Classification and Existence of Non-Oscillatory Solutions of Second-Order Neutral Delay Difference Equations

Yong Zhou and B. G. Zhang

Abstract. In this paper, we give a classification of non-oscillatory solutions of a second-order neutral delay difference equation of the form

$$\Delta^2(x_n - c_n x_{n-\tau}) + f(n, x_{g_1(n)}, \dots, x_{g_m(n)}) = 0 \qquad (n \ge n_0 \in \mathbb{N}).$$

Some existence results for each kind of non-oscillatory solutions are also established.

Keywords: Neutral difference equations, non-oscillatory solutions **AMS subject classification:** 39A10

1. Introduction

Consider second-order nonlinear neutral difference equations of the form

$$\Delta^2(x_n - c_n x_{n-\tau}) + f(n, x_{g_1(n)}, \dots, x_{g_m(n)}) = 0 \qquad (n \ge n_0 \in \mathbb{N}).$$
(1)

With respect to equations (1), throughout we shall assume the following:

- (i) $\tau \in \mathbb{N}, \{c_n\} \subset \mathbb{R}_+$ and there exists $\delta \in (0, 1]$ such that $c_n \leq 1 \delta$ for $n \geq n_0$.
- (ii) $g_j : \mathbb{N}_{n_0} \to \mathbb{N}_{n_0}, \mathbb{N}_{n_0} = \{n_0, n_0 + 1, \ldots\}, \text{ and } \lim_{n \to \infty} g_j(n) = \infty \quad (j = 1, 2, \ldots, m).$
- (iii) $f : \mathbb{N}_{n_0} \times \mathbb{R}^m \to \mathbb{R}$ is continuous with respect to the last m arguments and $y_1 f(n, y_1, \ldots, y_m) > 0$ for $y_1 y_j > 0$ $(j = 2, \ldots, m)$. Moreover,

$$|f(n, x_1, \dots, x_m)| \ge |f(n, y_1, \dots, y_m)|$$

when $|y_j| \le |x_j|$ and $x_j y_j > 0$ (j = 1, 2, ..., m).

The forward difference Δ is defined as usual, i.e. $\Delta x_n = x_{n+1} - x_n$. Set

$$y_n = x_n - c_n x_{n-\tau}.$$
 (2)

Yong Zhou: Xiangtan Univ., Dept. Math., Xiangtan, Hunan 411105, P.R. China

B. G. Zhang: Ocean Univ. of Qingdao, Dept. Appl. Math., Qingdao, 266003, P.R. China

In [3, 4], Agarwal, Manuel and Thandapani give a classification of all non-trivial solutions of certain second-order neutral delay difference equations according to the sign of $\{y_n \Delta y_n\}$ and established the existence of solutions in some classes.

In this paper, we study the existence and asymptotic behaviour of non-oscillatory solutions of (1). More precisely, we give a classification of non-oscillatory solutions of (1) according to their asymptotic behaviour. Moreover, we establish some existence results for each kind of non-oscillatory solutions of (1). Especially, we obtain two necessary and sufficient conditions for existence of non-oscillatory solutions of (1).

2. Results

First we show some lemmas which will be useful for the main results.

Lemma 1. Let $\{x_n\}$ be an eventually positive or eventually negative solution of (1). If $\lim_{n\to\infty} x_n = 0$, then $\{y_n\}$ is eventually negative or eventually positive, respectively, and $\lim_{n\to\infty} y_n = 0$. If $\lim_{n\to\infty} x_n = 0$ fails, then $\{y_n\}$ is eventually positive or eventually negative.

Proof. Let $\{x_n\}$ be an eventually positive solution of (1). Then $\Delta^2 y_n < 0$ eventually. Thus Δy_n is decreasing and $\Delta y_n > 0$ or $\Delta y_n < 0$ eventually. Also, $y_n > 0$ or $y_n < 0$ eventually. If $\lim_{n\to\infty} x_n = 0$, from (2) we have $\lim_{n\to\infty} y_n = 0$. Since $\{y_n\}$ is monotonic, so $\lim_{n\to\infty} \Delta y_n = 0$, which implies that $\Delta y_n > 0$. Therefore, $y_n < 0$ eventually. If $\lim_{n\to\infty} x_n = 0$ fails, then $\lim_{n\to\infty} x_n > 0$. We show that $y_n > 0$ eventually. If not, then $y_n < 0$ eventually. If $\{x_n\}$ is unbounded, then there exists a sequence $\{n_k\}$ such that $\lim_{k\to\infty} n_k = \infty$, $x_{n_k} = \max_{n_0 \le n \le n_k} \{x_n\}$ and $\lim_{k\to\infty} x_{n_k} = \infty$. From (2), we have

$$y_{n_k} = x_{n_k} - c_{n_k} x_{n_k - \tau} \ge x_{n_k} (1 - c_{n_k}).$$
(3)

Thus $\lim_{k\to\infty} y_{n_k} = \infty$, which is a contradiction. If $\{x_n\}$ is bounded, then there exists a sequence $\{n_k\}$ such that $\lim_{k\to\infty} n_k = \infty$ and $\lim_{k\to\infty} x_{n_k} = \limsup_{n\to\infty} x_n$. Since the sequences $\{c_{n_k}\}$ and $\{x_{n_k-\tau}\}$ are bounded, there exist convergent subsequences. Without loss of generality, we may assume that $\lim_{k\to\infty} x_{n_k-\tau}$ and $\lim_{k\to\infty} c_{n_k}$ exist. Hence

$$0 \ge \lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} (x_{n_k} - c_{n_k} x_{n_k - \tau}) \ge \limsup_{n \to \infty} x_n \left(1 - \lim_{k \to \infty} c_{n_k} \right) > 0$$

which is a contradiction again. Therefore, $y_n > 0$ eventually. A similar proof can be given if $x_n < 0$ eventually

Lemma 2. Assume that $\lim_{n\to\infty} c_n = c \in [0,1)$ and $\{x_n\}$ is an eventually positive or eventually negative solution of (1). If $\lim_{n\to\infty} y_n = a \in \mathbb{R}$, then $\lim_{n\to\infty} x_n = \frac{a}{1-c}$. If $\lim_{n\to\infty} y_n = \pm\infty$, then $\lim_{n\to\infty} x_n = \pm\infty$, respectively.

Proof. Let $\{x_n\}$ be an eventually positive solution of (1). Then $x_n \ge y_n$ eventually. If $\lim_{n\to\infty} = y_n = \infty$, then $\lim_{n\to\infty} x_n = \infty$. Now we consider the case that $\lim_{n\to\infty} y_n = a \in \mathbb{R}$. Thus $\{y_n\}$ is bounded which implies that $\{x_n\}$ is bounded (see (3)). Therefore, there exists a sequence $\{n_k\}$ such that $\lim_{k\to\infty} n_k = \infty$ and

 $\lim_{k\to\infty} x_{n_k} = \limsup_{n\to\infty} x_n$. As before, without loss of generality we may assume that $\lim_{k\to\infty} c_{n_k}$ and $\lim_{k\to\infty} x_{n_k-\tau}$ exist. Hence

$$a = \lim_{k \to \infty} y_{n_k} = \lim_{k \to \infty} x_{n_k} - \lim_{k \to \infty} c_{n_k} \lim_{k \to \infty} x_{n_k - \tau} \ge \limsup_{n \to \infty} x_n (1 - c),$$

i.e.

or

$$\frac{a}{1-c} \ge \limsup_{n \to \infty} x_n. \tag{4}$$

On the other hand, there exists a sequence $\{n'_k\}$ such that $\lim_{k\to\infty} x_{n'_k} = \liminf_{n\to\infty} x_n$. Without loss of generality we assume that $\lim_{k\to\infty} c_{n'_k}$ and $\lim_{k\to\infty} x_{n'_k-\tau}$ exist. Hence

$$a = \lim_{k \to \infty} y_{n'_{k}} = \lim_{k \to \infty} x_{n'_{k}} - \lim_{k \to \infty} c_{n'_{k}} \lim_{k \to \infty} x_{n'_{k} - \tau} \ge \liminf_{n \to \infty} x_{n} (1 - c)$$

$$\frac{a}{1 - c} \le \liminf_{n \to \infty} x_{n}.$$
(5)

Combining (4) and (5) we obtain $\lim_{n\to\infty} x_n = \frac{a}{1-c}$. A similar proof can be given if $x_n < 0 \blacksquare$

We are now ready to prove the following results.

Theorem 1. Assume that $\lim_{n\to\infty} c_n = c \in [0,1)$, denote by S the set of all nonoscillatory solutions of (1) and define the following subsets:

$$S(0,0,0) = \left\{ \{x_n\} \in S : \lim_{n \to \infty} x_n = 0, \lim_{n \to \infty} y_n = 0, \lim_{n \to \infty} \Delta y_n = 0 \right\}$$
$$S(b,a,0) = \left\{ \{x_n\} \in S : \lim_{n \to \infty} x_n = b = \frac{a}{1-c}, \lim_{n \to \infty} y_n = a, \lim_{n \to \infty} \Delta y_n = 0 \right\}$$
$$S(\infty,\infty,0) = \left\{ \{x_n\} \in S : \lim_{n \to \infty} x_n = \infty, \lim_{n \to \infty} y_n = \infty, \lim_{n \to \infty} \Delta y_n = 0 \right\}$$
$$S(\infty,\infty,d) = \left\{ \{x_n\} \in S : \lim_{n \to \infty} x_n = \infty, \lim_{n \to \infty} y_n = \infty, \lim_{n \to \infty} \Delta y_n = d \neq 0 \right\}.$$

Then

$$S = S(0,0,0) \cup S(b,a,0) \cup S(\infty,\infty,0) \cup S(\infty,\infty,d)$$
 .

Proof. Without loss of generality, let $\{x_n\}$ be an eventually positive solution of (1). If $\lim_{n\to\infty} x_n = 0$, by Lemma 1, $\lim_{n\to\infty} y_n = 0$ and $\lim_{n\to\infty} \Delta y_n = 0$, i.e. $x_n \in S(0,0,0)$. If $\lim_{n\to\infty} x_n = 0$ fails, then by Lemma 2 $y_n > 0$ eventually, and it is easy to see that $\Delta y_n > 0$ and $\Delta^2 y_n < 0$ eventually. If $\lim_{n\to\infty} y_n = a > 0$ exists, then $\lim_{n\to\infty} \Delta y_n = 0$, by Lemma 2, and we have $\lim_{n\to\infty} x_n = \frac{a}{1-c} = b$, i.e. $x_n \in S(b, a, 0)$. If $\lim_{n\to\infty} y_n = \infty$, then by Lemma 2 $\lim_{n\to\infty} x_n = \infty$. Since $\Delta^2 y_n < 0$ and $\Delta y_n > 0$, we have $\lim_{n\to\infty} \Delta y_n = d$, where d = 0 or d > 0. Then either $\{x_n\} \in S(\infty, \infty, 0)$ or $\{x_n\} \in S(\infty, \infty, d)$

In the following we shall show some existence results for each kind of non-oscillatory solution of (1). For this, denote by X the Banach space $l_{\infty}^{n_0}$ of all bounded real sequences $x = \{x_n\}_{n \ge n_0}$ with norm $||x_n|| = \sup_{n \ge n_0} |x_n|$.

Theorem 2. Assume that $\lim_{n\to\infty} c_n = c \in [0,1)$. Then (1) has a non-oscillatory solution $\{x_n\} \in S(b,a,0)$ $(a \neq 0 \text{ and } b \neq 0)$ if and only if

$$\sum_{j=n_0}^{\infty} j |f(j, b_1, \dots, b_1)| < \infty$$
(6)

for some $b_1 \neq 0$.

Proof. Necessity. Without loss of generality, let $\{x_n\} \in S(b, a, 0)$ be an eventually positive solution of (1). By Theorem 1 we know that b > 0 and a > 0. From (1) and (2) we have

$$\Delta^2 y_n = -f(n, x_{g_1(n)}, \dots, x_{g_m(n)}).$$

Summing both sides of this equalty from $s \ge n_0$ to ∞ we get

$$\Delta y_s = \sum_{j=s}^{\infty} f(j, x_{g_1(j)}, \dots, x_{g_m(j)}).$$

Summing both sides of the equality from $N \ge n_0$ to n-1 > N we get

$$y_{n} = y_{N} + \sum_{j=N}^{n-1} (j - N + 1) f(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}) + \sum_{j=n}^{\infty} (n - N) f(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}).$$
(7)

Since $\lim_{j\to\infty} x_{g_i(j)} = b > 0$ (i = 1, 2, ..., m), there exists an $N \ge n_0$ such that $x_{g_i(j)} \ge \frac{b}{2}$ for $j \ge N$. Hence from (7) we have

$$\sum_{j=N}^{n-1} (j-N+1) |f(j, \frac{b}{2}, \dots, \frac{b}{2})| < y_n - y_N$$

which implies that (6) holds.

Sufficiency. Set $b_1 > 0$ and A > 0 so that $A < (1-c)b_1$. From (6) there exists a sufficiently large $N \ge n_0$ so that for $n \ge N$ we have $n - \tau \ge n_0$ and $g_i(n) \ge n_0$ (i = 1, 2, ..., m), and

$$\frac{A}{b_1} + c_n + \frac{1}{b_1} \sum_{j=N}^{\infty} jf(j, b_1, \dots, b_1) \le 1.$$
(8)

Define a set Ω by

$$\Omega = \left\{ \{x_n\} \in X | \ 0 \le x_n \le b_1 \ (n \ge n_0) \right\}$$

and an operator T on Ω by

$$Tx_{n} = \begin{cases} A + c_{n}x_{n-\tau} + \sum_{j=N}^{n-1} jf(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}) & \text{if } n \ge N+1 \\ + \sum_{j=n}^{\infty} (n-1)f(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}) & \text{if } n_{0} \le n < N+1. \end{cases}$$
(9)

Clearly, for $\{x_n\} \in \Omega$,

$$Tx_{n} \leq A + c_{n}b_{1} + \sum_{j=N}^{n-1} jf(j, b_{1}, \dots, b_{1}) + \sum_{j=n}^{\infty} (n-1)f(j, b_{1}, \dots, b_{1})$$

$$\leq A + c_{n}b_{1} + \sum_{j=N}^{\infty} jf(j, b_{1}, \dots, b_{1})$$

$$\leq b_{1}$$

$$(n \geq N+1)$$

and

$$Tx_n = Tx_{N+1} \le b_1$$
 $(n_0 \le n \le N+1),$

i.e. $T\Omega \subset \Omega$.

Define a series of sequences $\{x_n^{(k)}\}\ (k \in \mathbb{N}_{n_0})$ as

$$x_n^{(0)} = 0 x_n^{(k)} = T x_n^{(k-1)} \quad (k \in \mathbb{N})$$
 $(n \ge n_0).$ (10)

By induction, we can prove that

$$0 \le x_n^{(k-1)} \le x_n^{(k)} \le b_1$$
 $(n \ge n_0, k \in \mathbb{N}).$

Then there exists $\{x_n\} \in \Omega$ such that $\lim_{k \to \infty} x_n^{(k)} = x_n \quad (n \ge n_0).$

In the following, we shall show that

$$\lim_{k \to \infty} \sum_{j=n}^{\infty} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)}) = \sum_{j=n}^{\infty} (n-1) f(j, x_{g_1(j)}, \dots, x_{g_m(j)}).$$

In fact, by (6), for any $\varepsilon > 0$ there exists $N_1 \ge n_0$ such that

$$\sum_{j=N_1}^{\infty} jf(j,b_1,\ldots,b_1) < \varepsilon.$$

Thus, for $N_2 \ge N_1$ we get

$$\begin{split} \sum_{j=n}^{N_2} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)}) &- \sum_{j=n}^{\infty} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)}) \\ &= \left| \sum_{j=N_2+1}^{\infty} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)}) \right| \\ &\leq \sum_{j=N_2+1}^{\infty} j f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)}) \\ &\leq \sum_{j=N_2+1}^{\infty} j f(j, b_1, \dots, b_1) \\ &\leq \varepsilon. \end{split}$$

Hence

$$\sum_{j=n}^{N_2} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)}) \longrightarrow \sum_{j=n}^{\infty} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)})$$

uniformly for $k \in \mathbb{N}$ as $N_2 \to \infty$. Therefore

$$\lim_{k \to \infty} \sum_{j=n}^{\infty} (n-1) f(j, x_{g_1(j)}^{(k)}, \cdots, x_{g_m(j)}^{(k)})$$

$$= \lim_{k \to \infty} \lim_{N_2 \to \infty} \sum_{j=n}^{N_2} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)})$$

$$= \lim_{N_2 \to \infty} \lim_{k \to \infty} \sum_{j=n}^{N_2} (n-1) f(j, x_{g_1(j)}^{(k)}, \dots, x_{g_m(j)}^{(k)})$$

$$= \sum_{j=n}^{\infty} (n-1) f(j, x_{g_1(j)}, \dots, x_{g_m(j)}).$$

Let $k \to \infty$. Then (10) gives

$$x_n = \begin{cases} A + c_n x_{n-\tau} + \sum_{j=N}^{n-1} jf(j, x_{g_1(j)}, \dots, x_{g_m(j)}) & \text{if } n \ge N+1 \\ + \sum_{j=n}^{\infty} (n-1)f(j, x_{g_1(j)}, \dots, x_{g_m(j)}) & \text{if } n_0 \le n < N+1. \end{cases}$$

Clearly, $x_n > 0$ for $n \ge n_0$. Therefore, $\{x_n\}$ is a positive solution of (1). Since $0 < A \le x_n \le b_1$, from Theorem 1, $\{x_n\} \in S(b, a, 0)$

Theorem 3. Assume that $\lim_{n\to\infty} c_n = c \in [0,1)$. Then (1) has a non-oscillatory solution $\{x_n\} \in S(\infty, \infty, d) \ (d \neq 0)$ if and only if

$$\sum_{j=n_0}^{\infty} \left| f(j, hg_1(j), \dots, hg_m(j)) \right| < \infty$$
(11)

for some $h \neq 0$.

Proof. Necessity. Without loss of generality, let $\{x_n\} \in S(\infty, \infty, d)$ be an eventually positive solution of (1). From Theorem 1, we have d > 0. From (1) and (2) we have

$$\Delta^2 y_n + f(n, x_{g_1(n)}, \dots, x_{g_m(n)}) = 0 \qquad (n \ge n_0).$$

Summing both sides of this equality from $n_1 \ge n_0$ to $n-1 > n_1$ we get

$$\Delta y_n - \Delta y_{n_1} + \sum_{j=n_1}^{n-1} f(j, x_{g_1(j)}, \dots, x_{g_m(j)}) = 0.$$

Since $\lim_{n\to\infty} \Delta y_n = d > 0$, we have

$$\sum_{j=n_1}^{\infty} f(j, x_{g_1(j)}, \dots, x_{g_m(j)}) < \infty$$
(12)

and there exist $d_1 > 0$ and $n_2 \ge n_1$ such that $y_n \ge d_1 n$ for $n \ge n_2$. Therefore

$$\sum_{j=n_1}^{\infty} f(j, x_{g_1(j)}, \dots, x_{g_m(j)}) \ge \sum_{j=n_1}^{\infty} f(j, y_{g_1(j)}, \dots, y_{g_m(j)})$$

$$\ge \sum_{j=n_1}^{\infty} f(j, d_1g_1(j), \dots, d_1g_m(j)).$$
(13)

Choosing $h = d_1$ and combining (12) and (13), we get

$$\sum_{j=n_1}^{\infty} f(j, hg_1(j), \dots, hg_m(j)) < \infty.$$
(14)

Sufficiency. Set h > 0, d > 0 and B > 0. From (14) there exists a sufficiently large $N \ge n_0$ so that for $n \ge N$ we have $n - \tau \ge n_0$ and $g_j(n) \ge n_0$ (j = 1, 2, ..., m) and

$$\frac{d}{h} + \frac{B}{nh} + c_n + \frac{1}{nh} \sum_{j=N}^{\infty} f(j, hg_1(j), \dots, hg_m(j)) < 1.$$
(15)

Define a set Ω by

$$\Omega = \left\{ \{z_n\} \in X : d \le z_n \le h \ (n \ge n_0) \right\}$$

and an operator T on Ω by

$$Tz_{n} = \begin{cases} d + \frac{B}{n} + c_{n} \frac{n - \tau}{n} z_{n - \tau} \\ + \frac{1}{n} \sum_{j = N}^{n - 1} jf(j, g_{1}(j) z_{g_{1}(j)}, \dots, g_{m}(j) z_{g_{m}(j)}) \\ + \frac{n - 1}{n} \sum_{j = n}^{\infty} f(j, g_{1}(j) z_{g_{1}(j)}, \dots, g_{m}(j) z_{g_{m}(j)}) \\ Tz_{N+1} & \text{if } n_{0} \leq n < N + 1. \end{cases}$$
(16)

Clearly, for $\{z_n\} \in \Omega$

$$Tz_{n} \leq d + \frac{B}{n} + c_{n}h + \frac{1}{n}\sum_{j=N}^{n-1} jf(j, hg_{1}(j), \dots, hg_{m}(j)) + \frac{1}{n}\sum_{j=n}^{\infty} (n-1)f(j, hg_{1}(j), \dots, hg_{m}(j)) \leq d + \frac{B}{n} + c_{n}h + \frac{1}{n}\sum_{j=N}^{\infty} jf(j, hg_{1}(j), \dots, hg_{m}(j)) < h$$

and

$$Tz_n = Tz_{N+1} \le \delta \qquad (n_0 \le n < N+1).$$

It is easy to see that $Tz_n \ge d$ for $n \ge n_0$. Hence, $T\Omega \subset \Omega$. Define a series of sequences $\{z_n^{(k)}\}$ $(k \in \mathbb{N}_0)$ by

$$z_n^{(0)} = d z_n^{(k)} = T z_n^{(k-1)} \quad (k \in \mathbb{N})$$
 $(n \ge n_0).$

We can prove that

$$d \le z_n^{(k)} \le z_n^{(k+1)} \le h$$
 $(n \ge n_0, k \in \mathbb{N}_0).$

Then there exists $\{z_n\} \in \Omega$ such that $\lim_{k\to\infty} z_n^{(k)} = z_n$ and $d \leq z_n \leq h$ $(n \geq n_0)$. Clearly, $z_n = Tz_n$ $(n \geq n_0)$, i.e.

$$z_{n} = \begin{cases} d + \frac{B}{n} + c_{n} \frac{n - \tau}{n} z_{n - \tau} \\ + \frac{1}{n} \sum_{j = N}^{n - 1} jf(j, g_{1}(j) z_{g_{1}(j)}, \dots, g_{m}(j) z_{g_{m}(j)}) \\ + \frac{1}{n} \sum_{j = n}^{\infty} (n - 1)f(j, g_{1}(j) z_{g_{1}(j)}, \dots, g_{m}(j) z_{g_{m}(j)}) \\ z_{N+1} & \text{if } n_{0} \le n < N + 1. \end{cases}$$

Let $x_n = nz_n \quad (n \ge n_0)$. Then we have

$$x_{n} = \begin{cases} d_{n} + B + c_{n} x_{n-\tau} \\ + \sum_{j=N}^{n-1} j f(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}) \\ + \sum_{j=n}^{\infty} (n-1) f(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}) \\ x_{N+1} & \text{if } n_{0} \le n < N+1. \end{cases}$$
(18)

Hence, $\{x_n\}$ is a positive solution of (1). On the other hand, $x_n \ge y_n \ge dn + B$. Hence $\lim_{n\to\infty} x_n = \infty$ and $\lim_{n\to\infty} y_n = \infty$. From (18), we have

$$\Delta y_n = d + \sum_{j=n}^{\infty} f\left(j, x_{g_1(j)}, \dots, x_{g_m(j)}\right)$$
$$= d + \sum_{j=n}^{\infty} f\left(j, g_1(j) z_{g_1(j)}, \dots, g_m(j) z_{g_m(j)}\right)$$
$$\leq d + \sum_{j=n}^{\infty} f\left(j, hg_1(j), \dots, hg_m(j)\right).$$

Hence, $\lim_{n\to\infty} \Delta y_n = d$. Therefore, $\{x_n\} \in S(\infty, \infty, d)$

Theorem 4. Assume that $\lim_{n\to\infty} c_n = c \in [0,1)$. Further, assume that

$$\sum_{j=n_0}^{\infty} \left| f(j, hg_1(j), \dots, hg_m(j)) \right| < \infty$$
(19)

and

$$\sum_{j=n_0}^{\infty} j |f(j, b_1, \dots, b_1)| = \infty$$
(20)

for some $h \neq 0$ and $b_1 \neq 0$, respectively. Then (1) has a non-oscillatory solution $\{x_n\} \in S(\infty, \infty, 0)$.

Proof. Without loss of generality, assume that h > 0 and $b_1 > 0$. From (19) there exists a sufficiently large $N > n_0$ so that for $n \ge N$ we have $n - \tau \ge n_0$ and $g_j(n) \ge n_0$ (j = 1, 2, ..., m) and

$$\frac{b_1}{nh} + c_n + \frac{1}{h} \sum_{j=N}^{\infty} f(j, hg_1(j), \dots, hg_m(j)) < 1.$$
(21)

Define a set Ω by

$$\Omega = \left\{ \{z_n\} \in X : 0 \le z_n \le h \ (n \ge n_0) \right\}$$

and an operator T on Ω by

$$Tz_{n} = \begin{cases} \frac{b_{1}}{n} + c_{n} \frac{n-\tau}{n} z_{n-\tau} \\ + \frac{1}{n} \sum_{j=N}^{n-1} jf(j, g_{1}(j)z_{g_{1}(j)}, \dots, g_{m}(j)z_{g_{m}(j)}) \\ + \frac{1}{n} \sum_{j=n}^{\infty} (n-1)f(j, g_{1}(j)z_{g_{1}(j)}, \dots, g_{m}(j)z_{g_{m}(j)}) \\ Tz_{N+1} & \text{if } n_{0} \le n < N+1. \end{cases}$$

Clearly, for $\{z_n\} \in \Omega$

$$Tz_n \leq \frac{b_1}{n} + c_n h + \frac{1}{n} \sum_{j=N}^{n-1} jf(j, hg_1(j), \dots, hg_m(j))$$

+ $\frac{1}{n} \sum_{j=n}^{\infty} (n-1)f(j, hg_1(j), \dots, hg_m(j))$
$$\leq \frac{b_1}{n} + c_n h + \sum_{j=N}^{\infty} f(j, hg_1(j), \dots, hg_m(j))$$

$$\leq h$$

and

$$Tz_n = Tz_{N+1} \le h$$
 $(n_0 \le n < N+1),$

i.e. $T\Omega \subset \Omega$.

Define a series of sequences $\{z_n^{(k)}\}\ (k \in \mathbb{N}_0)$ by

$$z_n^{(0)} = 0 z_n^{(k)} = T z_n^{(k-1)} \quad (k \in \mathbb{N})$$
 $(n \ge n_0).$ (22)

By induction, we can prove that

$$0 \le z_n^{(k)} \le z_n^{(k+1)} \le h$$
 $(n \ge n_0, k \in \mathbb{N}_0).$

Then there exists $\{z_n\} \in \Omega$ such that $\lim_{k\to\infty} z_n^{(k)} = z_n \quad (n \ge n_0)$. Clearly, $z_n = Tz_n \quad (n \ge n_0)$, i.e.

$$z_{n} = \begin{cases} \frac{b_{1}}{n} + c_{n} \frac{n - \tau}{n} z_{n - \tau} \\ + \frac{1}{n} \sum_{j = N}^{n - 1} jf(j, g_{1}(j) z_{g_{1}(j)}, \dots, g_{m}(j) z_{g_{m}(j)}) \\ + \frac{1}{n} \sum_{j = n}^{\infty} (n - 1)f(j, g_{1}(j) z_{g_{1}(j)}, \dots, g_{m}(j) z_{g_{m}(j)}) \\ z_{N+1} & \text{if } n_{0} \le n < N + 1. \end{cases}$$

Let $x_n = nz_n \quad (n \ge n_0)$. Then we have

$$x_{n} = \begin{cases} b_{1} + c_{n} x_{n-\tau} + \sum_{j=N}^{n-1} jf(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}) & \text{if } n \ge N+1 \\ + \sum_{j=n}^{\infty} (n-1)f(j, x_{g_{1}(j)}, \dots, x_{g_{m}(j)}) & \text{if } n_{0} \le n < N+1. \end{cases}$$
(23)

Hence, $\{x_n\}$ is a positive solution of (1). On the other hand, from (23) we have $x_n \ge b_1$ and

$$x_n \ge y_n = x_n - c_n x_{n-\tau} \ge \sum_{j=N}^{n-1} jf(j, b_1, \dots, b_1)$$

for $n \ge n_0$ which along with (20) implies $\lim_{n\to\infty} x_n = \infty$ and $\lim_{n\to\infty} y_n = \infty$. By (23) we get

$$\Delta y_n = \sum_{j=n}^{\infty} f(j, x_{g_1(j)}, \dots, x_{g_m(j)})$$
$$= \sum_{j=n}^{\infty} f(j, g_1(j) z_{g_1(j)}, \dots, g_m(j) z_{g_m(j)})$$
$$\leq \sum_{j=n}^{\infty} f(j, hg_1(j), \dots, hg_m(j)).$$

Hence

$$0 \leq \lim_{n \to \infty} \Delta y_n \leq \lim_{n \to \infty} \sum_{j=n}^{\infty} f(j, hg_1(j), \dots, hg_m(j)) = 0,$$

i.e. $\lim_{n\to\infty} \Delta y_n = 0$. Therefore, $\{x_n\} \in S(\infty, \infty, 0)$

Theorem 5. Assume that $\lim_{n\to\infty} c_n = c \in [0,1)$. Further, assume that there exists d > 0 such that

$$\sum_{j=n_0}^{\infty} f(j, d_1, \dots, d_1) = \infty \quad \text{for any } d_1 \in (0, d].$$
 (24)

Then every solution $\{x_n\}$ of (1) either oscillates or $\{x_n\} \in S(0,0,0)$.

Proof. Let $\{x_n\}$ be an eventually positive solution of (1). By Lemma 1, if $\lim_{n\to\infty} x_n = 0$, then $\lim_{n\to\infty} y_n = 0$ and so $\lim_{n\to\infty} \Delta y_n = 0$. Hence, $\{x_n\} \in S(0,0,0)$. If $\lim_{n\to\infty} x_n = 0$ fails, then $y_n > 0$ eventually. Since $\Delta^2 y_n < 0$, we have $\Delta y_n > 0$. Therefore, there exists $\overline{d} \in (0,d]$ such that $x_n \ge y_n \ge \overline{d}$. From (1) and (2) we have

$$\Delta^2 y_n = -f(n, x_{g_1(n)}, \dots, x_{g_m(n)}).$$

Summing both sides of the equation from n_0 to n-1 we obtain

$$\Delta y_n - \Delta y_{n_0} = -\sum_{j=n_0}^{n-1} f(j, x_{g_1(j)}, \dots, x_{g_m(j)}) \le -\sum_{j=n_0}^{n-1} f(j, \overline{d}, \dots, \overline{d}).$$

Let $n \to \infty$. Then we get $\sum_{j=n_0}^{\infty} f(j, \overline{d}, \dots, \overline{d}) < \infty$ which contradicts (24) and completes the proof \blacksquare

3. Examples

In the following we shall give three examples which demonstrate the applicability and the importance of the results obtained in Section 2.

Example 1. Consider the difference equation

$$\Delta^2(x_n - \frac{1}{2}x_{n-2}) + \frac{2^{-n-2}}{(1+2^{-n+1})^3} x_{n-1}^3 = 0 \qquad (n \ge 2)$$
(25)

for which condition (6) of Theorem 2 is satisfied. In fact, the sequence $\{x_n\} = \{1 + \frac{1}{2^n}\}$ is a non-oscillatory solution of (25) which belongs to the class $S(1, \frac{1}{2}, 0)$.

Example 2. Consider the difference equation

$$\Delta^2(x_n - \frac{1}{4}x_{n-1}) + \frac{2^{-n-3}}{(n-1-2^{-n+1})^5} x_{n-1}^5 = 0 \qquad (n \ge 2)$$
(26)

for which condition (11) of Theorem 3 is satisfied. In fact, the sequence $\{x_n\} = \{n - \frac{1}{2^n}\}$ is a non-oscillatory solution of (26) which belongs to the class $S(\infty, \infty, \frac{3}{4})$.

Example 3. Consider the difference equation

$$\Delta^2(x_n - \frac{1}{2}x_{n-2}) + 2^{2n-5}x_{n-1}^3 = 0 \qquad (n \ge 2)$$
(27)

for which condition (24) of Theorem 5 is satisfied. In fact, the sequence $\{x_n\} = \{\frac{1}{2^n}\}$ is a non-oscillatory solution of (27) which belongs to the class S(0,0,0).

References

- [1] Agarwal, R. P.: Difference Equations and Inequalities. New York: Marcel Dekker 1992.
- [2] Agarwal, R. P. and P. J. Y. Wong: *Advanced Topics in Difference Equations*. Dordrecht (The Netherlands): Kluwer Acad. Publ. 1997.
- [3] Agarwal, R. P., Manuel, M. M. S. and E. Thandapani: Oscillatory and non-oscillatory behavior of second-order neutral delay difference equations. Math., Comput. Modelling 24 (1996), 5 – 11.
- [4] Agarwal, R. P., Manuel, M. M. S. and E.Thandapani: Oscillatory and non-oscillatory behavior of second-order neutral delay difference equations II. Appl. Math. Lett. 10 (1997), 103 – 109.
- [5] Lu, W.: Asymptotic behaviour and existence of non-oscillatory solutions of second-order nonlinear neutral differentil equations (in Chinese). Acta Math. Sinica 36 (1993), 476 – 484.
- [6] Wei, J.: Asymptotic behaviour and existence of non-oscillatory solutions of second-order NFDE (in Chinese). Acta Math. Appl. Sinica 15 (1992), 37 – 47.
- [7] Zhang, B. G. and Yong Zhou: Oscillation and non-scillation of second-order linear difference equations. Computers Math. Applic. 39 (2000), 1 – 7.