypotheses (H5)
- (H7) and the following additional hypothesis:

(H8) For every β0 ∈ B and every integer s ∈ N there exists βs ∈ B such that

g(βs(x), z) = g(β̃0(sx), z)

for all (x, z) ∈ K ×RN where β̃0 is the K-periodic extension of β0 to the whole
Rn.

For simplicity of expressions only, we take N = 2nm. Then the function

F (ξ, ζ) = inf
β∈B

inf
v∈V #

η∈N#

∫

K

g
(
β(x), ξ + v(x), ζ + η(x)

)
dx (9)

is upper semidifferentiable due to Lemmas 1 and 2. The proof of separate convexity of
F is exactly the same as for Fθ. Moreover, this proof gives that in the definition of F
by (9) (or in the definition of F0 and Fθ by (2) and (3), respectively) the spaces V #

and N# can be replaced by V 0 and N0, respectively.
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