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Classification and Existence
of Non-Oscillatory Solutions of

Second-Order Neutral Delay Difference Equations

Yong Zhou and B. G. Zhang

Abstract. In this paper, we give a classification of non-oscillatory solutions of a second-order
neutral delay difference equation of the form

∆2(xn − cnxn−τ ) + f(n, xg1(n), . . . , xgm(n)) = 0 (n ≥ n0 ∈ N).

Some existence results for each kind of non-oscillatory solutions are also established.
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1. Introduction

Consider second-order nonlinear neutral difference equations of the form

∆2(xn − cnxn−τ ) + f(n, xg1(n), . . . , xgm(n)) = 0 (n ≥ n0 ∈ N). (1)

With respect to equations (1), throughout we shall assume the following:

(i) τ ∈ N, {cn} ⊂ R+ and there exists δ ∈ (0, 1] such that cn ≤ 1− δ for n ≥ n0.
(ii) gj : Nn0 → Nn0 , Nn0 = {n0, n0 + 1, . . .}, and limn→∞ gj(n) = ∞ (j =

1, 2, . . . , m).
(iii) f : Nn0 × Rm → R is continuous with respect to the last m arguments and

y1f(n, y1, . . . , ym) > 0 for y1yj > 0 (j = 2, . . . , m). Moreover,

|f(n, x1, . . . , xm)| ≥ |f(n, y1, . . . , ym)|

when |yj | ≤ |xj | and xjyj > 0 (j = 1, 2, . . . ,m).

The forward difference ∆ is defined as usual, i.e. ∆xn = xn+1 − xn. Set

yn = xn − cnxn−τ . (2)
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In [3, 4], Agarwal, Manuel and Thandapani give a classification of all non-trivial solu-
tions of certain second-order neutral delay difference equations according to the sign of
{yn∆yn} and established the existence of solutions in some classes.

In this paper, we study the existence and asymptotic behaviour of non-oscillatory
solutions of (1). More precisely, we give a classification of non-oscillatory solutions of (1)
according to their asymptotic behaviour. Moreover, we establish some existence results
for each kind of non-oscillatory solutions of (1). Especially, we obtain two necessary
and sufficient conditions for existence of non-oscillatory solutions of (1).

2. Results

First we show some lemmas which will be useful for the main results.

Lemma 1. Let {xn} be an eventually positive or eventually negative solution of
(1). If limn→∞ xn = 0, then {yn} is eventually negative or eventually positive, respec-
tively, and limn→∞ yn = 0. If limn→∞ xn = 0 fails, then {yn} is eventually positive or
eventually negative.

Proof. Let {xn} be an eventually positive solution of (1). Then ∆2yn < 0 even-
tually. Thus ∆yn is decreasing and ∆yn > 0 or ∆yn < 0 eventually. Also, yn > 0 or
yn < 0 eventually. If limn→∞ xn = 0, from (2) we have limn→∞ yn = 0. Since {yn} is
monotonic, so limn→∞∆yn = 0, which implies that ∆yn > 0. Therefore, yn < 0 eventu-
ally. If limn→∞ xn = 0 fails, then lim supn→∞ xn > 0. We show that yn > 0 eventually.
If not, then yn < 0 eventually. If {xn} is unbounded, then there exists a sequence {nk}
such that limk→∞ nk = ∞, xnk

= maxn0≤n≤nk
{xn} and limk→∞ xnk

= ∞. From (2),
we have

ynk
= xnk

− cnk
xnk−τ ≥ xnk

(1− cnk
). (3)

Thus limk→∞ ynk
= ∞, which is a contradiction. If {xn} is bounded, then there exists

a sequence {nk} such that limk→∞ nk = ∞ and limk→∞ xnk
= lim supn→∞ xn. Since

the sequences {cnk
} and {xnk−τ} are bounded, there exist convergent subsequences.

Without loss of generality, we may assume that limk→∞ xnk−τ and limk→∞ cnk
exist.

Hence

0 ≥ lim
k→∞

ynk
= lim

k→∞
(xnk

− cnk
xnk−τ ) ≥ lim sup

n→∞
xn

(
1− lim

k→∞
cnk

)
> 0

which is a contradiction again. Therefore, yn > 0 eventually. A similar proof can be
given if xn < 0 eventually

Lemma 2. Assume that limn→∞ cn = c ∈ [0, 1) and {xn} is an eventually positive
or eventually negative solution of (1). If limn→∞ yn = a ∈ R, then limn→∞ xn = a

1−c .
If limn→∞ yn = ±∞, then limn→∞ xn = ±∞, respectively.

Proof. Let {xn} be an eventually positive solution of (1). Then xn ≥ yn even-
tually. If limn→∞ = yn = ∞, then limn→∞ xn = ∞. Now we consider the case
that limn→∞ yn = a ∈ R. Thus {yn} is bounded which implies that {xn} is bounded
(see (3)). Therefore, there exists a sequence {nk} such that limk→∞ nk = ∞ and
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limk→∞ xnk
= lim supn→∞ xn. As before, without loss of generality we may assume

that limk→∞ cnk
and limk→∞ xnk−τ exist. Hence

a = lim
k→∞

ynk
= lim

k→∞
xnk

− lim
k→∞

cnk
lim

k→∞
xnk−τ ≥ lim sup

n→∞
xn(1− c),

i.e.
a

1− c
≥ lim sup

n→∞
xn. (4)

On the other hand, there exists a sequence {n′k} such that limk→∞ xn′
k

= lim infn→∞ xn.
Without loss of generality we assume that limk→∞ cn′

k
and limk→∞ xn′

k
−τ exist. Hence

a = lim
k→∞

yn′
k

= lim
k→∞

xn′
k
− lim

k→∞
cn′

k
lim

k→∞
xn′

k
−τ ≥ lim inf

n→∞
xn(1− c)

or
a

1− c
≤ lim inf

n→∞
xn. (5)

Combining (4) and (5) we obtain limn→∞ xn = a
1−c . A similar proof can be given if

xn < 0

We are now ready to prove the following results.

Theorem 1. Assume that limn→∞ cn = c ∈ [0, 1), denote by S the set of all non-
oscillatory solutions of (1) and define the following subsets:

S(0, 0, 0) =
{
{xn} ∈ S : lim

n→∞
xn = 0, lim

n→∞
yn = 0, lim

n→∞
∆yn = 0

}

S(b, a, 0) =
{
{xn} ∈ S : lim

n→∞
xn = b =

a

1− c
, lim
n→∞

yn = a, lim
n→∞

∆yn = 0
}

S(∞,∞, 0) =
{
{xn} ∈ S : lim

n→∞
xn = ∞, lim

n→∞
yn = ∞, lim

n→∞
∆yn = 0

}

S(∞,∞, d) =
{
{xn} ∈ S : lim

n→∞
xn = ∞, lim

n→∞
yn = ∞, lim

n→∞
∆yn = d 6= 0

}
.

Then
S = S(0, 0, 0) ∪ S(b, a, 0) ∪ S(∞,∞, 0) ∪ S(∞,∞, d).

Proof. Without loss of generality, let {xn} be an eventually positive solution of
(1). If limn→∞ xn = 0, by Lemma 1, limn→∞ yn = 0 and limn→∞∆yn = 0, i.e.
xn ∈ S(0, 0, 0). If limn→∞ xn = 0 fails, then by Lemma 2 yn > 0 eventually, and it is
easy to see that ∆yn > 0 and ∆2yn < 0 eventually. If limn→∞ yn = a > 0 exists, then
limn→∞∆yn = 0, by Lemma 2, and we have limn→∞ xn = a

1−c = b, i.e. xn ∈ S(b, a, 0).
If limn→∞ yn = ∞, then by Lemma 2 limn→∞ xn = ∞. Since ∆2yn < 0 and ∆yn > 0,
we have limn→∞∆yn = d, where d = 0 or d > 0. Then either {xn} ∈ S(∞,∞, 0) or
{xn} ∈ S(∞,∞, d)

In the following we shall show some existence results for each kind of non-oscillatory
solution of (1). For this, denote by X the Banach space ln0∞ of all bounded real sequences
x = {xn}n≥n0 with norm ‖xn‖ = supn≥n0

|xn|.
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Theorem 2. Assume that limn→∞ cn = c ∈ [0, 1). Then (1) has a non-oscillatory
solution {xn} ∈ S(b, a, 0) (a 6= 0 and b 6= 0) if and only if

∞∑

j=n0

j|f(j, b1, . . . , b1)| < ∞ (6)

for some b1 6= 0.

Proof. Necessity. Without loss of generality, let {xn} ∈ S(b, a, 0) be an eventually
positive solution of (1). By Theorem 1 we know that b > 0 and a > 0. From (1) and
(2) we have

∆2yn = −f(n, xg1(n), . . . , xgm(n)).

Summing both sides of this equalty from s ≥ n0 to ∞ we get

∆ys =
∞∑

j=s

f(j, xg1(j), . . . , xgm(j)).

Summing both sides of the equality from N ≥ n0 to n− 1 > N we get

yn = yN +
n−1∑

j=N

(j −N + 1)f
(
j, xg1(j), . . . , xgm(j)

)

+
∞∑

j=n

(n−N)f
(
j, xg1(j), . . . , xgm(j)

)
.

(7)

Since limj→∞ xgi(j) = b > 0 (i = 1, 2, . . . ,m), there exists an N ≥ n0 such that
xgi(j) ≥ b

2 for j ≥ N . Hence from (7) we have

n−1∑

j=N

(j −N + 1)|f(j, b
2 , . . . , b

2 )| < yn − yN

which implies that (6) holds.
Sufficiency. Set b1 > 0 and A > 0 so that A < (1 − c)b1. From (6) there exists a

sufficiently large N ≥ n0 so that for n ≥ N we have n − τ ≥ n0 and gi(n) ≥ n0 (i =
1, 2, . . . ,m), and

A

b1
+ cn +

1
b1

∞∑

j=N

jf(j, b1, . . . , b1) ≤ 1. (8)

Define a set Ω by
Ω =

{
{xn} ∈ X| 0 ≤ xn ≤ b1 (n ≥ n0)

}

and an operator T on Ω by

Txn =





A + cnxn−τ +
n−1∑

j=N

jf
(
j, xg1(j), . . . , xgm(j)

)

+
∞∑

j=n

(n− 1)f
(
j, xg1(j), . . . , xgm(j)

)
if n ≥ N + 1

TxN+1 if n0 ≤ n < N + 1.

(9)



Classification and Existence of Non-Oscillatory Solutions 227

Clearly, for {xn} ∈ Ω,

Txn ≤ A + cnb1 +
n−1∑

j=N

jf(j, b1, . . . , b1) +
∞∑

j=n

(n− 1)f(j, b1, . . . , b1)

≤ A + cnb1 +
∞∑

j=N

jf(j, b1, . . . , b1)

≤ b1

(n ≥ N + 1)

and
Txn = TxN+1 ≤ b1 (n0 ≤ n ≤ N + 1),

i.e. TΩ ⊂ Ω.
Define a series of sequences {x(k)

n } (k ∈ Nn0) as

x(0)
n = 0

x(k)
n = Tx(k−1)

n (k ∈ N)

}
(n ≥ n0). (10)

By induction, we can prove that

0 ≤ x(k−1)
n ≤ x(k)

n ≤ b1 (n ≥ n0, k ∈ N).

Then there exists {xn} ∈ Ω such that limk→∞ x
(k)
n = xn (n ≥ n0).

In the following, we shall show that

lim
k→∞

∞∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

)
=

∞∑

j=n

(n− 1)f
(
j, xg1(j), . . . , xgm(j)

)
.

In fact, by (6), for any ε > 0 there exists N1 ≥ n0 such that
∞∑

j=N1

jf(j, b1, . . . , b1) < ε.

Thus, for N2 ≥ N1 we get
∣∣∣∣∣∣

N2∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

)−
∞∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

)
∣∣∣∣∣∣

=

∣∣∣∣∣∣

∞∑

j=N2+1

(n− 1)f
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

)
∣∣∣∣∣∣

≤
∞∑

j=N2+1

jf
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

)

≤
∞∑

j=N2+1

jf(j, b1, . . . , b1)

< ε.
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Hence

N2∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

) −→
∞∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, · · · , x(k)
gm(j)

)

uniformly for k ∈ N as N2 →∞. Therefore

lim
k→∞

∞∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, · · · , x(k)
gm(j)

)

= lim
k→∞

lim
N2→∞

N2∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

)

= lim
N2→∞

lim
k→∞

N2∑

j=n

(n− 1)f
(
j, x

(k)
g1(j)

, . . . , x
(k)
gm(j)

)

= lim
N2→∞

N2∑

j=n

(n− 1)f
(
j, xg1(j), . . . , xgm(j)

)

=
∞∑

j=n

(n− 1)f
(
j, xg1(j), . . . , xgm(j)

)
.

Let k →∞. Then (10) gives

xn =





A + cnxn−τ +
n−1∑

j=N

jf
(
j, xg1(j), . . . , xgm(j)

)

+
∞∑

j=n

(n− 1)f
(
j, xg1(j), . . . , xgm(j)

)
if n ≥ N + 1

xN+1 if n0 ≤ n < N + 1.

Clearly, xn > 0 for n ≥ n0. Therefore, {xn} is a positive solution of (1). Since
0 < A ≤ xn ≤ b1, from Theorem 1, {xn} ∈ S(b, a, 0)

Theorem 3. Assume that limn→∞ cn = c ∈ [0, 1). Then (1) has a non-oscillatory
solution {xn} ∈ S(∞,∞, d) (d 6= 0) if and only if

∞∑

j=n0

∣∣f(
j, hg1(j), . . . , hgm(j)

)∣∣ < ∞ (11)

for some h 6= 0.

Proof. Necessity. Without loss of generality, let {xn} ∈ S(∞,∞, d) be an even-
tually positive solution of (1). From Theorem 1, we have d > 0. From (1) and (2) we
have

∆2yn + f
(
n, xg1(n), . . . , xgm(n)

)
= 0 (n ≥ n0).
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Summing both sides of this equality from n1 ≥ n0 to n− 1 > n1 we get

∆yn −∆yn1 +
n−1∑

j=n1

f
(
j, xg1(j), . . . , xgm(j)

)
= 0.

Since limn→∞∆yn = d > 0, we have

∞∑

j=n1

f
(
j, xg1(j), . . . , xgm(j)

)
< ∞ (12)

and there exist d1 > 0 and n2 ≥ n1 such that yn ≥ d1n for n ≥ n2. Therefore

∞∑

j=n1

f
(
j, xg1(j), . . . , xgm(j)

) ≥
∞∑

j=n1

f
(
j, yg1(j), . . . , ygm(j)

)

≥
∞∑

j=n1

f
(
j, d1g1(j), . . . , d1gm(j)

)
.

(13)

Choosing h = d1 and combining (12) and (13), we get

∞∑

j=n1

f
(
j, hg1(j), . . . , hgm(j)

)
< ∞. (14)

Sufficiency. Set h > 0, d > 0 and B > 0. From (14) there exists a sufficiently large
N ≥ n0 so that for n ≥ N we have n− τ ≥ n0 and gj(n) ≥ n0 (j = 1, 2, ...,m) and

d

h
+

B

nh
+ cn +

1
nh

∞∑

j=N

f
(
j, hg1(j), . . . , hgm(j)

)
< 1. (15)

Define a set Ω by

Ω =
{
{zn} ∈ X : d ≤ zn ≤ h (n ≥ n0)

}

and an operator T on Ω by

Tzn =





d +
B

n
+ cn

n− τ

n
zn−τ

+
1
n

n−1∑

j=N

jf
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)

+
n− 1

n

∞∑

j=n

f
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)
if n ≥ N + 1

TzN+1 if n0 ≤ n < N + 1.

(16)
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Clearly, for {zn} ∈ Ω

Tzn ≤ d +
B

n
+ cnh +

1
n

n−1∑

j=N

jf
(
j, hg1(j), . . . , hgm(j)

)

+
1
n

∞∑

j=n

(n− 1)f
(
j, hg1(j), . . . , hgm(j)

)

≤ d +
B

n
+ cnh +

1
n

∞∑

j=N

jf
(
j, hg1(j), . . . , hgm(j)

)

< h

(n ≥ N + 1)

and
Tzn = TzN+1 ≤ δ (n0 ≤ n < N + 1).

It is easy to see that Tzn ≥ d for n ≥ n0. Hence, TΩ ⊂ Ω. Define a series of sequences
{z(k)

n } (k ∈ N0) by

z(0)
n = d

z(k)
n = Tz(k−1)

n (k ∈ N)

}
(n ≥ n0).

We can prove that

d ≤ z(k)
n ≤ z(k+1)

n ≤ h (n ≥ n0, k ∈ N0).

Then there exists {zn} ∈ Ω such that limk→∞ z
(k)
n = zn and d ≤ zn ≤ h (n ≥ n0).

Clearly, zn = Tzn (n ≥ n0), i.e.

zn =





d +
B

n
+ cn

n− τ

n
zn−τ

+
1
n

n−1∑

j=N

jf
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)

+
1
n

∞∑

j=n

(n− 1)f
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)
if n ≥ N + 1

zN+1 if n0 ≤ n < N + 1.

Let xn = nzn (n ≥ n0). Then we have

xn =





dn + B + cnxn−τ

+
n−1∑

j=N

jf
(
j, xg1(j), . . . , xgm(j)

)

+
∞∑

j=n

(n− 1)f
(
j, xg1(j), . . . , xgm(j)

)
if n ≥ N + 1

xN+1 if n0 ≤ n < N + 1.

(18)
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Hence, {xn} is a positive solution of (1). On the other hand, xn ≥ yn ≥ dn + B. Hence
limn→∞ xn = ∞ and limn→∞ yn = ∞. From (18), we have

∆yn = d +
∞∑

j=n

f
(
j, xg1(j), . . . , xgm(j)

)

= d +
∞∑

j=n

f
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)

≤ d +
∞∑

j=n

f
(
j, hg1(j), . . . , hgm(j)

)
.

Hence, limn→∞∆yn = d. Therefore, {xn} ∈ S(∞,∞, d)

Theorem 4. Assume that limn→∞ cn = c ∈ [0, 1). Further, assume that

∞∑

j=n0

∣∣f(
j, hg1(j), . . . , hgm(j)

)∣∣ < ∞ (19)

and ∞∑

j=n0

j|f(j, b1, . . . , b1)| = ∞ (20)

for some h 6= 0 and b1 6= 0, respectively. Then (1) has a non-oscillatory solution
{xn} ∈ S(∞,∞, 0).

Proof. Without loss of generality, assume that h > 0 and b1 > 0. From (19)
there exists a sufficiently large N > n0 so that for n ≥ N we have n − τ ≥ n0 and
gj(n) ≥ n0 (j = 1, 2, . . . , m) and

b1

nh
+ cn +

1
h

∞∑

j=N

f
(
j, hg1(j), . . . , hgm(j)

)
< 1. (21)

Define a set Ω by
Ω =

{
{zn} ∈ X : 0 ≤ zn ≤ h (n ≥ n0)

}

and an operator T on Ω by

Tzn =





b1

n
+ cn

n− τ

n
zn−τ

+
1
n

n−1∑

j=N

jf
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)

+
1
n

∞∑

j=n

(n− 1)f
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)
if n ≥ N + 1

TzN+1 if n0 ≤ n < N + 1.
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Clearly, for {zn} ∈ Ω

Tzn ≤ b1

n
+ cnh +

1
n

n−1∑

j=N

jf
(
j, hg1(j), . . . , hgm(j)

)

+
1
n

∞∑

j=n

(n− 1)f
(
j, hg1(j), . . . , hgm(j)

)

≤ b1

n
+ cnh +

∞∑

j=N

f
(
j, hg1(j), . . . , hgm(j)

)

≤ h

(n ≥ N + 1)

and
Tzn = TzN+1 ≤ h (n0 ≤ n < N + 1),

i.e. TΩ ⊂ Ω.
Define a series of sequences {z(k)

n } (k ∈ N0) by

z(0)
n = 0

z(k)
n = Tz(k−1)

n (k ∈ N)

}
(n ≥ n0). (22)

By induction, we can prove that

0 ≤ z(k)
n ≤ z(k+1)

n ≤ h (n ≥ n0, k ∈ N0).

Then there exists {zn} ∈ Ω such that limk→∞ z
(k)
n = zn (n ≥ n0).

Clearly, zn = Tzn (n ≥ n0), i.e.

zn =





b1

n
+ cn

n− τ

n
zn−τ

+
1
n

n−1∑

j=N

jf
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)

+
1
n

∞∑

j=n

(n− 1)f
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)
if n ≥ N + 1

zN+1 if n0 ≤ n < N + 1.

Let xn = nzn (n ≥ n0). Then we have

xn =





b1 + cnxn−τ +
n−1∑

j=N

jf
(
j, xg1(j), . . . , xgm(j)

)

+
∞∑

j=n

(n− 1)f
(
j, xg1(j), . . . , xgm(j)

)
if n ≥ N + 1

xN+1 if n0 ≤ n < N + 1.

(23)
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Hence, {xn} is a positive solution of (1). On the other hand, from (23) we have xn ≥ b1

and

xn ≥ yn = xn − cnxn−τ ≥
n−1∑

j=N

jf(j, b1, . . . , b1)

for n ≥ n0 which along with (20) implies limn→∞ xn = ∞ and limn→∞ yn = ∞. By
(23) we get

∆yn =
∞∑

j=n

f
(
j, xg1(j), . . . , xgm(j)

)

=
∞∑

j=n

f
(
j, g1(j)zg1(j), . . . , gm(j)zgm(j)

)

≤
∞∑

j=n

f
(
j, hg1(j), . . . , hgm(j)

)
.

Hence

0 ≤ lim
n→∞

∆yn ≤ lim
n→∞

∞∑

j=n

f
(
j, hg1(j), . . . , hgm(j)

)
= 0,

i.e. limn→∞∆yn = 0. Therefore, {xn} ∈ S(∞,∞, 0)

Theorem 5. Assume that limn→∞ cn = c ∈ [0, 1). Further, assume that there
exists d > 0 such that

∞∑

j=n0

f(j, d1, . . . , d1) = ∞ for any d1 ∈ (0, d]. (24)

Then every solution {xn} of (1) either oscillates or {xn} ∈ S(0, 0, 0).

Proof. Let {xn} be an eventually positive solution of (1). By Lemma 1, if limn→∞
xn = 0, then limn→∞ yn = 0 and so limn→∞∆yn = 0. Hence, {xn} ∈ S(0, 0, 0). If
limn→∞ xn = 0 fails, then yn > 0 eventually. Since ∆2yn < 0, we have ∆yn > 0.
Therefore, there exists d ∈ (0, d] such that xn ≥ yn ≥ d. From (1) and (2) we have

∆2yn = −f
(
n, xg1(n), . . . , xgm(n)

)
.

Summing both sides of the equation from n0 to n− 1 we obtain

∆yn −∆yn0 = −
n−1∑

j=n0

f
(
j, xg1(j), . . . , xgm(j)

) ≤ −
n−1∑

j=n0

f(j, d, . . . , d).

Let n → ∞. Then we get
∑∞

j=n0
f(j, d, . . . , d) < ∞ which contradicts (24) and com-

pletes the proof
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3. Examples

In the following we shall give three examples which demonstrate the applicability and
the importance of the results obtained in Section 2.

Example 1. Consider the difference equation

∆2(xn − 1
2xn−2) + 2−n−2

(1+2−n+1)3 x3
n−1 = 0 (n ≥ 2) (25)

for which condition (6) of Theorem 2 is satisfied. In fact, the sequence {xn} = {1+ 1
2n }

is a non-oscillatory solution of (25) which belongs to the class S(1, 1
2 , 0).

Example 2. Consider the difference equation

∆2(xn − 1
4xn−1) + 2−n−3

(n−1−2−n+1)5 x5
n−1 = 0 (n ≥ 2) (26)

for which condition (11) of Theorem 3 is satisfied. In fact, the sequence {xn} = {n− 1
2n }

is a non-oscillatory solution of (26) which belongs to the class S(∞,∞, 3
4 ).

Example 3. Consider the difference equation

∆2(xn − 1
2xn−2) + 22n−5x3

n−1 = 0 (n ≥ 2) (27)

for which condition (24) of Theorem 5 is satisfied. In fact, the sequence {xn} = { 1
2n } is

a non-oscillatory solution of (27) which belongs to the class S(0, 0, 0).
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