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Abstract. The equivalence between the inequalities of Korn, Friedrichs, Magenes-Stampacchia-
Nečas and Babuška-Aziz is derived using some elementary properties of the gradient, divergence
and curl operators implied by these inequalities.
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1. Introduction

Horgan has shown in [6] that the Friedrichs’ inequality and the second Korn’s inequality
are equivalent for a plane domain. Moreover, he found that the Friedrichs’ and Korn’s
constants Γ and K are related by K = 2(1+Γ). He used a variational approach, leading
to the consideration of associated eigenvalue problems. These results were extended by
Horgan and Payne [8] to include the relations between the inequalities of Friedrichs
and Babuška-Aziz. Using a direct method, Horgan and Payne proved that also these
two inequalities are equivalent. Besides, they found that the optimal constant C of the
inequality of Babuška-Aziz is related to Γ by the simple arithmetic relation Γ = C − 1.
More recently, Velte [14] has rederived the relation between these two inequalities from
the properties of the solutions of certain eigenvalue problems in variational form which
are directly associated to the inequalities of Friedrichs and Babuška-Aziz. He has also
shown in [15] that these results have a counterpart in dimension three.

The author’s purpose in the present paper is to give a simple equivalence proof of
the inequalities of all these inequalities. For a connected bounded domain, we show
that this equivalence is a direct consequence of some elementary properties (i.e., the
closedness of their image) of the gradient, divergence and curl operators implied by all
these inequalities. First we show the equivalence between the inequalities of Babuška-
Aziz and Magenes-Stampacchia-Nečas, then that between the inequalities of Friedrichs
and Magenes-Stampacchia-Nečas, and finally that between the inequalities of Korn and
Magenes-Stampacchia-Nečas. This clearly suffices to prove that all the inequalities
mentioned are equivalent.
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2. Notations and basic results

Let Ω be a bounded, Lipschitzian, simply connected domain of the two-dimensional Eu-
clidean space R2. We denote by L2(Ω) the space of square integrable functions on Ω, by
H1(Ω) the space of functions on Ω with square integrable gradient, by H−1(Ω) the dual
space of H1

0 (Ω), the closure in H1(Ω) of the space of infinitely differentiable functions
with compact support contained in Ω. Moreover, we need the following subspaces of
L2(Ω): L2

0(Ω), the space of functions orthogonal to the constants, and H, the space of
harmonic functions.

Spaces of vector fields on Ω will be denoted by superposing the dimension of the
vector space on the symbols, enclosed between square brackets, of the analogous spaces
of functions. Bold face letters will be used to indicate spaces of tensor fields on Ω. For
example, [L2(Ω)]2 and L2(Ω) are the spaces of square integrable vector and tensor fields
on Ω, respectively.

Let us summarize some well known results about the divergence, gradient and curl
operators (see, for example, Girault and Raviart [4], Temam [12] and Velte [14]). Be-
cause of the Poincaré inequality the expression 〈∇u,∇v〉L2(Ω) is a scalar product on
[H1

0 (Ω)]2, and the associated norm is equivalent to the norm of [H1
0 (Ω)]2. The space

[H1
0 (Ω)]2 can be decomposed into the direct sum of orthogonal subspaces with respect

to the scalar product 〈∇u,∇v〉L2(Ω):

[H1
0 (Ω)]2 = Ker div ⊕Ker curl⊕W. (1)

Moreover, an application of the Stokes theorem yields 1)

〈∇u,∇v〉L2(Ω) = 〈div u,div v〉L2(Ω) + 〈curlu, curlv〉L2(Ω). (2)

The divergence operator maps W into the space H of harmonic functions in L2
0(Ω) and

Ker curl into H⊥. Similarly, the curl operator maps W into H and Ker div into H⊥.
Two functions f and g in L2(Ω) are harmonic conjugate if and only if, for all vector

fields v ∈ [H1
0 (Ω)]2,

〈f, curlv〉L2(Ω) − 〈g, div v〉L2(Ω) = 0 (3)

or, equivalently, if and only if the vector field u = (f, g) satisfies the relations

div u = curlu = 0. (4)

Let u ∈ H1
0 (Ω) be the solution of the Dirichlet problem for the Laplace operator

∆u = ∇p, with p ∈ L2
0(Ω). Then, for all v ∈ [H1(Ω)]2,

〈∇u,∇v〉L2(Ω) = 〈p,div v〉L2(Ω)

‖∇u‖L2(Ω) = ‖∇p‖[H−1(Ω)]2 .
(5)

1) The operator curl : [H1
0 (Ω)]2 → L2(Ω) is the composition of the divergence operator

div : [H1
0 (Ω)]2 → L2(Ω) with the clockwise rotation of amplitude π

2
. In the standard base

{e1, e2} of R2, curlu = u2
,1 − u1

,2, u = u1e1 + u2e2.
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It follows that the Laplace operator is an isomorphism between Ker curl⊕W and L2
0(Ω),

sending Ker curl onto L2
0(Ω)∩H⊥ and W onto L2

0(Ω)∩H. Moreover, we have div u = p
if and only if p ∈ H⊥.

Finally, let us note the following:

- The duals of the operators div and curl are, in the order, the operators −∇ :
L2(Ω) → [H−1(Ω)]2 and curl : L2(Ω) → [H−1(Ω)]2, with curl f = (f,2,−f,1).

- The kernel of the gradient operator ∇ : L2(Ω) → [H−1(Ω)]2 is the subspace of
constant functions in L2(Ω): Ker∇ = L2

0(Ω)⊥.
- The subspace (Ker div)⊥ = {l ∈ [H−1(Ω)]2 : 〈l,u〉 = 0, u ∈ Ker div} is isometri-

cally isomorphic to the dual space of Ker curl⊕W .

3. Equivalence results

The title inequalities can be formulated as follows.

Korn’s inequality (in the second case). There is a constant K such that, for all
vector fields u ∈ [H1(Ω)]2 with W(u) ∈ L2

0(Ω),

‖∇u‖2L2(Ω) ≤ K‖E(u)‖2L2(Ω) (6)

where E(u) = sym∇u and W(u) = skw∇u are the symmetric and skew parts of the
gradient ∇u of u.

Friedrichs’ inequality. Let f ∈ L2
0(Ω) and f∗ ∈ L2(Ω) be conjugate harmonic

functions. Then there exists a constant Γ such that

‖f‖2L2(Ω) ≤ Γ‖f∗‖2L2(Ω). (7)

Magenes-Stampacchia-Nečas inequality. There exists a constant M such that, for
all scalar fields f ∈ L2

0(Ω),

‖f‖L2(Ω) ≤ M‖∇f‖[H−1(Ω)]2 . (8)

Babuška-Aziz inequality. Let f ∈ L2
0(Ω). Then there exists a vector field u ∈

[H1
0 (Ω)]2 and a constant C such that

div u = f, ‖∇u‖2L2(Ω) ≤ C‖f‖2L2(Ω). (9)

For the Korn and the Friedrichs inequalities (Korn [9], Friedrichs [3]) we refer to
the exhaustive review article by Horgan [7] and the references cited therein. A proof
of Korn’s inequality using the Magenes-Stampacchia-Nečas inequality is given in the
recent paper [13]. Inequality (8) was first established by Magenes and Stampacchia
[10] for a regular domain, then generalized by Nečas [11] to a domain with Lipschitz
continuous boundary. Inequality (9) was stated by Babuška and Aziz [1] in the course
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of their analysis of the finite element method. Proofs of (8) and (9) can be found also
in the books by Girault and Raviart [4] and Temam [12].

First we show the equivalence between the Magenes-Stampacchia-Nečas inequality
and the Babuška-Aziz inequality. Though a derivation of this equivalence can be given
using the Closed Range Theorem (these inequalities express the closure of the images
of the divergence and gradient operators), here, following Girault and Raviart [4] and
Temam [12], we prefer a direct proof leading also to a relation between the constants of
the two inequalities.

Proposition 1. The inequalities of Magenes-Stampacchia-Nečas and Babuška-Aziz
are equivalent. Moreover, the constants occurring in the two inequalities are related by
M =

√
C.

Proof. Assume the Babuška-Aziz inequality (9). Then, for all f, g ∈ L2
0(Ω),

〈f, g〉
‖g‖L2(Ω)

=
〈∇f,u〉

‖div u‖L2(Ω)
≤
√

C‖∇f‖[H−1(Ω)]2 (10)

with div u = g. Consequently, taking the supremum over g ∈ L2
0(Ω), we obtain

‖f‖L2(Ω) ≤
√

C‖∇f‖[H−1(Ω)]2 , that is (8) with M =
√

C.

Now assume the Magenes-Stampacchia-Nečas inequality (8). This inequality im-
plies, in particular, that Im∇ is closed in [H−1(Ω)]2. Therefore, as the operators ∇ and
div are one the dual of the other,

Im∇ = (Ker div)⊥

Imdiv = (Ker∇)⊥ = L2
0(Ω).

(11)

Then for any f ∈ L2
0(Ω) there exists u ∈ Ker curl⊕W such that div u = f . Using the

fact that the dual of Ker curl⊗W is isometrically isomorphic to (Ker div)⊥ = Im∇, we
get

‖u‖[H1(Ω)]2 = sup
g∈L2(Ω)

〈∇g,u〉
‖∇g‖[H−1(Ω)]2

= sup
g∈L2(Ω)

〈g, div u〉
‖∇g‖[H−1(Ω)]2

≤ M‖div u‖L2(Ω),

(12)

that is the Babuška-Aziz inequality (9) with C = M2

We next show that the Friedrichs inequality is equivalent to the Babuška-Aziz in-
equality. The proof is a minor modification of that given by Horgan and Payne in
[8].

Proposition 2. Friedrichs’ inequality is equivalent to the inequality of Babuška-
Aziz.

Proof. Let f = L2
0(Ω) in the image of the divergence operator. We suppose without

loss of generality that f = div u with u = v + w, v ∈ Ker curl and w ∈ W . From (2)
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and the properties of the Laplace operator it follows that curlw is a harmonic function
and

‖∇v‖2L2(Ω) = ‖div v‖2L2(Ω)

‖f‖L2(Ω) = ‖div v‖L2(Ω) + ‖div w‖L2(Ω).
(13)

Let g∗ ∈ L2
0(Ω) be conjugate harmonic to curlw. Then from (3) it follows

‖curlw‖2L2(Ω) = 〈curlw, curlw〉L2(Ω)

= 〈g∗,div w〉L2(Ω)

≤ ‖div w‖L2(Ω)‖g∗‖L2(Ω)

(14)

so that the Friedrichs’ inequality (7) together with (2) yields

‖∇w‖2L2(Ω) ≤ (Γ + 1)‖div w‖2L2(Ω). (15)

Substitution of (15) into (13) yields the inequality of Babuška-Aziz for all f ∈ Imdiv:

‖∇u‖L2(Ω) = ‖∇v‖L2(Ω) + ‖∇w‖L2(Ω)

≤ ‖div v‖2L2(Ω) + (Γ + 1)‖div w‖2L2(Ω)

≤ (Γ + 1)‖f‖2L2(Ω).

(16)

By this inequality the image of the divergence operator is closed in L2(Ω) and, therefore,
it coincides with the orthogonal complement of the kernel of −∇ : L2(Ω) → [H−1(Ω)]2,
the adjoint of div : [H1

0 (Ω)]2 → L2
0(Ω). But Ker∇ is the subspace of constant functions,

so that Ker div = L2
0(Ω).

Assume now the inequality of Babuška-Aziz. Since this inequality implies, in partic-
ular, Imdiv = L2

0(Ω), we have that to any harmonic function f in L2
0(Ω) it corresponds

a vector field, necessarily in W , such that div w = f . Let f∗ any conjugate harmonic
function to f . We have

‖f‖4L2(Ω) = 〈f, div w〉2L2(Ω)

= 〈f∗, curlw〉2L2(Ω)

≤ ‖curlw‖2L2(Ω)‖f∗‖2L2(Ω)

≤ (C − 1)‖f‖2L2(Ω)‖f∗‖2L2(Ω),

(17)

that is the Friedrichs’ inequality (7) with Γ = C − 1

We complete the proof of the equivalence of the title inequalities by showing that
the inequalities of Korn and Magenes-Stampacchia-Nečas are equivalent. In proving the
implication

Korn’s inequality =⇒ inequality of Magenes-Stampacchia-Nečas

we also prove the implication

Korn’s inequality =⇒ Friedrichs’ inequality.

Compared with the proof given by Horgan in [6], our proof is simpler, but does not lead
to the optimal relation between the constants of the two inequalities 2Γ = K − 2. The
arguments employed in the proof of the opposite implication

inequality of Magenes-Stampacchia-Nečas =⇒ Korn’s inequality

are essentially the same as in [13].
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Proposition 3. Korn’s inequality is equivalent to the inequality of Magenes-Stam-
pacchia-Nečas.

Proof. Assume Korn’s inequality and let f, f∗ ∈ L2
0(Ω) be a pair of conjugate

harmonic functions. By relation (4), the vectors u ≡ (f, f∗) and v ≡ (−f∗, f), and hence
the matrix F = e1⊗u+e2⊗v are irrotational. Moreover, skw F = f∗(e1⊗e2−e2⊗e1) ∈
L2

0(Ω) because of f∗ ∈ L2
0(Ω). It follows that F is the gradient of a vector field that

satisfies the hypotheses of the Korn inequalities (6). Then we arrive at

2
(‖f‖2L2(Ω) + ‖f∗‖2L2(Ω)

)
= ‖F‖2L2(Ω) ≤ K‖symF‖2L2(Ω) = 2K‖f‖2L2(Ω) (18)

which implies the Friedrichs’ inequality

‖f∗‖2L2(Ω) ≤ Γ‖f‖2L2(Ω) (19)

with Γ = K − 1.
Let us consider the Dirichlet problem for the Laplace operator ∆u = ∇f with

f ∈ L2
0(Ω). The solution u ∈ [H1

0 (Ω)]2 can be written in the form u = v + w where
v ∈ Ker curl and w ∈ W are the solutions of the Dirichlet problems

∆v = ∇g and ∆w = ∇h (20)

being g ∈ H and h ∈ H⊥ the projections of f onto H and H⊥, respectively. From (2)
and (5) it follows

‖h‖L2(Ω) = ‖div w‖L2(Ω) = ‖∇w‖[L2(Ω)]2 = ‖∇h‖[H−1(Ω)]2 . (21)

By (3), p = curlv and p∗ = (div v − g) are conjugate harmonic functions in L2
0(Ω) so

that (19) yields ‖p∗‖L2(Ω) ≤ (K − 1)‖p‖L2(Ω), that is, by the definitions of p and p∗,

‖div v‖2L2(Ω) + ‖g‖2L2(Ω) − 2〈g, div v〉L2(Ω) ≤ (K − 1)‖curlv‖2L2(Ω). (22)

Then, from (2) and (5) it follows

‖g‖2L2(Ω) ≤ K‖∇g‖2[H−1(Ω)]2 (23)

which together with (21) gives the Magenes-Stampacchia-Nečas inequality:

‖f‖L2(Ω) = ‖g‖L2(Ω) + ‖h‖L2(Ω)

≤
√

K‖∇g‖[H−1(Ω)]2 + ‖∇h‖[H−1(Ω)]2

≤
√

K‖∇f‖[H−1(Ω)]2 .

(24)

Assume now the Magenes-Stampacchia-Nečas inequality. Let u be a vector field in
[H1(Ω)]2 such that W = skw∇u ∈ L2

0(Ω). The symmetric tensor E = sym∇u and the
rotation function 2) ω of W satisfy (see, for example, Gurtin [5]) the relations

∇ω = curlE

‖W‖2[L2(Ω)]2 = 2‖ω‖2[L2(Ω)]2 .
(25)

2) The rotation function ω associated with W is the unique function such that W = ω skw (e1

⊕e2), with {e1, e2} the standard base of R2.
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Moreover, ω ∈ L2
0(Ω) because of W ∈ L2

0(Ω). Relations (25) and the Magenes-Stampac-
chia-Nečas inequality (8) yield

‖∇u‖2L2(Ω) ≤ ‖E‖2L2(Ω) + 2M2‖curlE‖2[H−1(Ω)]2 (26)

with

‖curlE‖[H−1(Ω)]2 = sup
v∈[H1(Ω)]2

〈curlE,v〉
‖v‖[H1(Ω)]2

. (27)

We now estimate the norm of curlE. For each v ∈ [H1(Ω)]2, let v∗ ∈ [H1(Ω)]2 be
the vector field defined by v∗ = v2e1 − v1e2, with v1, v2 the components of v in the
standard orthonormal base of R2. The following relations hold:

‖sym(curlv)‖L2(Ω) = ‖sym(∇v∗)‖L2(Ω)

‖∇v‖[L2(Ω)]2 = ‖∇v∗‖[L2(Ω)]2 .
(28)

Furthermore, since by Proposition 1 the Magenes-Stampacchia-Nečas inequality is equiv-
alent to the Babuška-Aziz inequality, we have also

‖∇v∗‖L2(Ω) ≤ M‖curlv∗‖L2(Ω)

so that
‖sym∇v∗‖2L2(Ω) = ‖∇v∗‖2L2(Ω) −

1
2
‖curlv∗‖2L2(Ω)

≤ (2M2 − 1)
2M2

‖∇v∗‖2L2(Ω).

(29)

Using the Schwarz inequality and (29), we get

〈curlE,v〉
‖v‖[H1(Ω)]2

≤ ‖E‖L2(Ω)‖sym curlv‖L2(Ω)

‖v‖[H1(Ω)]2

≤ ‖E‖L2(Ω)‖sym∇v∗‖L2(Ω)

‖∇v∗‖L2(Ω)

≤ (2M2 − 1)
2M2

‖E‖L2(Ω).

(30)

Consequently,

‖curlE‖[H−1(Ω)]2 ≤
(2M2 − 1)

2M2
‖E‖L2(Ω). (31)

Substitution of (31) into (26) yields the Korn inequality (6)

‖∇u‖2L2(Ω) ≤ K‖E‖2L2(Ω) (32)

with K = 2M2 = 2C
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[3] Friedrichs, K. O.: On the boundary-value problems of the theory of elasticity and Korn’s
inequality. Ann. Math. 48 (1947), 441 – 471.

[4] Girault, V. and P. A. Raviart: Finite Element Approximation of the Navier-Stokes Equa-
tions. Lect. Notes Math. 749 (1979).

[5] Gurtin, M. E.: The linear theory of elasticity. In: Handbuch der Physik, Vol. VIa/2 (eds.:
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