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The Existence of Non-Trivial Bounded Functionals
Implies the

Hahn-Banach Extension Theorem
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Abstract. We show that it is impossible to prove the existence of a linear (bounded or un-
bounded) functional on any L∞/C0 without an uncountable form of the axiom of choice. More-
over, we show that if on each Banach space there exists at least one non-trivial bounded linear
functional, then the Hahn-Banach extension theorem must hold. We also discuss relations of
non-measurable sets and the Hahn-Banach extension theorem.
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From the very beginning, the axiom of choice (AC) in Zermelo-Fraenkel’s set theory
(ZF) was a topic of discussion, mostly due to its consequences on measure theory and
functional analysis. Thus, one was looking for weaker axioms: The most important
ones are the axiom of dependent choices (DC), the prime ideal theorem (PI), and the
Hahn-Banach extension theorem

(HB) If X is a real linear space, p a sublinear functional on X, and f0 a linear
functional defined on a subspace of X with f0(x) ≤ p(x), then there exists a
linear extension f of f0 to X such that f(x) ≤ p(x).

The axiom DC (see, e.g., [14]) allows recursive countable choices and is widely accepted:
Most “standard” proofs use DC implicitly; a typical example is the classical proof of
Baire’s category theorem. For the other mentioned axioms, the implications

AC =⇒ PI =⇒ HB

in ZF are known (the latter follows from [19, 20], and was proved independently in [21]).
Both implications can not be reversed, as has been shown in [12] and [31], respectively;
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the second implication can not even be reversed in the presence of DC (see [32]). Thus,
one might consider HB + DC as an essential weakening of AC. Nevertheless, it is known
that the most striking consequences of the axiom of choice can already be obtained by
using only ZF + HB: In particular, the measure extension theorem [24], the existence of
non-Lebesgue measurable sets [9], and the Banach-Tarski (and Hausdorff) paradox [30];
see also the survey [7]. However, in ZF + DC, one can not prove the Banach-Tarski
paradox [46: Theorem 13.2] and (if the existence of an inaccessible cardinal is consistent)
one can also not prove the existence of a non-Lebesgue measurable set [38]. But ZF +
DC still suffices to prove a weak form of HB (with certain separability assumptions),
see [11: p. 183]. Moreover, for most “concrete” examples of spaces the dual space is
always “rather rich” (for the large class of so-called ideal spaces, see, e.g., [44, 48, 50]).
Thus, one is led to the question whether there is at least some weaker form of HB which
can be proved in ZF + DC for each Banach space. The purpose of this note is to give
a negative answer to this question:

Theorem 1. It is not possible in ZF + DC to prove the existence of a non-trivial
linear (bounded or unbounded) functional on any of the spaces L∞(S)/C0(S), where S
is a locally compact Hausdorff space with a σ-finite Radon measure.

Here, L∞(S) denotes the space of all (classes of) measurable and essentially bounded
real functions on S with the ess sup-norm, and C0(S) the closed subspace of all contin-
uous functions vanishing at ∞.

We remark that for a slightly different set theory, a space with the same property
was constructed in [17]; however, in the model used there even the countable form of
the axiom of choice fails.

We can also prove a positive statement which in a certain sense extends Theorem
1 (at least for bounded functionals). The Hahn-Banach theorem is equivalent to an
apparently much weaker statement:

Theorem 2 (ZF). Assume that on each non-trivial Banach space there exists some
non-trivial bounded linear functional. Then HB holds.

We prove Theorem 2 even in ZF (i.e. the axiom DC is not needed). Moreover, the
proof is even constructive: The extension f in HB can be given explicitly in terms of a
functional on an appropriate Banach space.

Theorem 2 contains in particular the surprising fact that the existence of one non-
trivial functional on each Banach space implies the existence of “many” such functionals
on each Banach space. Be aware that the existence of one non-trivial functional on a
fixed Banach space does not imply the existence of more functionals on that space. For
example, on X = (l∞/c0)×R there is the non-trivial bounded functional f(([x], t)) = t,
but in view of Theorem 1, the axioms of ZF + DC are not sufficient to prove the existence
of another linear functional which is linear independent of f , because any such functional
g would induce a non-trivial functional on l∞/c0 by means of [x] 7→ g(([x], 0)).

Note that we could have replaced “Banach space” in Theorem 2 by “normed linear
space”: Indeed, no form of the axiom of choice (not even DC) is required to show that
each normed space X has a completion X, and we may identify the corresponding dual
spaces X∗ = (X)∗ by restriction.



Non-Trivial Functionals and Hahn-Banach Theorem 269

Proof of Theorem 1. Shelah has proved that there is a model of ZF + DC in
which each subset of a complete separable metric space has the property of Baire (this is
claimed in [39] and explicitly proved for R in [36]; see also [16, 40]). Since in particular
each subset of R must have the Baire property in this model, it follows from [31] or
[46: Theorem 13.5] (this was also remarked without proof in [38]) that the following
statement holds in this model:

(PM)ω There is no finitely additive probability measure µ on N which is defined for all
subsets of N and vanishes for finite sets.

Alternatively, one may use the model sketched in [32] to see that ZF + DC + PMω is
consistent. In [45] it is proved that ZF + DC + PMω implies in particular that the
dual space of the normed Köthe space L∞(S) with a σ-finite measure space S coincides
in the canonical way with the associate space L1(S) of integrable functions. Hence, if
f ∈ (L∞/C0)∗ is given, and i : L∞ → L∞/C0 denotes the quotient mapping, then
f ◦ i ∈ L∗∞ may be written in the form (f ◦ i)(x) =

∫
x(s)y(s) ds with some y ∈ L1.

Since f ◦ i vanishes on C0, this implies y = 0 (a.e.) and, consequently, f ◦ i = 0. But i
is onto, and so f = 0.

So far, we have only excluded the existence of non-trivial bounded linear function-
als on L∞/C0. But in Shelah’s model, every linear functional on a Banach space is
automatically bounded, as follows from the results in [47]

Proof of Theorem 2. The result can be proved by a modification of the proof
from [24]. However, for our case the proof can be simplified. We present a version which
also avoids the explicit use of model theory:

Let X be a real linear space, p be a sublinear functional on X, and f0 be a linear
functional defined on a subspace Xf0 ⊆ X such that f0(x) ≤ p(x) (x ∈ Xf0). Let F
denote the set of all linear extensions f of f0 to some subspace Xf ⊆ X which satisfy
f(x) ≤ p(x) (x ∈ Xf ). Let Y = l∞(F ) be the set of all bounded maps y : F → R
endowed with the sup-norm. By Y0 we denote the subspace of all y ∈ Y with the
following property: There are finitely many x1, . . . , xn ∈ X such that y(f) = 0 for all
f ∈ F with {x1, . . . , xn} ⊆ Xf .

One part of the classical proof of the Hahn-Banach theorem shows that for each
finitely many x1, . . . , xn ∈ X there actually is some f ∈ F with {x1, . . . , xn} ⊆ Xf (this
part of the classical proof is constructive). In particular, each y ∈ Y0 actually vanishes
at some point. Defining e0 ∈ Y by e0(f) ≡ 1, we thus have dist(e0, Y0) = 1. Considering
the quotient space Z = Y/Y0 with the quotient mapping [ · ] : Y → Z onto the canonical
equivalence class, we may conclude that e = [e0] satisfies ‖e‖ = 1. Observe that Y0 and
thus also Y0 is an order ideal in Y (see, e.g., [49: Theorem 15.19]), and so Z becomes a
Riesz space with the canonical order [49: §19]. The element e is a strong unit in Z.

Now we define a mapping G : X → Z by letting G(x) the equivalence class contain-
ing a bounded (e.g. trivial) extension of the mapping y : f 7→ f(x) (defined for all f ∈ F
with x ∈ Xf ): G(x) does actually not depend on the particular choice of the extension,
because if y1, y2 are two extensions of y, we must have y1(f) = y2(f) for each f ∈ F
with x ∈ Xf , i.e. y1 − y2 ∈ Y0 ⊆ Y0. Now we may conclude that G is linear. Moreover,
for x ∈ Xf0 the identity y(f) = f(x) = f0(x)e0(f) implies G(x) = [f0(x)e0] = f0(x)e.
Similarly, y(f) = f(x) ≤ p(x)e0(f) implies G(x) ≤ p(x)e for all x ∈ X.
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If we now find a positive linear functional L : Z → R with L(e) > 0, we are done,
because by multiplying with a constant we may assume L(e) = 1; then F0(x) = L(G(x))
is the required extension: Indeed, F0 is linear, F0(x) = L(f0(x)e) = f0(x) (x ∈ Xf0),
and F0(x) = L(G(x)) ≤ L(p(x)e) = p(x) (x ∈ X).

To find such an L, we use that by assumption there is some non-trivial bounded
linear functional l on the non-trivial normed space Z (without DC, it is not clear whether
Z is a Banach space, but as remarked above, we do not need this fact). Then L0(y) =
l([y]) defines a non-trivial bounded functional on Y = l∞(F ) which vanishes on Y0.
Trivially, L0 is order-bounded, and so |L0| is defined (see, e.g., [49: §20]) and is a
non-trivial positive functional which satisfies

|L0|(f) = sup
{|L0(g)| : |g| ≤ f

}
(0 ≤ f ∈ F ).

This in particular implies that |L0| vanishes on Y0, and so |L0| induces a non-trivial
positive functional L on Z by the formula L([y]) = |L0|(y)

It is an interesting and still not completely solved question how strong Solovay’s
axiom is (in ZF + DC):

(LM) All subsets of R are Lebesgue measurable.

Solovay has proved in his celebrated work [38] the consistency of ZF + DC + LM under
the assumption that the existence of an inaccessible cardinal is consistent with ZF +
AC. Later, Shelah has shown [36] (see also [33]) that conversely ZF + DC + LM implies
the consistency of an inaccessible cardinal. The latter is known to be unprovable by
methods formalizable in ZF + AC (see [15: Theorem 27]). In contrast, it can be proved
that the following apparently similar statement is consistent with ZF + DC (we have
used this fact in the proof of Theorem 1):

(BP) All subsets of R have the Baire property.

Recall that HB is equivalent to the fact that there is a measure on each Boolean algebra
[24]. It has been proved recently that ZF + HB already implies that LM fails [9].
However, the proof uses a measure on “quite a large” Boolean algebra. It is still an
open problem how large this Boolean algebra must be. More precisely, it is not known
whether ZF + DC + LM implies PMω. Observe that, in contrast, it is known that ZF
+ DC + BP implies PMω (we have used this fact in the proof of Theorem 1). Thus,
we have the paradoxical situation that the (logically) less restrictive axiom BP implies
PMω, while this is not known for the (logically) more powerful axiom LM. This is even
more astonishing, if one recalls that it is known that already a weakening of LM (for so-
called Σ1

2-sets) implies the corresponding weakening of the statement BP (for Σ1
2-sets),

see [34]. If we would know that LM implies PMω, we could alternatively have used any
model satisfying ZF + DC + LM in the proof of Theorem 1 (even if BP fails in that
model which is, however, not the case in Solovay’s model [38]; in the proof of Theorem
1 one then has to replace the result [47] on the automatic continuity of operators by the
corresponding result [10]). However, we intend to show now that the “natural” ways to
prove PMω from ZF + DC + LM must fail. All following arguments take place in ZF
+ DC:
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One of the classical ways [37] (see also [14: Problem 1.4.10] or [25]) to prove the
existence of non-measurable sets on [0, 1] is to consider the family of functions xn :
[0, 1] → R,

xn(t) = [2nt]− 2[2n−1t], (1)

(i.e. xn(t) is the n-th number in the binary expansion of t), and to define f(t) =
limn xn(t), where the limit is understood with respect to a (free) ultrafilter on N. Then
f turns out to be non-measurable (observe that by this argument one does not need the
full strength of AC: The Boolean prime ideal theorem PI suffices). The same method
can be used with certain periodic or almost period functions like xn(t) = sin(2πnt) if
the ultrafilter is chosen appropriately [22, 41, 43]; see [5] for a characterization of those
ultrafilters. Recalling that free ultrafilters may be identified in a canonical way with two-
valued singular measures, it is a natural approach to use instead more general singular
measures with values in R. If each sequence yt = (xn(t))n is bounded, this means that
we put f(t) = L(yt), where L is an appropriately chosen singular functional on l∞ (i.e.
L vanishes on c0). We show now that f is measurable under natural assumptions on L
and xn.

We call a sequence xn of functions Cesàro-constant, if for almost all t the limit

lim
n→∞

x1(t) + . . . + xn(t)
n

= c

exists and is independent of t.

Lemma 1 (ZF + DC). Let xn : [0, 1] → R be (Lebesgue) integrable and assume:
(1) For each c ∈ R the following number is independent of n:

Mc = mes ({t : xn(t) < c}). (2)

(2) For each pair of indices k 6= n and numbers a, b ∈ R, we have

mes
({t : xk(t) < a} ∩ {t : xn(t) < b}) = MaMb. (3)

Then xn is Cesàro-constant on [0, 1] with

c =
∫ 1

0

xn(t) dt, (4)

where c is independent of n.

Proof. The statement is nothing else but the strong law of large numbers formu-
lated for the probability space [0, 1], in the form of e.g. [4]. In fact, interpreting xn as a
random variable, condition (2) means that all xn have the same distribution function,
and (4) is the (common) expectation. Condition (3) means that the variables xn are
pairwise independent

The assumptions of Lemma 1 evidently hold for sequence (1) (even if we replace
2 by some other natural number). Let us show now that such a sequence xn can not
lead to a non-measurable function for a large class of singular functionals L, even if we
perturbate the sequence somewhat:
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Theorem 3 (ZF + DC). Let xn : [0, 1] → R be integrable such that (2) and (3)
hold. Assume that yn : [0, 1] → R is Cesàro-constant (for example, yn → 0 a.e.). If the
sequence zt = (xn(t) + yn(t))n is bounded for almost all t, and L is a functional on l∞
such that

lim inf
n→∞

ξ1 + . . . + ξn

n
≤ L((ξn)n) ≤ lim sup

n→∞
ξ1 + . . . + ξn

n
, (5)

then the function f(t) = L(zt) is measurable (namely a.e. constant).

Proof. By Lemma 1, zn = xn+yn is Cesàro-constant with some constant c. Hence,
for almost all t, we have that for ξn = xn(t) + yn(t) both sides of (5) are equal to c.
Thus, f(t) = c a.e.

A natural choice is xn(t) = x(nt) where x is some periodic function, like xn(t) =
sin(nt). However, condition (3) is usually not satisfied in this case, even if x is 1-periodic
and continuous. Anyway, even if x is only almost periodic, the conclusion of Theorem
3 holds. In this case, we can prove even more:

Recall that a positive linear functional L on l∞ is called a Banach-Mazur limit,
if L((ξn)n) = lim ξn whenever the limit exists and L((ξn)n) = L((ξn+1)n). Observe
that the classical construction of Banach-Mazur limits (with HB) leads to functionals
L which satisfy (5). We show now that for sequences xn(t) = x(nt) with an almost
periodic function x one may even choose an arbitrary Banach-Mazur limit L and still
ends up with a measurable function.

Following Lorentz, we call a bounded sequence x = (ξn)n almost convergent (to
some number c) if

lim
n→∞

sup
j∈N0

∣∣∣ξ1+j + . . . + ξn+j

n
− c

∣∣∣ = 0.

Using HB, Lorentz has proved [18] that a sequence x = (ξn)n is almost convergent to
c if and only if L(x) = c for each Banach-Mazur limit L (one can give a short proof of
this equivalence by non-standard methods [27]; but be aware that the construction of
non-standard models requires a more powerful form of the axiom of choice than HB).
However, we will only use that direction of this equivalence which can be carried out in
ZF: If x = (ξn)n is almost convergent to c, then L(x) = c for each Banach-Mazur limit
L.

Recall [28: §23] that a measurable almost periodic function x on R is automatically
continuous and bounded, and may be approximated uniformly on R by trigonometric
polynomials.

Lemma 2 (ZF). Let x be almost periodic on R and continuous. Put xn(t) =
x(nt). Then for all except countably many t ∈ R the sequence xt = (xn(t))n is almost
convergent to

c = lim
T→∞

1
T

∫ T

0

x(s) ds.

Proof. First, assume that x(t) = eiϕt with ϕ ∈ R. For ϕ = 0 the statement is
trivial, and otherwise

sup
j∈N0

∣∣∣x1+j(t) + . . . + xn+j(t)
n

∣∣∣ = sup
j∈N0

∣∣∣ 1
n

eiϕ(j+1)t
n−1∑

k=0

eiϕkt
∣∣∣ =

1
n

∣∣∣e
iϕnt − 1
eiϕt − 1

∣∣∣
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tends to 0 for all t with eiϕt 6= 1 (and the exceptional set is just countable). Thus, the
statement follows for all trigonometric polynomials.

For the general case, choose a sequence of trigonometric polynomials pk which con-
verges uniformly on R to x. By what we just proved, we have for all except countably
many t that

lim
n→∞

sup
j∈N0

∣∣∣pk((1 + j)t) + . . . + pk((n + j)t)
n

− lim
T→∞

1
T

∫ T

0

pk(t) dt
∣∣∣ = 0 (6)

for all k ∈ N. Since pk(mt) → xm(t) uniformly in m, we have

lim
k→∞

sup
n

sup
j∈N0

∣∣∣pk((1 + j)t) + . . . + pk((n + j)t)
n

− x1+j(t) + . . . + xn+j(t)
n

∣∣∣ = 0,

and since pk → x uniformly, we also have

lim
k→∞

sup
T>0

∣∣∣ 1
T

∫ T

0

pk(t) dt− 1
T

∫ T

0

x(t) dt
∣∣∣ = 0.

Thus, we may pass to the limit k →∞ in (6) and replace there pk by x

Lemma 2 generalizes [17: Example 6.5(iii)].

Theorem 4 (ZF). Let x be almost periodic on R and continuous. Put xn(t) =
x(nt). By yt, we denote the sequence (xn(t))n. Then for any Banach-Mazur limit L the
function f(t) = L(yt) is measurable on R (namely a.e. constant).

Proof. By Lemma 2, the sequence yt is, for all except countably many t, almost
convergent to a constant c which is independent of t. By the result of Lorentz cited
above, this means f(t) = c

The same method of proof does not apply for sequence (1). In fact, if we only assume
that the functions in Lemma 1 are not only pairwise but even completely independent
(and exclude the trivial case that they are equally distributed), we do not have almost
convergence.

Proposition 1 (ZF + DC). Let xn : [0, 1] → R be Lebesgue integrable such that
(2) holds. Assume, moreover:

(1) For each finitely many pairwise different indices n1, . . . , nk and numbers c1, . . . ,
ck we have

mes ({t : xn1(t) < c1} ∩ . . . ∩ {t : xnk
(t) < ck}) = Mc1 · · ·Mck

. (7)

(2) The functions xn are not a.e. constant.
Then for almost no t ∈ [0, 1] the sequence xn(t) is almost convergent.

Proof. By Lemma 1 we only have to prove that for almost all t the sequence xn(t)
is not almost convergent to (4). Since the functions xn are not equally distributed, there
is some c0 < c such that Mc0 > 0. Put

Dn,j =
n⋃

k=1

{
t ∈ [0, 1] : xjn+k(t) ≥ c0

}
.
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By (7), we have mes Dc
n,j = Mn

c0
> 0. Moreover, for fixed n the events Dn,j are

completely independent, and so we have

mes
J⋂

j=0

Dn,j =
J∏

j=0

mes Dn,j = (1−Mn
c0

)J+1 → 0 (J →∞),

which implies that D = ∪∞n=1 ∩∞j=0 Dn,j is a null set. But all t ∈ Dc have the following
property: For each n we find some j such that each of the numbers xjn+1(t), . . . , xjn+n(t)
is less than c0 < c. This implies that xn(t) can not be almost convergent to c

The assumptions of Proposition 1 are satisfied for sequence (1). It thus remains
an open problem in ZF + DC + HB whether there exists a Banach-Mazur limit L
such that f(t) = L(yt) is non-measurable where yt is the sequence given by (1). In
this connection, we remark that the results in [26] imply that the abstract averaging
integral of any sequence in Proposition 1 in the space L1([0, 1]) with respect to each
Banach-Mazur limit L equals the integral over the constant function (4). However, this
does not answer the question, since it is not clear whether this abstract integral may be
written (a.e.) as the pointwise integral with respect to L: A result like [44: Theorem
4.4.2] (see also [13: p. 68 – 70] or [6]) is not available since Fubini’s theorem may fail
for the “product measure Lebesgue measure ×L”.

To find a required Banach-Mazur limit one only needs that the function f is not
a.e. constant:

Proposition 2 (ZF + DC). Let yt denote sequence (1), L be a Banach-Mazur limit,
and f(t) = L(yt). If A ⊆ [0, 1] is disjoint with {1− ξ : ξ ∈ A}, then

f−1(A) =
{
t ∈ [0, 1] : f(t) ∈ A

}

is either a null set or non-measurable. In particular, if f is measurable, we must have
f(t) = 1

2 a.e.

Proof. The second statement follows from the first for A = [0, 1
2 ) and A = ( 1

2 , 1].

If M = f−1(A) is measurable, then g(t) = χM (t) is integrable. Denote the integral
by c. Observe that g(t) = g( 1

2 t) and g(2−n + t) = g(t). Hence, the substitution rule
implies

∫ (k+1)2−n

k2−n

g(t) dt = 2−n

∫ 1

0

g(2−n(k + s)) ds = 2−n

∫ 1

0

g(s) ds = 2−nc.

We may conclude that for all dyadic numbers 0 ≤ a < b ≤ 1 the relation

1
b− a

∫ b

a

g(t) dt = c

holds. This implies that g(t) = c for almost all t: Indeed, considering appropriate nicely
shrinking dyadic intervals, we find g(t) = c for any Lebesgue point t (see [35] for the
terminology). Hence, g is a.e. constant, i.e. M has either measure 0 or 1 (we could also
have applied the zero-one law for tail sets [8] to prove this fact; see also [2, 29]).
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It remains to exclude that mes M = 1: But denoting the constant sequence (1)n by
e, we have for any non-dyadic number t ∈ [0, 1] the relation

1− f(t) = L(e)− L(yt) = L(e− yt) = L(y1−t) = f(1− t).

Hence, the sets

M0 = f−1({ξ : 1− ξ ∈ A}) and {1− t : t ∈ M}
differ at most by the (countably many) dyadic numbers. In particular, if mesM = 1,
we also have mes M0 = 1. But this is not possible, since the assumption on A implies
that M ∩M0 = ∅

Following Lorentz [18] (see also [1: Chapter II,§3.3]), we introduce for any sequence
x = (ξn)n the numbers

q(x) = inf
j1,...,jp

lim sup
n→∞

1
p

p∑

i=1

ξji+n (8)

q′(x) = sup
j1,...,jp

lim inf
n→∞

1
p

p∑

i=1

ξji+n. (9)

It is easily verified that q is sublinear. Consequently, q′(x) = −q(−x) is superlinear and
q′(x) ≤ q(x) (because 0 = q(0) = q(x + (−x)) ≤ q(x) + q(−x) = q(x)− q′(x)).

The following results are formulated in terms of q′, but they can analogously be
formulated in terms of q (by swapping the roles of 0 and 1):

Proposition 3 (ZF). Let x = (ξn)n with ξn ∈ {0, 1}. Then q′(x) = 0 if and only
if we find for each pattern j1, . . . , jp infinitely many n with ξn+j1 = . . . = ξn+jp = 0.
Moreover, it is equivalent that for each n there is some j with ξj+1 = ξj+2 = . . . =
ξj+n = 0.

Proof. Denoting the sum in (9) by sn, we have sn ∈ {0, p−1, 2p−1, . . . , 1}. Hence,
lim inf sn = 0 if and only if sn = 0 for infinitely many n. In view of ξn ≥ 0, this implies
the first statement. Observe that the existence of one n for each pattern j1, . . . , jp with
ξn+j1 = . . . = ξn+jp = 0 implies the existence of infinitely many such n (and thus
is equivalent with q′(x) = 0): Indeed, putting m = max{j1, . . . , jp} + 1, consider the
patterns {km + j1, . . . , km + jp : k = 1, . . . , k0} with k0 = 1, 2, . . .. This implies the
second equivalence: For necessity consider the particular pattern j1 = 1, . . . , jp = p,
and for sufficiency put n = max{j1, . . . , jp}

It follows from the proof of [18: Theorem 1] that a bounded sequence x = (ξn)n is
almost convergent to c if and only if q(x) = q′(x) (= c). Hence, the following result
can be considered as a strengthening of Proposition 1:

Proposition 4 (ZF + DC). Let yt denote sequence (1). Then for almost all t ∈
[0, 1] we have q′(yt) = 0.

Proof. It follows from the proof of Proposition 1 that for almost all t ∈ [0, 1] the
following is true: For each n we find some j such that xjn+1(t) = xjn+2(t) = . . . =
xjn+n(t) = 0. In view of Proposition 3, this implies q′(yt) = 0
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Proposition 4 makes the following statement look reasonable (let yt denote sequence
(1)).

(LF) There is a non-null set T ⊆ [0, 1] such that for each finitely many t1, . . . , tn ∈ T
we have

q′(sup{yt1 , . . . , ytn
}) = 0. (10)

Taking into account that q′ is monotone and homogeneous, it is equivalent to replace
(10) by

q′(yt1 + . . . + ytn
) = 0. (11)

Putting Nt = {n : xn(t) = 0} where xn is given by (1), LF is equivalent to the statement

(LF)′ There is a filter F on N such that {t ∈ [0, 1] : Nt ∈ F} is not a null set and such
that for each F ∈ F and each n ∈ N there is some j ∈ N with j, j+1, . . . , j+n ∈ F .

This equivalence follows from Proposition 3: If F is a filter as above, one may put
T = {t : Nt ∈ F} in LF; conversely, if a set T is given as in LF, one may choose F as
the filter generated by the sets Nt (t ∈ T ). Recall that any filter F on N is either a null
set or non-measurable [3: Proposition 4.1] (see also [2]). Hence, if LF holds, the set T is
contained in a non-measurable subset of [0, 1]. This has some interesting consequences:

Despite of Proposition 4, T can not have measure 1. Moreover, in view of [38], it is
not possible to prove LF within ZF + DC (if the existence of an inaccessible cardinal is
consistent). We do not know whether it is possible to prove LF within ZF + DC + HB.

However, LF is consistent with ZF + DC + HB. In fact, the following stronger
result follows from [42] which was brought to our attention by a referee of a preceeding
version of this paper.

Theorem 5. ZF + AC implies LF.

Proof. We apply a special case from [42], namely that the intersection of countably
many free ultrafilters on N is non-measurable. Let U be a free ultrafilter on N. For
k ∈ N0 put

Fk =
{
F ⊆ N : {j ∈ N : j + k ∈ F} ∈ U}

.

One may check straightforwardly that Fk is a free ultrafilter. Hence, F = ∩∞k=0Fk is a
non-measurable filter on N. We claim that F has the property required in LF′. Indeed,
a set F ⊆ N belongs to F if and only if {j ∈ N : j + k ∈ F} ∈ U for k ∈ N0. Hence, we
have for any F ∈ F and any n that the set ∩n

k=0{j ∈ N : j + k ∈ F} belongs to U and
thus contains some element j ∈ N. This means j, j + 1, . . . , j + n ∈ F

Theorem 6. In ZF + DC + HB the statement LF is equivalent to the following
statement: There is a Banach-Mazur limit L such that {t : L(yt) = 0} is not Lebesgue
measurable.

Proof. If M = {t : L(yt) = 0} is not Lebesgue measurable, then we may choose
T = M : Indeed, by [18] we must have q′(x) ≤ L(x) for x ∈ l∞, in particular

0 ≤ q′(yt1 + . . . + ytn) ≤ L(yt1 + . . . + ytn) = 0

whenever t1, . . . , tn ∈ M , i.e. (11) holds.
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Conversely, let LF hold. In view of Proposition 2, it suffices to prove that there
exists some Banach-Mazur limit L such that T ⊆ {t : L(xt) = 0}. To find such an
L, let X0 ⊆ l∞ denote the linear hull of the sequences yt with t ∈ T . We claim that
q′(x) ≤ 0 for any x ∈ X0: Let x = λ1yt1 + . . .+λkytk

with tm ∈ T and λm ∈ R. In view
of (10) and Proposition 3, we find for any pattern j1, . . . , jp infinitely many n such that

xj1+n(tm) = xj2+n(tm) = . . . = xjp+n(tm) = 0 (m = 1, . . . , k).

With the notation x = (ξn)n, this implies

lim inf
n→∞

1
p

p∑

i=1

ξji+n =
1
p

lim inf
n→∞

k∑
m=1

λm

p∑

i=1

xji+n(tm) ≤ 0,

and so q′(x) ≤ 0, as claimed.
Since x ∈ X0 implies −x ∈ X0, we thus also have q(x) = −q′(−x) ≥ 0. Hence, if we

define L(x) = 0 (x ∈ X0), the estimate

q′(x) ≤ L(x) ≤ q(x) (12)

holds on X0. Applying HB, we may extend L linear to l∞ with L(x) ≤ q(x). In view
of −q′(x) = q(−x) ≥ L(−x) = −L(x), (12) holds on l∞. Then L is a Hahn-Banach
limit which vanishes on X0: For non-negative sequences x we have L(x) ≥ q′(x) ≥ 0.
If x is convergent to c, then q(x) = q′(x) = c, i.e. L(x) = c. Finally, if x = (ξn)n

and y = (ξn+1)n, then q(x − y) ≤ 0 and q(y − x) ≤ 0, as can be seen by the choice
j1 = 1, . . . , jp = p as p →∞ in (8). Hence, L(x)−L(y) = L(x−y) ≤ 0 and L(y)−L(x) =
L(y − x) ≤ 0, i.e. L(x) = L(y)

The construction of L in Theorem 6 follows the construction in [18].

Corollary 1. ZF + AC implies the existence of a Banach-Mazur limit L such that
{t : L(yt) = 0} is not Lebesgue measurable.
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